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Abstract

We present constructions and results about GDDs with two groups
and block size five in which each block has Configuration (s, t), that
is, in which each block has exactly s points from one of the two groups
and ¢ points from the other. After some results for a general k, s and
t, we consider the (2, 3) case for block size 5. We give new necessary
conditions for this family of GDDs and give minimal or near-minimal
index examples for all group sizes n > 4 except for n = 24s + 17.

Introduction

group divisible design GDD(n,m, k; A1, A2) is a collection of k-element
subsets of a v-set X called blocks which satisfies the following properties:
each point of X appears in r of the b blocks; the v = nm elements of X are
partitioned into m subsets (called groups) of size n each; points within the
same group are called first associates of each other and appear together in
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A1 blocks; any two points not in the same group are second associates and
appear together in Ay blocks. {15}, [17].

Designs of the type discussed here are known as GDD’s as well as group
divisible PBIBD’s (partially balanced incomplete block designs). In [15]
GDD refers exclusively to the case when A\; = 0, and if A\; # 0, then
PBIBD is used [17]. PBIBD’s were introduced as generalizations of BIBD’s
(balanced incomplete block designs). BIBD’s are known to be universally
optimal, and the optimality of PBIBD’s with two groups is established in
[3], and, in the extensive tables of PBIBDs given in [4], very few non-trivial
examples with two groups are listed there. PBIBD’s are applied in plant
breeding work [14] and in group testing [5]. For further readings on two
class PBIBDs see Chapter 11 of [16], and for extensive cross-connections
and an introduction to other types of PBIBD’s see [17] .

In [8] the authors there settled the existence problem for group divisible
designs with first and second associates with block size k£ = 3 and with m
groups each of size n with m,n > 3. The problem of necessary and sufficient
conditions for m = 2 or n = 2, and block size three, was established in [7].
Similar partial results were established for GDDs with block size four in
[9]- [10], and [11].

The purpose of this note is to establish similar results for GDDS with
block size five and two groups. To this end, we consider designs which
we denote by Configuration (s,t). These are GDDs for which each block
intersects one of the groups in exactly s point (and hence intersects the
other group in ¢ = k — s points). We consider in detail the (2,3) case
with block size 5 in this paper. This case achieves the greatest separation
(Theorem 5) between indices when A2 > A;, namely,

A2 _ 3(n-1)
M T 2n

The equation implies that, for any given n, there is a least value for the
pair (A1, A2) and any other GDD with that n and configuration will have
indices (w1, wA2) for some positive integer w. Consequently, we focus
on constructing such a "minimal” GDD since we may then say that the
necessary conditions are sufficient for the existence for any indices with
that n and configuration. We describe as near-minimal a design which has
indices exactly twice the minimal size.

In what follows, we construct minimal or near-minimal examples for all
GDD (n,2,5; A1, A2) except for n = 24s + 17, for which we have a design
with indices 4 times the minimal values. Our complete results from Section
2 are summarized in the table below.
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Configuration (2,3) | Summary Of minimality Results |-
n = 1 (mod 6) all minimal
n =2 (mod 6) n = 8, minimal
n = 125 + 2, minimal
n = 125 + 8, near-minimal
n = 3 (mod 6) all minimal
n =4 (mod 6) n = 4, 125 + 10, minimal
n = 128 + 4, near-minimal
n =5 (mod 6) n =5, 125+ 11, minimal
n = 24s + 5, near-minimal
n=24s+17, w=4
n =0 (mod 6) n = 125 4 6, minimal
n = 12s, near-minimal

It is well-known [17] for these designs that the replication number r and

number of blocks b satisfy:

rT= (Al(n - 1) +n)\2)/4
b=n(A(n— 1)+ nA2)/10 = 2nr/5.

These two necessary conditions on b and r determine possibilities for
A1 and Ag. For example, if A; = 1{mod 20)

the parameter n and the indices

and )y = 0(mod20) then n = 1,5(mod 20).

Example 1 We show a GDD{(4,

figuration (2,3) GDD. Let A =
24 blocks are listed in the array

WO D 8 N~
WO OO0 O QA LN
WHKNO TR O AWM
N=HQUOST R /O RN
B = QO OO0 B N

2,5;8,9), the smallest (fewest blocks) Con-
{1,2,3,4} and B = {a,b,c,d}. Then the

below.
1111 2 2 2
2 3 3 3 3 3 3
4 4 4 4 4 4 4
c b b b a a a
d a ¢ d b ¢ d
a a a a b b b
b ¢ ¢ ¢ ¢ ¢ ¢
d d d d d d d
2 113 2 2 3
4 3 4 4 3 4 4

There are (at least) two other necessary conditions:

Theorem 1 For any GDD(n,2,

5; A1, Az),

(e) b> max{2r — Ay, 2r — A2);

@) 2n/\2 < 3(1’7, e 1)/\1
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Proof For part (a), consider the set of blocks containing points = and
y. There are r blocks containing = and r — ); blocks which contain y and
do not contain z. So there are at least 2r — A; blocks. For part b, let
bs be the number of blocks with 5 points from the same group, b4 the
number of blocks from with 4 points from one group and the 5th from the
other group, and let bs denote the number of blocks with 3 points from
one of the groups. Counting the contribution of these blocks towards the
number of pairs of points from the same group in blocks together gives:
10bs + 6b4 + 4b3 = 2A; (3) = n(n — 1)A;. Counting the pairs of points from
different groups gives 4b4 + 6b3 = n?X,. By subtraction we have

2b3 — 10bg = n2)\2 - n2)\1 +nA <203 <2 = n[(n - 1)/\1 + n/\2]/5.

512X — 5n2A; + 5nA; < n2X; —nA; + nlg.

27‘&)\2 < 3(n - 1))\1. [ ]

Condition (b) shows that while Ay > A, is possible, it turns out that we
always have A < 1.5A;. The inequality in (b) is sharp since the extreme
bounds for Ag are achieved by the Configuration (2, 3) designs in Section 2.
The following theorem is a direct application of Theorem 1.

Theorem 2 The family GDD(n,2,5; 2u, 3uv) does not exist for any inte-
gers u,v > 0.

In our notation, s + ¢t = k, and if each block has Configuration (s,t),
then the number of blocks with s points from the first group is exactly the
number of blocks with ¢ points from the second group (it is the same set of
blocks). It is convenient to state this, and a bit more, as a theorem.

Theorem 3 Suppose a GDD(n, 2, k; A1, A2) has Configuration (s,t). Then
the number of blocks with s points (respectively t) from the first group is
equal to the number of blocks with s points (respectively t) from the second
group. Consequently, for any s and t, the number of blocks b is necessarily
even.

Proof. Let A and B denote the two groups and A, and A; (B, and
B,, respectively) denote the number of blocks from group A (resp., group
B) with s points and ¢ points. Note A; + A, = b = B, + B, the number
of blocks. The number of pairs of points contributing to A; from group
Ais (3) A4, + ()Ae = (3)M1. The corresponding number from group B is
(3)Bs+(3) B: = (3) \1. We note that B, = A, and B; = A, since they count
the same blocks. Thus by substitution and subtraction, 4, [(3) — (})] =
A [(;) - (;)] and the result follows. u

Theorem 4 For any GDD(n, 2, k; A, A2) with Configuration (s, t), the sec-
ond index is given by Ay = )“('::1) [k(k';ﬁ)_m ] where 8= (3) + (3)-
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Proof. For these designs the equation bk = vr becomes bk = 2nr =
2n{A1(n — 1) + nA2}/(k — 1). Counting the contribution to the first index
by same-group pairs, we note that there are § pairs per block. Hence
Bb = 2);(3). Eliminating b from the last two equations gives the result. m

We close this section with some combinatorial comments. With V as the
incidence matrix of a block design, the following is true for a GD design:
INN'| = rk(rk — vA)™ D(r — )™=, "A GD design is said to be
singular (SGD) if r = Ay, semiregular (SRGD) if r > A; and 7k = v)q,
or regular (RGD) if » > A; and rk > vA2.The next two theorems are well
known.

Theorem 5 For any prime block .éize, in particular for k = 5, singular
GDD do not exist.

Proof. For the singular class, a block intersects an entire group or
misses it entirely. It is well-known [15] that that a singular GD design is
always derivable from corresponding BIBD, by replacing each treatment
by a group of n-treatments. Conversely, if we collapse each group to a
point, the resulting blocks are those of a BIBD. Thus there is a one-to-
one correspondence between existence of a BIB design and a singular GD
design. Obviously the block size of the singular GD design is nk if the
blocksize of the BIB design is ¥ Thus block size of a singular GD is always
a composite number. Hence singular GDDs with k£ = 5 do not exist. ]

Theorem 6 An SRGD design with k = 5 ezists if and only if m =5 and
A1 =0

Proof. Let d be a SRGD design with k = 5, then the fact that, for
a SRGD design, & is divisible by m, implies that m has to be equal to
five. And hence each block contains a unique treatment from every group
resulting in Ay = 0. Let d be a GD design with £ =5, m =5 and A, =0,
then by definition, it is a SRGD design. [ |

In view of Theorem 5 and Theorem 6, all GDDs with m = 2 constructed
here are RGDs. There do not seem to be any designs in Clatworthy [4] of
the type we consider in Section 2. The only three we noticed in [4] are
listed in the array below and have block size 5 and two groups.

GDDs from Clatworthy [4]:

Design | v | 7 | b | m | n| A | A2 | Block-intersection type
Ri33 [ 8 (58 (2|4 4| 2 (1,4) type
R135 | 8 |10(16| 2 14| 8 | 4 (1,4) type
R141 (101020 2|55 | 4 mixed-type;

half each configuration
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From the list of blocks for RGD 133 given in [4], all blocks are of the
type (1,4). However, it is clear that for any GDD(2,n,n + 1;7,2), all the
blocks are of type (1,7n). To see this, apply the formula in Theorem 4 with
k=n+1 and (A1, A2) = (n,2) and solve for S.

For convenience, we list several well known constructions.

Theorem 7 If a BIBD(mn,k, A ) and @ BIBD(n, k, u ) exists, then a GDD
(n,myk; X+ p,A) exists. If a BIBD (v = kt,k,)) ezists then the GDD
(t,k, ks X+ 4,)) exists (the example R141 just above is of this type). If
a BIBD (5t,5,)) exists then a GDD(t,k,k; X + i,\) exists. If a BIBD
(2n,5,A2) and a BIBD (n,5, Ay — A,) exist, then GDD (2,n,5; A\, A2) ez-
ists.

2 Configuration (2, 3) GDD’s

In this section we consider GDDs such that each block intersects each of
the two groups in two points or three points. We refer to these designs as
Configuration (2,3) GDD’s. First theorem of this section shows that the
inequality in Theorem 1 is an equality for Configuration (2,3) GDD’s.

Theorem 8 For any Configuration (2,3) GDD(n,2,5; A1, A2), we have
A2 = 3(n — 1)A1/2n. Further, if n is even, and n is not a multiple of 3,
then M = 2n and Ay 2> 3(n —1).

Proof. Each block has one pair from one group and thiree pairs from
the other group. There are six pairs per block from different groups. Thus,
6b = n%\g. This can be solved for b, equated with the other expression for
b, and simplified to the desired result. |
* Since ged(n,n — 1) = 1, A; > n/3. Hence, it follows from this theorem
that A2 > (n — 1)/2. Now consider any Configuration (2,3) GDD with
point = from group A and point ¥ from group B. If A; is even then it may
be possible that the set of Az blocks which contain both z and y may be
divided into two categories with the same number of blocks. In the first
category, say, each block has three points from group A and in the second
category has three points from group B. In this situation it may be possible
to use certain symmetries in the construction of the blocks of the GDD.
When Az is odd, this division of blocks into two categories is not possible,
and the constructions are much harder (see n = 8 in Section 2.2 in this
regard).

In this section some of the constructions use BIBDs on n points. For
this and other reasons we put the residue classes of n mod 6 in different

20



subsections. The next construction illustrates other possibilities. A Con-
figuration (2,3) GDD(5, 2, 5; 5, 6) satisfies most necessary conditions but
does not exist - it would have only 25 blocks and the number of blocks
must be even (Theorem 3). A constuction with 50 blocks turns out to be
minimal, i.e., with the fewest possible number of blocks; however, if only
25 blocks have group A triples and 25 have group B triples, it is not con-
venient (perhaps not possible) to use a BIBD(5,3,3) with fen blocks as a
constituent.

Example 2 A Configuration (2,3) GDD(5,2,5;10,12). The groups are
A={1,2,3,4,5} and B = {a,b,c,d,e}. Half of the fifty blocks are shown
as columns in the array.

12345|12345(12345|12345(1234°%5
23451|23451(23451(23451|23451
34512)34512{34512|34512{345.12
acebdlcebdalebdac|bdaceldacebd
cebdalebdac|bdaceldaceblacebdd

It is easier to check the indices geometrically. The group A triples in
the blocks shown determine pairs equivalent to 10 copies of a 5-cycle and
5 copies of a 5-pointed star. The 25 pairs from group B in these 25 blocks
form five 5-stars (two-factors) on the points of B. Likewise, the 25 pairs
in the 25 blocks not shown will be 5 more copies of the 5-star on group
A. The collection of cycles and stars from group A can be recomposed to
form 10 complete copies of the complete graph K4 (on the five points of
group A), and likewise for group B. Thus, A\; = 10. Each of the triples
from group A is paired with all 5 blocks from a 5-star (2-factor) from the
complete graph Kp and vice-versa in the blocks not shown. The point
1, for example, occurs in 3 distinct triples (in a set of 5 blocks) and is
matched with each point of group B twice corresponding to each triple,
six matchings of 1 with each point from B. It follows that Ay = 12 as six
more matchings occur with roles of the groups reversed. This design has
the smallest indices possible for n = 5.

Recall that we occasionally use the term "near-minimal GDD” to mean
one with exactly twice the minimal number of blocks.

2.1 Configuration (2,3) for n =6t +1

In general, from the first part of Theorem 8, for n = 6t+ 1, a Configuration
(2,3) GDD must satisfy, for some positive integer w, the following:
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A1 =nw, Ay = 3(n - 1)w/2,
b=n%(n-1)w/4.

In order that the number of blocks b is an integer, we must have for
some integers s and t:

n=6t+1 24s+1 | 24547 | 245+ 13 | 245+ 19
Minimum w | 1 4 2 4

First, for n = 7, the necessary conditions give 7Ao = 9A;. Assume there-
fore that A\; = 7w and Ay = 9w for some positive integer w. The number of
blocks in a Configuration (2,3) GDD(7,2,5; Tw,9w) is b = 147w/2. Since
the number of blocks must be even (Theorem 3), take w = 4 (as in the
table just above), and then b = 2(147). There is a construction for n = 7
and w = 4 and obviously the indices are minimal.

Let A = {a1,a,...,a7} and B = {by, ba, ..., by} denote the groups. Take
21 copies of A, a BIBD(7,3,1) based on the points of set A. There are 21
pairs of points for set B, and we augment each block of A (which appears
21 times) with each pair from B. This creates 147 of the needed blocks and
the other 147 are created similarly reversing the roles of A and B. Each pair
of points from set A appears in blocks together 21 times (since we used 21
copies of A) and 7 more times (since we used 7 complete two-factorizations
of K4 and Kp, one per block of the BIBD). Thus A\; = 28. Since the
replication number for a BIBD(7,3,1) is = 3, point a1, say, appears with
point b; three times for each of the six pairs from B containing by, for a
total of 18. But a; and b; appear together another 18 times by reversing
the roles of A and B. Thus, Ay = 36. This creates a Configuration (2, 3)
GDD(7,2, 5;28,36).

Note that BIBD(6t+1,3,1) exists fort = 1,2,3,.... Thus we generalize
the construction above in the following theorem.

Theorem 9 Suppose n = 6t + 1. Then there ezists a Configuration (2, 3)
GDD(n,2,5; 4n,6(n — 1)).

Proof. Use the construction for n = 7. Take 3n copies of BIBD(n, 3,1)
on each group and n two-factorizations of K4 and Kp. The parameter
w = 4 in this case, and the design is not minimal for two of the four cases.
When n = 6t + 1, there are n(n — 1)/6 blocks in a BIBD(#n, 3,1). We will
use 3n copies of A, a BIBD(n,3,1) based on set A = {a1,a2,...,a,}. We
note that K,,, the complete graph on n points, has a two-factorization, a
decomposition in two-factors or subgraphs in which every vertex appears
twice. Each two-factor has n pairs. We use the notation K4 (and Kpg) for
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the complete graph on vertices in set A (and B). We will use 3¢ complete
decompositions of K4 and Kp. In a two-factor, every vertex appears twice
so there are 6t+1 = v edges in a two-factor. Each of the 3n copies of a block
of A is to be augmented with one of the 3n pairs from three two-factors
from Kg. Now, @) from A appears in (v — 1)/2 = 3t blocks and b;, say, in
B, appears twice in each of the three two-factors. Thus, a; and b, appear
together in 18t blocks. They appear together in another 18t blocks with
the roles of A and B reversed. Therefore, A2 = 36t. Since 3n copies of A
and n decompositions of K4 were used (and similarly for B), Ay =4n. =

The design constructed by this theorem has minimal indices exactly
when n = 24s + 7 and n = 24s + 19.

Theorem 10 For n = 24s+ 7 or n = 24s + 19 the necessary conditions
are sufficient for the existence of Configuration (2,3) GDD(n,2,5; A1, A2)
with A\; = dvw and Ay = 36tw = 6(v — 1)w for some positive integer w.

The necessary conditions referred to here are the two equations on page 2
and Theorem 8. A design is a-resolvable if its blocks can be partitioned
into classes so that within a class, each point occurs o times. The necessary
conditions, that av = 0 (mod &) and A(v — 1) = 0 (mod (k — 1)a) and
Av(v — 1) = 0 (mod k(k — 1)), are known to be sufficient for £ = 3 [12]. In
every binary equi-replicate design of constant block size & such that bk = vr
and b = mw, the points can be arranged into a k-by-b array so that (with
colums as blocks) every point occurs in each row m times [2]. We are now
in a position to prove the following:

Theorem 11 For n = 24s+ 1, s > 1, there is a Configuration (2,3)
GDD(n,2,5; n,3(n—1)/2), and thus the necessary conditions are sufficient
(with w = 1) for existence.

Proof. Take n copies of A, a 3-resolvable BIBD(24s + 1,3,1) and n
copies of an isomorphic BIBD, say B. There are 4s resolution classes in
each copy with n blocks per class. We consider all n copies of any four of
the classes, say C1, Ca, C3 and C4. We decompose each triple of Cy into
pairs. First, applying (2], we may order the points in the blocks of Cy so
that each point of A (and of B, in the corresponding class) appears once in
the first position, once in the second position and once in the third position.
Say {z1,z2,z3} is a block of C; and {y1, y2,y3} is the corresponding block
from group B. We will refer to {z;,z2} as the first pair, {z1,z3} as the
second pair, and {z2,z3} as the third pair (and correspondingly for B).
For each of the n copies of block b of C1, augment with each of the n ”first
pairs” determined by C4 (but using the corresponding points in B). Do
this for all n blocks of C). Every block of C; now occurs with each point
of B twice. Since every point of A occurs 3 times in C}, every point of A

23



meets every point of B six times. Repeat the process for Cy using second
pairs of C,, and again for Cs using third pairs of Cy. Thus every point of
A now meets every point of B eighteen times. Since there are s groups of
4 classes, the points meet 18s times. Finally, repeat the process reversing
the roles of A and B. It follows that Ay = 36s = 3(n — 1)/2. Since we used "
n copies of the BIBD(n,3,1) for A and B, \; = n. n

Theorem 12 The necessary conditions are sufficient for Configuration (2, 3)
GDD(24s + 13,2,5; Ay, A2).

Proof. Forn = 24s+13, w = 2 is necessary (as in the table above). Use
BIBD(n, 3, 2) as ingredients. With index 2, the BIBDs will have r =n — 1.
Thus, there will be 7/3 = 4t = 4(2s + 1) appropriate 3-resolution classes
and the previous construction for n = 24s + 1 can be applied here. This
creates a design with minimal indices and any other will have some multiple
of these indices, and the result follows. [ ]

2.2 Conlfiguration (2,3) for n =6t +2

In this subsection we give an minimal design for n = 8 with odd Xz, a
Configuration (2,3) GDD(8,2, 5; 16,21), and we show that there exists an
minimal or near-minimal solution for all 6¢ + 2.

First, for n = 6t + 2, it is necessary that A\; = 2nw and Ay = 3(n — 1w
for some positive integer w. With these values for the indices, the number
of blocks b is given by

b=n2(n —1)w/2.

We now give a solution for n = 8, w = 1, A\; = 16 and A2 = 21. We take
the groups to be A = {1,2,...,8} and B = {b1, b2, ...b8}. Using two copies
of a BIBD(8, 3, 6) based on group A (112 blocks), we will augment appro-
priately with one-factors from Kg. The other 112 blocks are formed in the
same way, reversing the roles of the groups. Let X denote a BIBD(S, 3, 6)
which we construct in the following way. We identify eight clusters of seven
blocks each, C; to Cs. Cluster C; will be missing point ¢ and will be devel-
oped cyclically so that each cluster is a BIBD(7,3,1). Cluster C; (missing
point 1) is the set of blocks {2, 3,5}, {3,4, 6} ... {8,2,4}. The starter blocks
used are indicated below:

C: 12351 [Cs {(1,24)
C. {135} |Ce {124}
Cs {1,2,5} C: {124}
Ca {1,2,5} Cs {124}




It may be checked that 7 blocks appear four times, and 10 blocks appear
twice. The remaining 8 blocks are shown below (each is listed twice since
we are using two copies of the design X). We also show the companion
‘blocks formed from (corresponding) triples using group B. It is necessary
that, in these 32 blocks, each point from group A be matched with each
point from group B exactly 3 times, and moreover, the pairs used must
form four complete one-factors from each group.

1 11 3 2 2 2 4 1 1 1 3 2 2 2 4
3 5 3 5 4 4 6 6 3 5 3 5 4 4 6 6
7 7 5 7 6 8 8 8 7 7T 5 7 6 8 8 8
b2 b2 b4 b6 b1 bl b3 b5 b6 b4 b2 b2 b5 b3 bl bl
b4 b6 b8 b8 b3 b5 b7 b7 b8 b8 b6 b4 b7 BT b5 b3

b1 bl b1 53 b2 b2 b2 b4 b1 bl b1 b3 b2 b2 b2 b4
b3 b5 b3 b5 b4 b4 b6 b6 b3 b5 b3 b5 b4 b4 b6 b6
b7 b7 b5 b7 b6 b8 B8 b8 b7 b7 b5 b7 b6 b8 b8 b8
1 1 3 3 2 2 4 4 3 3 1 1 4 4 2 2
5 7 7 5 6 8 8 6 7 5 5 7 8 6 6 8

The remaining blocks occur in sets of 4 or 8 (using two copies of X)
and each four-some of blocks may be augmented by a single one-factor (4
pairs) from the other group. The 112 blocks with triples from group A
need, in all, four complete one-factorizations (7 one-factors of 4 pairs each),
and similarly for the other 112 blocks. Note, each pair from group A meets
12 times in triples from the two copies of X, and 4 more times from the
four one-factorizations. Thus, A; = 12 + 4 = 16. Each point from group A
occurs in 36 blocks not pictured in sets of four copies and each set of four is
augmented with a one-factor from group B. This counts 9 towards a total
for Aa. Another 9 comes from reversing the roles of the groups, and 3 more
come from the blocks listed above. Thus, Ay = 9 4+ 9 + 3 = 21. Since these
indices for the GDD are minimal and any such design with = = 8 must
have indices a multiple of these, we may say:

Theorem 13 The necessary conditions are sufficient for the existence of
a Configuration (2,3) GDD(8,2,5; 16w, 21w) for any positive integer w.

Theorem 14 There exists a Configuration (2,3) GDD(6t+2, 2, 5; 4n, 6(n—
1)) with w = 2, and, consequently, the necessary conditions are sufficient
forn=12s+ 2.

Proof. We use w = 2 in the general case for n = 6t+2. Take n/2 copies
of a BIBD(n, 3, 6) based on group A. This gives n?(n — 1)/2 blocks. The
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number of pairs in n complete one-factorizations is n(3) = n?(n — 1)/2,
exactly the number of blocks. The n/2 copies of each block need to be
augmented with the n/2 pairs from 1 one-factor of group B. The replication
number for the BIBD is r = 3(n—1). Every point from group A meets every
point from group B in this way 2r = A2 = 6(n—1) times, counting the other
blocks with triples from group B. As n/2 copies of a design with index 6
are used, 3n is counted towards A;. But we are using n one-factorizations
of each group, and each pair occurs » more times. Thus, A\; = 3n+n = 4n.
This creates a Configuration (2, 3) GDD(n, 2, 5; 4n,6(n — 1)) for n = 6t +2,
t > 1. Now, for any n = 6t + 2, obesrve that the replication number r =
[A1(n = 1) + Aan]/4 = [2nw(n — 1) 4+ 3(n — 1)wn]/4. Since 2n is always a
multiple of 4, r is an integer only if n is a multiple of 4 (or w is even). It
follows that w = 2 is necessary for existence when n = 12s + 2. | |

For n = 12s+2 there is thus a minimal construction, and forn = 12s+8
there is a near-minimal construction.

2.3 Configuration (2, 3) For n = 6t+3

We begin with a construction. It is well known that, when n = 3s > 9,
there exist resolvable BIBD(n, 3, p). The index pcan be 1 if n=6t+3, or
2 if n = 6¢t. The number of resolution classes is just the replication number

r=pu(n—1)/2.

Theorem 15 Suppose that n = 0 (mod 3) and that the BIBD(n, 3, p) is
resolvable with r resolution classes. If r = 0 (mod 4), then there exists a
Configuration (2,3) GDD(n,2,5; A1, A2) where \y =nu/3 and Ay =1

Proof. Letn = 3s. We use n/3 copies of X = BIBD(n, 3, 1) based on set
X = {z1, Z2, ..., Tn} and another n/3 copies of an isomorphic copy of X, say,
Y based on set {y1,y2,...,yn}. X and Y will be the two groups. Number
the resolution classes of X arbitrarily by R,, Rs, ..., R,. We begin with the
first 4 classes, and use the blocks of classes Rj, Rz and R3. Augment each
by a suitable pair taken from Y. There are n/3 copies of these three classes,
a total of n resolution classes. Consider the n/3 blocks in R4. Each block
determines 3 pairs, a total of n distinct pairs. There are n/3 "copies” of
each of the n pairs since there are n/3 copies of R4. Supposing {z;,z2}
is one of these pairs, augment each block in one resolution class with n/3
copies of {y1,y2}. For each such X-pair, we put the corresponding Y -pair in
each of the n/3 blocks in one resolution class of X. Continue with the next
4 remaining resolution classes, if any, until there are no more classes for X.
Then reverse the roles of X and Y. The blocks in each 4th resolution class
are decomposed into pairs which are used to augment one of the resolution
classes for the other group. The first index is nu/3 since we used (all the
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pairs of ) n/3 copies of a design X with index x. In any 4th resolution class,
each point appears in two pairs determined by its one block. Thus, ¥, say,
appears in blocks with every z twice in this way (2 resolution classes of X),
and twice more when the roles are reversed. But the process occurs r/4
times. Therefore, Ao = 4(r/4) =1 . [ ]

Theorem 16 The necessary conditions are sufficient for the existence of
a Configuration (2,3) GDD(6t + 3,2,5; A1, A2).

Proof. In the general case for GDDs with two groups of size n = 6t+3,
we have Ay = wn/3 and Ay = w(n — 1)/2 for some positive integer w.
The number of blocks is b = n?*(n — 1)w/12. It is necessary to look at
four cases mod 24. When n = 9 (mod 24), b is even and the number of
resolution classes in a BIBD(n,3,1) is r = (n — 1)/2, a multiple of 4.
Thus, in the previous theorem, we may take p = 1(= w). The theorem
gives us a Configuration (2,3) GDD(24t+9,2,5;n/3, (n—1)/2), and these
indices are minimal. If n = 24t + 3, then the number of blocks b is given
by b = (24t + 3)(24t + 3)(24t + 2)w/12. Thus, b is an even integer (and
minimal) only if w = 4(= p), and the construction gives a Configuration
(2,3) GDD(24¢t + 3,2,5;4n/3,2(n — 1)), with minimal indices. When n =
24t + 15, w = 4 is again necessary. For n = 24t 4 21, w = 2 is necessary.
In each of these other 3 cases, the larger value of w insures as well that r is
a multiple of 4. Thus, the previous theorem can be applied. Since any other
such GDD (in either of these four cases) will have indices some multiple of
these, the result follows. [ |

2.4 Configuration (2, 3) for n = 6t+4

For n = 6t + 4 we have A\; = 2nw, Az = 3(n — 1)w, and b = n%(n — 1)w/2.
The design in Example 1 is minimal (n = 4). For all other n = 6t + 4 we
give an minimal or near-minimal construction. Note that the replication
number is 7 = [2nw(n — 1) + 3(n — 1)wn]/4. Therefore, for n = 12s + 10,
w = 2 is necessary for existence.

Theorem 17 There ezists a Configuration (2,3) GDD(6t + 4,2,5; A1, A2)
which is near-minimal (w = 2) forn = 12s+4 and minimal forn = 125+10.

Proof. Use 3n/2 copies of a BIBD(n, 3, 2) as ingredients for each group
and n complete one-factorizations of K4 and Kp. Augment the 3n/2 copies
of each block with 3 one-factors with n/2 pairs each. The rest is clear. m

2.5 Configuration (2, 3) for n = 6t+5
Applying Theorem 5 to this case, we find A\; = nw, Az = 3(n — 1)w/2, and
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b = n?(n — 1)w/4 for some positive integer w. In order for the number of
blocks to be even, we need several cases, which we put in the array below

n=6t+5 24s+5 | 24s+11 | 24s+17 | 245+ 23
Minimum w | 2 4 1 4

Theorem 18 For all n = 6t + 5, there exists a Configuration (2,3)
GDD(n,2,5; A1, A2) with Ay = 4n and A2 = 6(n — 1).

Proof. For each of groups A and B, take n copies of a BIBD(n, 3, 3).
For the n copies of a block with points from group A, augment with the
pairs of one two-factor from group B. Do this for each block of points from
A and then do likewise for group B. Using n copies of a BIBD(n, 3, 3)
contributes 3n towards A;, and using n complete two-factorizations of K 4
(and Kg) contributes n more. Thus, A; = 3n+n = 4n. For each time point
z from group A appears in a block of the original BIBD, it eventually meets
every point ¥ from group B exactly twice. This contributes 2r towards As.
Reversing the roles of the groups, Ay = 4r = 4[3(n — 1)/2] = 6(n — 1).
There are n(n — 1)/2 blocks in the BIBD, and we are using » copies of two
BIBDs, so b = n?(n — 1) blocks. These values for A1, A2 and b are the ones
given by the formulas above (when w = 4). ]

Corollary 1 The necessary conditions are sufficient for Configuration (2, 3)
GDD(12t + 11, 2, 5,‘/\1, )\2).

Proof.  The preceeding theorem gives the minimal possible indices for
n = 6t + 11, and any other Configuration (2, 3) GDD(12t+ 11,2, 5; A1, A2)
will have parameters some multiple of these. [ |

COMMENT: The previous theorem gives a near-minimal construction
for n = 24s + 5. Example 2 gives an minimal construction for n = 5,
but we can improve only slightly for the general case 24s 4+ 17. There is
a BIBD(24s + 17,3, 3) which is 3-resolvable, and the number of resolution
classes is a multiple of 4. Thus, the construction for n = 24s + 1 can be
applied. This reduces w from 4 to 3 since then \; = 3n.

2.6 Configuration (2, 3) for n = 6t

In this case, the minimal indices are (A1, A2) = (2n/3,n—1) and the minimal
number of blocks is b = n?(n — 1)/6.

Example 3 A GDD(6,2,5;4,5) with 30 blocks should ezist; however, in
this case the replication number would fail to be an integer. We give an
minimal ezample of a Configuration (2,3) GDD(6, 2, 5; 8, 10) with 60 blocks.
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We use groups A = {1,2,3,4,5,6} and B = {a,b,c,d, e, f}, and we begin
with three isomorphic copies of a BIBD(6,3,2) on each group. We augment
the three copies of each block as indicated in the array.

1 11 a a a 111 a a a 111 a a a
2 2 2 b b b 2 2 2 b b b 3 33 ¢ c c
333 ¢ ¢ ¢ 4 4 4 d d d 5 55 f f f
a b c 4 5 6 a b d 3 5 6 a c e 2 4 6
b ¢c a 5 6 4 b d a 5 6 3 c e a 4 6 2
111 a a a 111 a a a 2 2 2 b b b
4 4 4 d d d 5 5 5 e e e 3 3 3 ¢ ¢ ¢
6 6 6 f f f 6 6 6 f F f 6 6 6 f f f
ad f 2 3 5 a e [ 2 3 4 b ¢ f1 45
d f a 3 5 2 e f a 3 4 2 c f b 4 5 1
2 2 2 b b b 2 2 2 b b b 3 3 3 d d d
4 4 4 d d d 5 5 5 e e e 4 4 4 e e e
5 5 5 e e e 6 6 6 f f f 5 56 5 f f f
b d el 3 6 b e f-1.3 4 d e f 1 2 6
d e b 3 6 1 e f b 3 41 e fd 2 6 1
3 3 3 ¢ ¢ ¢

4 4 4 d d d

6 6 6 f f f

cd f1 25

d f c 2 5 1

Each 5-by-6 subarray shows the set of blocks ”generated” for the GDD
by a block of the BIBD. A direct count shows A\; = 8 and A, = 10.

Theorem 19 There exists a Configuration (2,3) GDD(6t,2,5; A1, A2) for
every t > 2 which is near-minimal (w = 2) for n = 12s and minimal for -
n=12s+86.

Proof. Use n/2 copies of a BIBD(6t,3,2) on each group and n/3
complete one-factorizations. Note A\; = 2(n/2) + n/3 = 4n/3. The rest is
similar to previous proofs. minimality for n = 12s + 6 follows on observing
that the replication number r is an integer only if w is even. ]
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