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Abstract

In this paper, we consider the non-existence of some bi-level orthogonal
arrays (O-arrays) of strength six, with m constraints (6 < m < 32), and
with index set 4 (1 < u < 512). The results presented here tend to
improve upon the results available in the literature.

Introduction and Preliminaries

For ease of reference, we first list some basic concepts and definitions.

Definition. An array T with m constraints (rows), N runs (columns, treatment-~
combinations), and two symbols is merely a matrix T of size m x N with two
elements (say, 0 and 1).

An array T assumes great importance when we impose some combinatorial

structure on it. One such combinatorial structure leads us to the concept of a
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balanced array (B-array).

Definition. T is called a B-array of strength ¢ (1 <t < m) if it satisfies the
following conditions: In every (t x N) submatrix T* of T (clearly there are ()
such submatrices), every (¢ x 1) vector a of weight i (0 < i < ¢; the weight of
a vector ¢ is the number of 1s in it) appears with the same frequency u; (say).
The vector p' = (ui; 2 =0,1,2,...,t) and m are called the parameters of the
array T.

The preceding definition can easily be extended to B-arrays with s symbols.
Also, note that N = E:=o (f)p,, Thus, N is known if we are given y'.

Definition. A B-array T is called an orthogonal array (O-array) if p; = u, for
each i. In this special case, N = 2%p.

Thus, an O-array is a special case of a B-array. Also, the incidence matrix of
a balanced incomplete block design (BIBD) is a special case of a B-array with

= 2. B-arrays have been shown to be related to various other combinatorial
structures.

B-arrays and O-arrays have been extensively used to construct fractional
factorial designs in statistical design of experiments, and O-arrays have found
great use in coding theory, information theory, and statistical quality control.
Under different values of ¢, these combinatorial arrays assist us in the resolution
of different kinds of problems in factorial designs.

In this paper, we restrict ourselves to arrays with ¢ = 6. Such arrays,
under certain conditions, would allow us to estimate all the effects up to and
including three-factor interactions (when higher order interactions are assumed
to be negligible). The problem of constructing such arrays, for a given p' with
the maximum possible value of m, is very important both in combinatorics and
in the statistical design of experiments. Such problems for O-arrays have been
studied, among others, by Bose and Bush [1], Chopra, Low, Dios [5], Hedayat,
Sloane and Stufken [6], Rao [8, 9], Seiden and Zemach [12], and Yamamoto, et.
al [14]; while the corresponding problem for B-arrays has been studied, among
others, by Chopra [4].

A related and important problem in the study of O-arrays is to obtain the
minimal number of runs N for any O-array, for given values of m and ¢. In this
paper, we consider the first type of problem for the existence of O-arrays (ie.
to obtain the maximum value of m, for a given p and t). The results obtained
here go on to improve upon not only the results given in Table 12.1 in Hedayat,
Sloane and Stufken [6], but also those given in Table 3 in Chopra, Low and Dios
(8]

Definition. A B-array T’ with m rows and index set p' = (u—1, g1, p, s, 1, 8, 1 —
1) is called a near O-array. Here, N = 64u — 2.

Note that if we juxtapose to T two vectors (one of weight 0 and another of
weight m), we would obtain an O-array of index set p with m rows. To gain
further insight into the importance of O-arrays and B-arrays, the interested
reader may consult the list of references (by no means, exhaustive) at the end
of this paper, and the further references listed therein.
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2 Main Results with Discussion

Definition. Two columns of a B-array T' with m rows are said to have ¢ co-
incidences (0 < ¢ < m) if the symbols appearing in these two columns are the
same in 7 of the rows.

The following two lemmas are obvious.
Lemma 1. A near O-array T witht = 6 and m = 6 always exists.

Lemma 2. A near O-array T of strength t (= 6) is also of strength t' (0 <
t' < t = 6). Considered as an Jarray of strength t', its index set is given by
(/J,J,j—Olz t),whe'reu =2ty 1, fory-—--Ot’andu =2t-ty,
forj=1,2,...,t' - 1.

The next two results are from Chopra and Dios [3].

Lemma 3. Consider a B-array T having a column (say, the first one) of weight
l. Let z; be the number of columns (other than the first) having ezactly j (0 <
J £ m) coincidences with the the first one. Then, the following results hold:

ixj =N-1, (2.1)
=0
3 s = z=jl [g(k t)g()( I -’—1)],

where t! <k, and1 <k <6.

Remark. The above result can be easily obtained by counting the number of
coincidences in two different ways. The constants g(k;t') are known for each
(k;t') when we derive (2.1) above. These constants for k£ = 1,2, 3,4, 5, 6 are re-
spectively: 1, (1,2), (1,6,6), (1,14, 36,24), (1, 30, 150, 240, 120), and (1, 62, 540,
1560, 1800, 720).

Theorem 1. Consider a near O-array of size (m x N) with t = 6 and y/
(=1, p, 0y, sy pp — 1). Then, the following inequality is true:
LyLg > L? + LoL%, where (2.2)
= (N -1)B; + B},

L3 = (N —1)2B; — 3(N — 1) By By,

Ly =(N—1)*By — 4(N - 1)>B3B, + 6(N — 1)B,B? - 3B},

Le = (N —1)°Bg — 6(N — 1)*Bs B, + 15(N — 1)*B,B?

—20(N —1)2B3B? + 15(N — 1)B;B} - 5B, and

B}c = Zj"a:j.
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Discussion and explanation: Here we describe how Theorem 1 (true for near O-
arrays) is used to obtain corresponding results for the corresponding O-arrays. It
is quite obvious that the max(m) for near O-array is k if (2.2) is contradicted for
m = k+1 (say). Now we attach to the near O-array T (u—1, p, pt, p, 1, 1, 1 — 1)
two k-vectors, one having all zeros and the other having all ones. This would
give us the corresponding O-array T with index set ¢ and number of con-
straints k. If we want to add another row to 7™, it is quite obvious we would
not be able to accomplish it under the constraint that the resulting T* has two
(k + 1)-vectors, one of all zeros and another with all ones. Thus we are looking
at a special class of O-arrays having two runs, one of all zeros and another one
of all ones.

Remark. It is obvious that (2.2) is merely a polynomial inequality involving I,
p and m. For given values for u and [, it becomes an inequality in m. It is
straight-forward to check now if (2.2) is or is not satisfied for any value of m
(= 6). If (2.2) is contradicted for m = m* + 1 (say), then the maximum value
of m for the array is m*. A computer program was prepared to check (2.2) for
all p satisfying 1 < u < 512, and m satisfying 6 < m < 41.

3 Tables 1-3 with Explanations, Comments, and
Illustrations

The entries of Table 2 list the maximum possible value of m (6 < m < 32) for
each p (1 € p < 512) and | = 0 for which (2.2) is satisfied. The entries of
Table 1 [extracted from Table 12.1 with ¢t = 6, given in Hedayat, Sloane and
Stufkin [6]] give the smallest index p possible for an O-array with ¢t = 6, and m
rows. There are two kinds of entries: (i) exact value of y if it is known, and (ii)
an interval pg—u; indicating that such an O-array must have index at least pyo,
and that an O-array with index y; is known to exist. For example, the entry
for m = 12, t = 6 is 12-16 which means that an O-array with m = 12 and
N = (16)(2%) = 1024 runs is known to exist, and that any such O-array must
contain at least (12)(26) = 768 runs, but the existence of each O-array with
4 =12,13,14, and 15 is unknown. In design language, any entry of the type
po—p1 in Table 1 means that there is a fractional factorial design of resolution
7 with m factors and N = u; - 25 runs.

In Table 1, all unlabeled lower bounds are obtained from the trivial obser-
vation that the non-existence of an O-array of index p and m rows implies the
non-existence of an O-array of index p and (m + 1) rows. All unlabeled upper
bounds are consequences of the following observations: (i) an O-array of index
p = 1and m =t + 1 always exists, and (ii) an O-array of index pu, strength
t, and m rows implies the existence of an O-array of index u, strength ¢, and
(m — 1) rows, an O-array of index u, strength ¢ — 1, and m — 1 rows, and an
O-array of index 2u, strength ¢, and (m + 1) rows.



Remark. In practice, it means that if an upper bound p; is unlabeled, then
the justification for it can be obtained by following the table downwards and
possibly diagonally downwards to the right, until an entry g, is reached which
carries a label. Thus, some upper bounds (for ¢ = 6) in Table 1 are obtained by
appealing to the existence of O-arrays with ¢ > 6 and or with larger values of
m. The entries given in our Table 2 are obtained by using results dealing with
O-arrays having strength ¢ = 6.

Table 3 entries are obtained by using Table 2 to revise Table 1 entries.
Table 3 entries clearly demonstrate that numerous intervals given in Table 1, for
certain kinds of O-arrays, have been considerably shortened. Below, we provide
some illustrations outlining the arguments used to achieve this reduction.
Illustrations.

1. Let us take m = 31 in Table 1, for which the interval for p is 96-256. Now
for u = 96, from Table 2 we have m < 23 which implies the O-array with
m = 31 and g = 96 is not possible. Thus, we remove y = 96 from Table
1. This argument applies to each p satisfying 96 < o < 212 which means
the interval for m = 31 is 213-256 (a significant reduction). In Chopra,
Low and Dios (5], the reduced interval for m = 31 is 142-256. Thus, the
present interval is also a significant improvement over the one given in [5].

2. For m = 16, the interval for u from Table 1 is 21-32. For p = 21,22 (in
Table 2), we have m < 14 and m < 15 for all  in 23-27. Thus for m = 16,
the new interval for u is 28-32. We have been able to eliminate 7 values of
u from the interval. In Chopra, Low and Dios [5], this case did not show
any reductions.

3. For m = 15 in Table 1, we have only one value of y, namely p = 16, and it
is labeled. If we check Hedayat, Sloane and Stufkin [6], we find that there
exists an O-array with index g = 16, m = 16, and ¢ = 7. This implies the
existence of an O-array with g = 16, m = 15, and t = 6.

Thus all entries in Table 1 are not obtained by appealing to strength six arrays
but also, among others, by appealing to higher strength arrays. We have one
advantage over Table 1. Table 2 is obtained by appealing only to ¢ = 6 arrays.
In constructing Table 3, we have mostly picked up those entries from Table 1
in which there is only one value of p, since those problems have been resolved.
Our main concern has been those entries where p’s appear as intervals, where
research problems occur.

In our discussion, we are not considering O-arrays of strength ¢ > 6. Further-
more, we have to keep in mind that an O-array of strength 6 could come from an
O-array of strength 7, but every O-array of strength 6 may not be of strength
7. Using arguments similar to the ones above, we are able to revise Table 1
by eliminating those O-arrays from various intervals which do not exist. This
results in the reduction of intervals.
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m u m I

6 1 20 29-32
7 1 21 32

8 2 22 32

9 4 23 32"

10 6*-8 24 41-64
11 8" 25 51-128
12 12-16 | 26 58-128
13 16 27 66-128*
14 16 |28 73-256
15 16* |29 74-256
16 21-32 |1 30 87-256
17 26-32 | 31 96-256*
18 29-32 | 32 108-512
19 29-32

Table 1: Minimal possible index p of orthogonal arrays having 2 symbols, m
factors, and strength 6.

7 m N m
1 6 [ 97-109 24
1 7 | 110-123 25
2-3 8 | 124-138 26

4-6 9 | 139-154 27
7-8 10 | 155-172 28
9-10 11 | 173-191 29
11-14 12| 192-212 30
15-17 13 | 213-234 31
18-22 14 | 235-257 32
23-27 15| 258-282 33
28-32 16 | 283-308 34
33-39 17 | 309-336 35
40-46 18 | 337-365 36
47-54 19 | 366-397 37
55-63 20 | 398-430 38
64-73 21 | 431-465 39
74-84 22 | 466-501 40
85-96 23 | 502-539 41

Table 2: For a given p (1 £ g < 512), the maximum possible value of m for
orthogonal arrays of strength 6 with 2 symbols.
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m A m N
6 1 20 32
7 1 21 32
8 2 22 32
9 4 23 32

10 7-8 |24 64

11 8 25 110-128
12 12-16 | 26 124-128
13 16 | 27 128
14 16 28 155-256
15 16 29 173-256
16 28-32 | 30 192-256
17 32 31 213-256
18 32 32 235-512
19 32

Table 3: (Revised) Minimal possible index y for a given m, for orthogonal arrays
of strength 6 with 2 symbols.
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