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The Stirling numbers of the second kind, denoted S(n, k), are the num-
ber of ways to partition n distinct objects into k nonempty subsets. We
use the notation [n] = {1,2,...,n} and sometimes refer to the subsets as
blocks. The initial conditions are defined as: $(0,0) = 1, S(n,0) = 0, for
n > 1, and S(n,k) = 0 for k > n. We also have S(n,2) = 2"~! —1 and
S(n,n—1) = (3).

Example 1. 5(4,2) =7

We represent a given partition, e.g., {{1,3}, {2 4}} in block notation
as 1, 3|2,4. So the 7 blocks are:

1)2,3,4 21,3,4 3|1,2,4 4]1,2,3 1,23,4 1,3[2,4 1,42,3

The numbers S(n, k) satisfy the following well-known triangular recur-
rence. We go ahead and include a common proof argument as well. See,
for example, [1].

Theorem 1. S(n,k) = S(n — 1,k - 1)+ k- S(n — 1,k) for all positive
integers n, k, and n > k.

Proof. The set of partitions of [r] into k subsets can be partitioned into
two disjoint cases. Case A contains all partitions where the object 1 is in a
block by itself. There are S(n — 1,k — 1) such partitions. Case B contains
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all partitions where the object 1 is not by itself. It follows that there are
kS(n — 1, k) such partitions. O

An application of Stirling numbers is that £!1S(n, k) equals the number
of surjections from an n-set onto a k-set. This follows since any surjection
f : [n] — [k] naturally induces a partition of [n] into k-nonempty sets.

We now give a generalization of the numbers S(n, k).

Definition 1. For a positive integer d, let S%(n,k) denote the number of
partitions of [n] into exactly k£ nonempty subsets such that for each subset,
all elements in the subset have pairwise distance at least d. So, for any 3, j
in a given subset we require |¢ — j| > d. Notice the case d = 1 yields the
classical Stirling numbers of the second kind, S(n, k).

In general, for the numbers S%(n, k), d,n, k > 1, we define the following
initial conditions: $4(1,1) = 1, S%(n,1) = 0 for n > 2, and §%(n, k) = 0 for
k > n. We first focus on the numbers S%(n, k). Identities we obtain when
d = 2, in conjunction with chromatic polynomials on the path will yield
alternative methods to derive some well-known Stirling number identities.
The case when d= 2 is given as an exercise in the classic book by D. Cohen
[2] in the context of a banner coloring problem. The main result in this
paper is an explicit formula for S%(n, k) where d is any positive integer.

Example 2. $%(5,3) =7.

We list the 7 blocks:
1,3|2,4/5; 1,3]2,5|4; (1,4)2,5|3

1,4213,5; 1,4)3,5[2; 1,5[2,4]3; 1,3,5[24

We now introduce the inclusive chromatic polynomial of a graph. For
any basic graph terminology, consult [3]. A proper vertex-coloring of a
graph G is a coloring of its vertex set so that adjacent vertices are assigned
different colors. The chromatic polynomial of a graph G, denoted x(G, k)
is the number of proper vertex colorings of G that use & (or fewer colors).

The inclusive chromatic polynomial of G, denoted x(G, k) is the number
of proper colorings of V(G) that use ezactly k-colors. Let P, denote the
path on n-vertices.

Example 3. %(Fs,3) =3!.7=42.
This example is related to Example 2. Consider the properly colored path
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P; using exactly 3-colors (red (R), blue (B), green (G)).

(B) () (R)
D—E—0—®——=C
1 2 3 4 5

Notice this coloring concerns the circled block in Example 2, namely 1, 4|2,
5|3. Here the block {1,4} is colored red, {2,5} blue and {3} green. Clearly
each block can be colored in any 3! ways of the permutings of the colors.
Also corresponding to the definition of S2(5,3), each partition induces a
proper coloring using three colors.

Theorem 2. x(P,,k) = k!S%(n, k).

Proof. Consider the set, F, of all partitions given by the definition of
S%(n, k). With V(P,) = [n], we have that any partition yields k! proper
colorings of P, using exactly k colors. Conversely, consider any proper
coloring using the k-colors, ¢;,¢o,. .., ¢k, Let Q; denote the set of vertices
colored ¢; . Then Q1,Q2,...,Q% is in F. Also, the blocks in any partition
of F are not labelled, so if we interpret a permutation of @}1,Qs,...,Qk to
mean that if @; is now in the jth position, then the vertices in @; are now
colored ¢;. So, permuting Q1,...,Q« generates k! proper colorings. 0

For a general graph G, we can obtain a formula for (G, k) by the prin-
ciple of inclusion and exclusion. Let A; denote the set of proper colorings
that do not use color . We then have that %(G,k) = [A; N Az--- N Ag|.
Notice, for example, |A1]| = x(G,k — 1) and |A; N 42| = x(G,k —2). By
the inclusion/exclusion formula we have:

Theorem 3. Let G be a connected graph of order n > 2 and k < n.

x(G,k) = x(G,k)— (’;)x(G,k—l)+ (g)x(G,k—2)i- . (lc f 2) x(G,2).
O

Notice we omit the usual last two terms on the right-hand side of The-
orem 3, since with n > 2, x(G,1) = x(G,0) = 0. Using the well-known
fact that x(Py, k) = k(k —1)"~! and Theorems 2 and 3 yields the following
explicit formula for $%(n, k).
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Theorem 4. For n > 2 and k < n we have,

k-—2

2 1
) = (P R) = g S () - Dtk - -1
(]
To illustrate Theorem 4 we have:
Example 4.
5%(5,3) = 3ix (Ps,3) =7 (see ex. 3)
—1f3.9a_(3 NS T
. (3 2 (1)(2)(1) ) = (48 -6).
a

We now show $2%(n,k) = S(n — 1,k — 1). We first need the following
triangular recurrence for S%(n, k).

Theorem 5. Forn,k > 2,

52(n, k) = S%(n — 1,k — 1) + (k — 1)$%(n — 1, k).

Proof. By the definition of $%(n, k), the set of partitions of [n] into k subsets
can be partitioned into two disjoint cases. Case A contains all partitions
where the object 1 is in a block by itself. There are S?(n — 1,k — 1) such
partitions. Case B contains all partitions where 1 is not by itself in a
block. It follows that we can take any of the S?(n — 1,k) partitions of
the set {2,...,n} into k£ bocks, where each block contains integers that are
pairwise distance at least two. Now, we can insert 1 into any block not
containing 2. So we have that there are (k — 1)S%(n — 1, k) partitions for
Case B. O

We have the following theorem, which is why we call the numbers
S2(n, k) reduced Stirling numbers.

Theorem 6. S%(n,k) = S(n -1,k —1) for n,k > 2.

Proof. The proof is by induction on n+ k. For the ground case (n+k) =
and n,k > 2 we have (n,k) = (2,2) and $%(2,2) = S(2-1,2—-1) =
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holds. Assume S%(n,k) = S(n—1,k—1) for all n,k where4 <n+k<m
and let n+k=m+ 1. Then
S?(n, k) = S?(n-1,k—1)+ (k—-1)S%*(n - 1,k)  (by Thm. 5)
=8(n—-2,k—2)+(k—1)S(n—2,k—1) (by ind. hyp.)
=S(n-1,k-1). (by Thm. 1).

O

We remark that we used a version of the method of mathematical in-
duction here to prove two arrays of numbers are equal. Namely we first
verified they have the same initial conditions, then showed they satisfied
the same recurrence relation.

Combining Theorems 4 and 6 we obtain an explicit formula for the
inclusive chromatic polynomial of the path, namely:

§%(n,K) = S(n =1,k ~1) = L (P,k). W)

We can also replce x(Py, k) with the formula given in Theorem 3, e.g.,
with n =7 and k£ = 4 we have:

5%(7,4) = S(6,3) = 90 = %(2916 — 768 +12).

Notice we can combine the formulas in Theorems 3, 4, and 6, with a change
of variables we obtain the well-known formula

k
S(n, k) = % > (-1 (f) (k—3)". 2

=0

The usual method to obtain (2) is by the exponential generataing func-
tion for S(n,k). We can obtain another well-known identity as follows:
Notice

k
k\ _ .
XGH =3 ( j) ) 3)

since the number of ways to color G with k (or fewer) colors is obtained by
the RHS of (3). Setting G = P,, with n > 2 we then have:

k

k(k—1)" 1 =) (f) 1S —1,5-1). (4)

=2
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It is straightforward to see (4) is after a change of variables, equivalent to
the well-known identity

g = S(n,k)(z)x, (5)
k=0

where (z)r = z(z —1)---(z — k+1). As an example using (4) with n =5,
k = 3 we obtain

3(16) = (2) 25(4,1) + <§)3!S(4, %)
=6+ 6(7) = 48.

Another observation that in turn can generate identities, is that if G is of
order n and k > n, then clearly x(G,k) = 0. If again we let G = P,,, and
k > n, by Theorem 3 we obtain

l:;_:(—l)‘ (':) X(Pn,k — 1) = 0.

For example, with £ = 4 and n = 3 we obtain

4(3)2 — (‘11) 3-224+6(2)=0.

We now consider the general case of S%(n,k) where again, S%(n, k) is
the number of partitions of [n] into k subsets such that for each subset, all
elements in the subset have pairwise distance at least d. Also $%(d,d) = 1
and S%(n,k) =0 for n < k.

Example 5. 53(6,4) =7.
The seven partitions are:
1,4/2,5|3]6; 1,4/2]5/3,6; 1,4}2,6|3|5
1,52,6(3|14; 1,5/2(3,6]4; 1,6]2,5|3|14; 1/2,5|3,6/4
We have the following triangular recurrence for S%(n, k).
Theorem 7. S4(n,k) = $%n—1,k—1)+(k—d+1)S%(n—1,k), n > k > d.
Proof. If we split the set {1,...,n} into k subsets, either there is a subset

{n} or not. The number of ways in which {n} is one of the subsets is
S4(n—1,k—1) since we must split the remainder {1, ...,n~1} into the other

62



k —1 subsets. If n belongs to a subset with other elements, we can delete it
and obtain a partition of the set {1,...,n—1} into k subsets, of which there
are S%(n — 1,k). Now, we know that n cannot be reinserted into a subset
containing any of n—1,n~2,...,n—d+1, each of which is guaranteed to be
in a unique subset since the distance between any two of them is less than d.
Hence, we have a total of [k — [(n — 1) — (n —d + 1) + 1]] xS¥(n—1,k) =
(k —d+1) * S%(n — 1, k) choices for reinserting n. Adding these two totals
yields the result. O

The proof of the following theorem is analogous to that presented in
Theorem 6.

Theorem 8. S%(n, k) =S(n—d+1,k—d+1) wheren >k >d.

Proof. The proof is by induction on n+ k. We have the ground case where
59(d,d) = S(1,1) = 1. Now assume the formula is true for all n+ k, where
2d < n+ k < m. Now consider n + k¥ = m + 1. We have, by Theorem 7
that
§%n,k) = S%n -1,k = 1) + (k — d+ 1)8%n - 1,k)
=S(n-dk—-d)+(k—-d+1)S(n—d,k—d+1)
=Sn—-d+1,k—d+1).

The last equality is from Theorem 1. a

We observe that Theorem 8 yields the following formulas:
§4n, k) = S Yn—1,k—1) (6)

S(n, k) =8 n+d,k+d), ford>1. (7

Equations (6) and (7) are illustrated in the triangular table of S(n,k) (see
Fig 1). For example, we have the following equalities:

15 = §(5,2) = 5%(6,3) = $3(7,4) = - --

We may continue down the array and obtain, for example, that $2003(2007,
2004) = 15. So the number of partitions of [2007] into 2004 blocks, where
for any 1,7 in a block, |¢ — j] > 2003 is 15 = S(5, 2).

We circled the number 15 in Fig 1 to represent it as a seed, and as we
travel down the diagonal the corresponding reduced Stirling numbers are
a constant by Eq. (7). We leave as an open problem to explicitly give the
bijection between sets of partitions along their diagonal from a given seed.
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Stirling Numbers of the Second Kind
n from 1 to 10

1 3 90 65 15 1
1 63 301 350 140 21 1
1 127 966 1701 1050 266 28 1
1 255 3025 1770 6951 2646 462 36 1
1 511 9330 34105 42525 22827 5880 750 45 1

Figure 1:
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