# On Balance Index Sets of L-Products with Cycles and Complete Graphs

Harris Kwong Dept. of Math. Sci. SUNY at Fredonia Fredonia, NY 14063, USA

Sheng-Ping Bill Lo Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134, USA Sin-Min Lee Dept. of Comp. Sci. San Jose State University San Jose, CA 95192, USA

Hsin-Hao Su Department of Mathematics Stonehill College Easton, MA 02357, USA

Yung-Chin Wang
Dept. of Physical Therapy
Tzu-Hui Institute of Technology
Taiwan, Republic of China

#### Abstract

Let G be a graph with vertex set V and edge set E. A labeling  $f: V \to \{0,1\}$  induces a partial edge labeling  $f^*: E \to \{0,1\}$  defined by  $f^*(xy) = f(x)$  if and only if f(x) = f(y) for each edge  $xy \in E$ . The balance index set of G, denoted BI(G), is defined as  $\{|f^{*-1}(0) - f^{*-1}(1)| : |f^{-1}(0) - f^{-1}(1)| \le 1\}$ . In this paper, we study the balance index sets of graphs which are L-products with cycles and complete graphs.

### 1 Introduction

Liu, Tan and the second author [7] considered a new labeling problem in graph theory. A vertex labeling of a graph G = (V, E) is a mapping f from V into the set  $\{0, 1\}$ . For each vertex labeling f of G, we define a partial edge labeling  $f^*$  of G in the following way. For each edge uv in E, define

$$f^*(u,v) = \begin{cases} 0 & \text{if } f(u) = f(v) = 0, \\ 1 & \text{if } f(u) = f(v) = 1. \end{cases}$$

Note that if  $f(u) \neq f(v)$ , then the edge uv is not labeled by  $f^*$ . Let  $v_f(0)$  and  $v_f(1)$  denote the number of vertices of G that are labeled 0 and 1 respectively under the mapping f. Similarly, denote by  $e_f(0)$  and  $e_f(1)$ , respectively, the number of edges of G that are labeled 0 and 1 respectively under the induced partial function  $f^*$ . In other words, for i = 0, 1,

$$v_f(i) = |\{u \in V : f(u) = i\}|,$$
  
 $e_f(i) = |\{uv \in E : f^*(uv) = i\}|.$ 

For brevity, when the context is clear, we will simply write v(0), v(1), e(0) and e(1) without any subscript.

**Definition 1.1.** A vertex labeling f of a graph G is said to be **friendly** if  $|v_f(0) - v_f(1)| \le 1$ , and **balanced** if both  $|v_f(0) - v_f(1)| \le 1$  and  $|e_f(0) - e_f(1)| \le 1$ .

It is clear that not all the friendly graphs are balanced. Lee, Lee and Ng [6] introduced the following notion in [3] as an extension of their study of balanced graphs.

**Definition 1.2.** The **balance index set** of the graph G is defined as

$$BI(G) = \{|e_f(0) - e_f(1)| : \text{the vertex labeling } f \text{ is friendly}\}.$$

**Example 1.** Figure 1 shows a graph G with  $BI(G) = \{0, 1, 2\}$ .



Figure 1: The friendly labelings of a graph G with  $BI(G) = \{0, 1, 2\}$ .

**Example 2.** For a cycle  $C_n$  with vertex set  $\{x_1, x_2, \ldots, x_n\}$ , we denote by  $C_n(t)$  the cycle with a chord  $x_1x_t$ . The balance index sets of  $C_4(3)$ ,  $C_6(4)$  and  $C_6(5)$  are shown in Figure 2. All of them equal to  $\{0,1\}$ .

We note here that not every graph has a balance index set consisting of an arithmetic progression.



Figure 2: The balance index sets of  $C_4(3)$ ,  $C_6(4)$  and  $C_6(5)$ .

**Example 3.** The graph  $\Phi(1,3,1,1)$  is composed of  $C_4(3)$  with a pendant edge appended to each of  $x_1$ ,  $x_3$  and  $x_4$ , and three pendant edges appended to  $x_2$ . Figure 3 shows that  $BI(\Phi(1,3,1,1)) = \{0,1,2,3,4,6\}$ . Note that 5 is missing from the balance index set.

In general, it is difficult to determine the balance index set of a given graph. Most of existing research on this problem have focused on some special families of graphs with simple structures, see [1, 2, 6, 8]. Here are a couple of examples:

$$\mathrm{BI}(C_n(t)) = \begin{cases} \{0,1\} & \text{if } n \text{ is even,} \\ \{0,1,2\} & \text{if } n \text{ is odd.} \end{cases}$$

and

$$BI(St(n)) = \begin{cases} \{k\} & \text{if } n = 2k + 1, \\ \{k - 1, k\} & \text{if } n = 2k. \end{cases}$$

The balance index sets of the graph which are formed by the amalgamation of complete graphs, stars, and generalized theta graphs were studied in [4, 5]. In [10], the second author, with Zhang, Ho and Wen, investigated some trees of diameter at most four.

### 2 Generalized L-Product

Let H be a connected graph with a distinguished vertex s. Construct a new graph  $G \times_L (H, s)$  as follows: take |V(G)| copies of (H, s) and identify each



Figure 3: The six friendly labelings of  $\Phi(1,3,1,1)$ .

vertex of G with s of a single copy of H. We call the resulting graph the L-product of G and (H,s). More generally, the n copies of the graphs to be identified with the vertices of G need not be identical. Let  $Gph^*$  be the family of pairs (H,s), where H is a connected graph with a distinguished vertex s. For any graph G and any mapping  $\Phi: V(G) \to Gph^*$ , we construct the generalized L-product of G and  $\Phi$ , denoted by  $G \times_L \Phi$ , by identifying each  $v \in V(G)$  with s of the respective  $\Phi(v)$ .

**Example 4.** Figure 4 shows that 
$$BI(C_4 \times_L (K_5, s)) = \{0, 2, 4\}.$$

**Example 5.** Figure 5 shows that the generalized L-products of a cycle  $C_3$  with a mapping  $\Phi: V(G) \to Gph^*$ , where  $\Phi(c_1) = K_5$ ,  $\Phi(c_2) = K_3$  and  $\Phi(c_3) = K_4$ .

**Example 6.** The balance index set of a graph depends on its topological structure. For example, let the vertices on  $P_3$  be  $u_1$ ,  $u_2$  and  $u_3$ , and denoted by St(m), the star with center c and m pendant vertices. We find that  $BI(P_3 \times_L \Phi) = \{1, 2, 4\}$  if  $\Phi(u_1) = \Phi(u_2) = (St(2), c)$ , and  $\Phi(u_3) = (St(3), c)$ ; but  $BI(P_3 \times_L \Phi) = \{0, 2, 4\}$  if  $\Phi(u_1) = \Phi(u_3) = (St(2), c)$ , and  $\Phi(u_2) = (St(3), c)$ . See Figure 6.



Figure 4: The balance index sets of  $C_4 \times_L (K_5, s)$ .



Figure 5: The balance index sets of  $C_3 \times_L \Phi$ .



Figure 6: The balance index sets of  $P_3 \times_L \Phi$ .

## 3 Balance Index Sets of the Generalized LProduct of $C_n$ with Cycles

The proofs of the next two results can be found in [5]. Nonetheless, we provide the alternate proofs below.

**Lemma 3.1** For any (not necessarily friendly) vertex labeling of  $C_m$ , we have e(0) - e(1) = v(0) - v(1).

**Proof.** It is straightforward to verify that switching the labels of two adjacent vertices does not alter the value of e(0) - e(1) or v(0) - (1). Hence, we may assume the 0-vertices (vertices that are labeled 0) are adjacent to each other, and so are the 1-vertices. The result follows immediately from the observation that e(0) = v(0) - 1, and e(1) = v(1) - 1.

**Lemma 3.2** If a graph contains a cycle of length m as a subgraph, which has z vertices labeled 0 and m-z vertices labeled 1, then, restricted to that cycle, e(0) - e(1) = 2z - m.

**Proof.** It follows from the proof of Lemma 3.1 that 
$$e(0) - e(1) = v(0) - v(1) = z - (m - z) = 2z - m$$
.

**Theorem 3.3** For any n and  $\Phi$  such that  $\Phi(v)$  is a cycle for any vertex v, assume  $|V(C_n \times_L \Phi)| = 2q + r$ , where  $0 \le r \le 1$ . Then

$$BI(C_n \times_L \Phi) = \begin{cases} \{n+r, n+r-2, n+r-4, \dots, 1\} & \text{if } n+r \text{ is odd,} \\ \{n+r, n+r-2, n+r-4, \dots, 0\} & \text{if } n+r \text{ is even.} \end{cases}$$

**Proof.** Let  $v_i(0)$ ,  $v_i(1)$ ,  $e_i(0)$  and  $e_i(1)$  denote the respective values restricted to the *i*th cycle  $\Phi(c_i)$ , and let z be the number of 0-vertices on  $C_n$ . Then

$$e(0) - e(1) = 2z - n + \sum_{i=1}^{n} [e_i(0) - e_i(1)]$$

$$= 2z - n + \sum_{i=1}^{n} [v_i(0) - v_i(1)]$$

$$= 2z - n + v(0) - v(1),$$

where  $0 \le z \le n$ . Notice that this formula does not depend on how we label the vertices of  $\Phi(c_i)$ . Hence, one can easily obtain a friendly labeling with any z-value between 0 and n. If r = 0, we need v(0) - v(1) = 0; hence

$${e(0) - e(1) \mid 0 \le z \le n} = {-n, -n + 2, -n + 4, \dots, n - 2, n}.$$

In a similar manner, if r = 1, then  $v(0) - v(1) = \pm 1$ ; hence

$${e(0) - e(1) \mid 0 \le z \le n} = {-n - 1, -n + 1, -n + 3, \dots, n - 1, n + 1}.$$

The result follows immediately.

Corollary 3.4 For any n and  $\Phi$  such that  $\Phi(v)$  is a cycle for any vertex v, the values in  $BI(C_n \times_L \Phi)$  always form an arithmetic progression.

#### Example 7.

$$\begin{split} \mathrm{BI}(C_3 \times_L \Phi) &= \begin{cases} \{1,3\} & \text{if } |V(C_3 \times_L \Phi)| \text{ is even,} \\ \{0,2,4\} & \text{if } |V(C_3 \times_L \Phi)| \text{ is odd;} \end{cases} \\ \mathrm{BI}(C_4 \times_L \Phi) &= \begin{cases} \{0,2,4\} & \text{if } |V(C_4 \times_L \Phi)| \text{ is even,} \\ \{1,3,5\} & \text{if } |V(C_4 \times_L \Phi)| \text{ is odd;} \end{cases} \\ \mathrm{BI}(C_5 \times_L \Phi) &= \begin{cases} \{1,3,5\} & \text{if } |V(C_5 \times_L \Phi)| \text{ is even,} \\ \{0,2,4,6\} & \text{if } |V(C_5 \times_L \Phi)| \text{ is odd.} \end{cases} \end{split}$$

## 4 Balance Index Sets of the Generalized L-Product of G with Cycles

Theorem 3.3 can be extended to the *L*-product of any graph G with cycles. Given any friendly labeling f of  $G \times_L \Phi$ , where  $\Phi(v)$  is a cycle for any  $v \in V(G)$ , denoted by  $e_f^*(0)$  and  $e_f^*(1)$  the restriction of e(0) and e(1) on G; that is,  $e_f^*(0)$  and  $e_f^*(1)$  represent the number of edges in G that are labeled by 0 and 1 respectively.

**Theorem 4.1** For any  $\Phi$  such that  $\Phi(v)$  is a cycle for any vertex v, let  $p = |V(G \times_L \Phi)|$ , and let F denote the set of friendly labelings of  $G \times_L \Phi$ .

$$BI(G\times_L\Phi) = \begin{cases} \left\{ \left| e_f^*(0) - e_f^*(1) \right| : f \in F \right\} & \text{if } |V(G\times_L\Phi)| \text{ is even,} \\ \left\{ \left| e_f^*(0) - e_f^*(1) \pm 1 \right| : f \in F \right\} & \text{if } |V(G\times_L\Phi)| \text{ is odd.} \end{cases}$$

**Proof.** Let  $v_i(0)$ ,  $v_i(1)$ ,  $e_i(0)$  and  $e_i(1)$  denote the respective values restricted to the *i*th cycle  $\Phi(c_i)$ . Then

$$e(0) - e(1) = e_f^*(0) - e_f^*(1) + \sum_{i=1}^n [e_i(0) - e_i(1)]$$

$$= e_f^*(0) - e_f^*(1) + \sum_{i=1}^n [v_i(0) - v_i(1)]$$

$$= e_f^*(0) - e_f^*(1) + v(0) - v(1).$$

The result follows immediately.

To determine  $BI(G \times_L \Phi)$ , we need to go over all friendly labelings f of  $G \times_L \Phi$ , study their restrictions on G, and gather the values of  $e_f^*(0) - e_f^*(1)$  to form the balance index set.

Corollary 4.2 For any  $\Phi$  such that  $\Phi(v)$  is a cycle for any vertex v, let  $p = |V(St(n) \times_L \Phi)|$ . Then

$$BI(St(n) \times_L \Phi) = \begin{cases} \{0, 1, 2, \dots, n\} & \text{if } p \text{ is even,} \\ \{0, 1, 2, \dots, n+1\} & \text{if } p \text{ is odd.} \end{cases}$$

**Proof.** Without loss of generality, we may assume the center c of the star St(n) is labeled 0. If z of the n pendant vertices of St(n) are labeled 0, then  $e_f^*(0) = z$ , and  $e_f^*(1) = 0$ . Thus,  $e_f^*(0) - e_f^*(1) = z$ . It is easy to verify that  $0 \le z \le n$ , because we can label the remaining vertices of  $St(n) \times_L \Phi$  such that the overall labeling is friendly. The result follows immediately from Theorem 4.1.

Corollary 4.3 For any  $\Phi$  such that  $\Phi(v)$  is a cycle for any vertex v, let  $p = |V(P_n \times_L \Phi)|$ . Then

$$BI(P_n \times_L \Phi) = \begin{cases} \{0, 1, 2, \dots, n+1\} & \text{if } p \text{ is even,} \\ \{0, 1, 2, \dots, n+2\} & \text{if } p \text{ is odd.} \end{cases}$$

**Proof.** Let the two pendant vertices of  $P_n$  be u and v. Without loss of generality, we may assume that u is labeled 0. Using an argument similar to the ones used in proving Lemma 3.2, one can show that

$$e_f^*(0) - e_f^*(1) = \begin{cases} 2z - n & \text{if } f(v) = 1, \\ 2z - n + 1 & \text{if } f(v) = 0. \end{cases}$$

If f(v) = 1, we have  $0 \le z \le n - 1$ , hence

$$2z - n = -n, -n + 2, \ldots, n - 4, n - 2.$$

If f(v) = 0, we have  $0 \le z \le n$ , hence

$$2z-n-1=-n-1,-n+1,\ldots,n-3,n-1.$$

The result follows from Theorem 4.1.

Corollary 4.4 For any  $\Phi$  such that  $\Phi(v)$  is a cycle for any vertex v, let  $p = |V(K_n \times_L \Phi)|$ . Then

$$BI(K_n \times_L \Phi) = \begin{cases} \left\{ \left| \binom{n}{2} - (n-1)k \right| : 0 \le k \le n \right\} & \text{if $p$ is even,} \\ \left\{ \left| \binom{n}{2} - (n-1)k \pm 1 \right| : 0 \le k \le n \right\} & \text{if $p$ is odd.} \end{cases}$$

**Proof.** Let k be the number vertices in  $K_n$  that are labeled 1, then the  $\binom{k}{2}$  edges among them are labeled 1. The other n-k vertices in  $K_n$  are labeled 0, hence the  $\binom{n-k}{2}$  edges among them are labeled 0. All other edges are unlabeled. Consequently,  $e_f^*(0) - e_f^*(1) = \binom{n-k}{2} - \binom{k}{2} = \binom{n}{2} - (n-1)k$ , and the result follows from Theorem 4.1.

## 5 Balance Index Sets of the *L*-Products with Complete Graphs

**Lemma 5.1** For  $C_n \times_L (K_m, s)$ , where  $n, m \geq 3$ ,

$$e(0) - e(1) = 2z - n + \frac{1}{2}(m-1)[v(0) - v(1)],$$

where  $0 \le z \le n$ .

**Proof.** Let the vertices of  $C_n$  be  $u_1, u_2, \ldots, u_n$ . Let  $z_i$  be the number of 0-vertices in  $V(\Phi(u_i)) - V(C_n)$ . Thus, the number of 1-vertices in the same set is  $m-1-z_i$ . In a similar manner, let z and n-z be the number

of 0- and 1-vertices of  $C_n$ , respectively. Then  $v(0) = z + \sum_{i=1}^n z_i$  and  $v(1) = n - z + \sum_{i=1}^n (m-1-z_i)$ . Consequently,

$$v(0) - v(1) = 2z - n - n(m-1) + 2\sum_{i=1}^{n} z_{i}.$$

On the base cycle  $C_n$ , it is easy to verify that switching any two adjacent vertices does not alter the value of e(0) - e(1). Hence, we may assume the 0-vertices are adjacent to each other, and likewise the 1-vertices form a block of adjacent vertices. Then, we have

$$e(0) = z - 1 + \sum_{i=1}^{z} {z_i + 1 \choose 2} + \sum_{i=z+1}^{n} {z_i \choose 2},$$

and

$$e(1) = n - z - 1 + \sum_{i=1}^{z} {m - 1 - z_i \choose 2} + \sum_{i=z+1}^{n} {m - z_i \choose 2}.$$

It follows from

$$2\left[\binom{z_i+1}{2} - \binom{m-1-z_i}{2}\right]$$

$$= (z_i+1)z_i - [(m-1)-z_i][(m-1)-(z_i+1)]$$

$$= -(m-1)^2 + (m-1)(2z_i+1)$$

and

$$2\left[\binom{z_i}{2} - \binom{m-z_i}{2}\right] = z_i(z_i-1) - [(m-1)-(z_i-1)][(m-1)-z_i]$$
$$= -(m-1)^2 + (m-1)(2z_i-1)$$

that

$$2[e(0) - e(1)]$$

$$= 2(2z - n) - n(m - 1)^{2} + (m - 1)(2z - n) + 2(m - 1)\sum_{i=1}^{n} z_{i}$$

$$= 2(2z - n) + (m - 1)[v(0) - v(1)].$$

Since the result does not depend on how the vertices of each copy of  $K_m$  are labeled, we have  $0 \le z \le n$ . The proof is now complete.

**Theorem 5.2** For any integer  $n, m \geq 3$ ,

$$BI(C_n \times_L (K_m, s)) = \begin{cases} \{|2z - n| : 0 \le z \le n\} & \text{if mn is even,} \\ \{|2z - n \pm \frac{1}{2}(m - 1)| : 0 \le z \le n\} & \text{if mn is odd.} \end{cases}$$

**Proof.** The result follows from Lemma 5.1 and the fact that  $C_n \times_L (K_m, s)$  has mn vertices.

#### Example 8. We find

$$BI(C_4 \times_L (K_5, s)) = \{|2z - 4| : 0 \le z \le 4\} = \{0, 2, 4\},\$$

which is confirmed in Example 4. We also find

$$BI(C_3 \times_L (K_4, s)) = \{|2z - 3| : 0 \le z \le 3\} = \{1, 3\},\$$

and

$$BI(C_5 \times_L (K_3, s)) = \{|2z - 5 \pm 1| : 0 \le z \le 5\} = \{0, 2, 4, 6\}. \quad \Box$$

What if  $\Phi(u_i)$  is the complete graph on  $m_i$  vertices, where the  $m_i$ s are not the same? The argument is almost identical, except that we no longer have a nice simple formula. In particular, we find that  $v(0) = z + \sum_{i=1}^{n} z_i$  and  $v(1) = n - z + \sum_{i=1}^{n} (m_i - 1 - z_i)$ . Hence,

$$v(0) - v(1) = 2z - n + \sum_{i=1}^{n} (2z_i - m_i + 1) = 2z + \sum_{i=1}^{n} (2z_i - m_i).$$

We also find

$$e(0) = z - 1 + \sum_{i=1}^{z} {z_i + 1 \choose 2} + \sum_{i=z+1}^{n} {z_i \choose 2},$$

and

$$e(1) = n - z - 1 + \sum_{i=1}^{z} {m_i - 1 - z_i \choose 2} + \sum_{i=z+1}^{n} {m_i - z_i \choose 2}.$$

It follows from

$$2\left[\binom{z_i+1}{2}-\binom{m_i-1-z_i}{2}\right]=-(m_i-1)^2+(m_i-1)(2z_i+1)$$

and

$$2\left[\binom{z_i}{2} - \binom{m_i - z_i}{2}\right] = -(m_i - 1)^2 + (m_i - 1)(2z_i - 1)$$

that

$$e(0) - e(1) = -\frac{1}{2} \sum_{i=1}^{n} (m_i - 1)^2 + \sum_{i=1}^{n} (m_i - 1) z_i + \frac{1}{2} \left[ \sum_{i=1}^{z} m_i - \sum_{i=z+1}^{n} m_i \right],$$

subject to the conditions that

$$0 \le z_i \le m_i$$
 and  $\left| 2z + \sum_{i=1}^n (2z_i - m_i) \right| \le 1$ .

Since we cannot factor out  $(m_i - 1)$ , it is not an easy task to find a simple formula. Nevertheless, we do have a generalization of Theorem 5.2.

**Theorem 5.3** For any integer  $m \geq 3$ , and any graph G with n vertices, and let F denote the set of friendly labelings of  $G \times_L \Phi$ . Then

$$BI(G \times_L (K_m, s)) = \begin{cases} \{|e^*(0) - e^*(1)| : f \in F\} & \text{if mn is even,} \\ \{|e^*(0) - e^*(1) \pm \frac{1}{2}(m-1)| : f \in F\} & \text{if mn is odd,} \end{cases}$$

where  $e^*(0)$  and  $e^*(1)$  are the restriction of e(0) and e(1) on the graph G.

**Proof.** The proof is almost identical to that of Theorem 5.2. The difference occurs at the base graph G, hence we only need to replace 2z - n with  $e^*(0) - e^*(1)$ .

### References

- [1] C.C. Chou and S.M. Lee, On the balance index sets of the amalgamation of complete graphs and stars, manuscript.
- [2] Y.S. Ho, S.M. Lee, H.K. Ng and Y.H. Wen, On balancedness of some families of trees, J. Combin. Math. Combin. Comput., to appear.
- [3] R.Y. Kim, S.M. Lee and H.K. Ng, On balancedness of some families of graphs, J. Combin. Math. Combin. Comput., to appear.
- [4] H. Kwong and S.M. Lee, On balance index sets of chain sum and amalgamation of generalized theta graphs, Congr. Numer. 187 (2007), 21-32.
- [5] H. Kwong, S.M. Lee and D.G. Sarvate, On balance index sets of one-point unions of graphs, J. Combin. Math. Combin. Comput., to appear.
- [6] A.N.T. Lee, S.M. Lee and H.K. Ng, On balance index sets of graphs, J. Combin. Math. Combin. Comput., to appear.
- [7] S.M. Lee, A. Liu and S.K. Tan, On balanced graphs, Congr. Numer. 87 (1992), 59-64.
- [8] S.M. Lee, Y.C. Wang and Y.H. Wen, On the balance index sets of the (p, p + 1)-graphs, J. Combin. Math. Combin. Comput., 62 (2007), 193-216.
- [9] M.A. Seoud and A.E.I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyptian Math. Soc. 7 (1999) 127-135.
- [10] D.H. Zhang, Y.S. Ho, S.M. Lee and Y.H. Wen, On balance index sets of trees with diameter at most four, J. Combin. Math. Combin. Comput., to appear.