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Abstract

Let G be a graph with vertex set V' and edge set E. A labeling
f : V — {0,1} induces a partial edge labeling f* : E — {0,1}
defined by f*(zy) = f(z) if and only if f(z) = f(y) for each edge
zy € E. The balance index set of G, denoted BI(G), is defined as
{7°710) = £~7* )] = 1£710) = 71 (1)] < 1}. In this paper, we
study the balance index sets of graphs which are L-products with
cycles and complete graphs.

1 Introduction

Liu, Tan and the second author [7] considered a new labeling problem in
graph theory. A vertex labeling of a graph G = (V| E) is a mapping f from
V into the set {0,1}. For each vertex labeling f of G, we define a partial
edge labeling f* of G in the following way. For each edge uv in F, define

. _Jo if f(u) = f(v) =0,
f (“’”)‘{1 if () = Flo) = 1.
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Note that if f(u) # f(v), then the edge uv is not labeled by f*. Let v¢(0)
and vg(1) denote the number of vertices of G that are labeled 0 and 1
respectively under the mapping f. Similarly, denote by ef(0) and eg(1),
respectively, the number of edges of G that are labeled 0 and 1 respectively
under the induced partial function f*. In other words, for i = 0,1,

v(t) = HueV:flu)=i},
ef(i) = |[{uwweE: f*(uwv) =1}

For brevity, when the context is clear, we will simply write v(0), v(1), e(0)
and e(1) without any subscript.

Definition 1.1. A vertex labeling f of a graph G is said to be friendly if
|vg(0) — vs(1)] £ 1, and balanced if both |vs(0) — vs(1)| < 1 and |es(0) —
ef(D] <1

It is clear that not all the friendly graphs are balanced. Lee, Lee and
Ng (6] introduced the following notion in [3] as an extension of their study
of balanced graphs.

Definition 1.2. The balance index set of the graph G is defined as
BI(G) = {|es(0) — ef(1)| : the vertex labeling f is friendly}.

Example 1. Figure 1 shows a graph G with BI(G) = {0, 1, 2}. u
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le(0) — e(1)| =0 le(0) —e(1)] =1 e(0) — e(1)} =2

Figure 1: The friendly labelings of a graph G with BI(G) = {0,1,2}.

Example 2. For a cycle.C, with vertex set {z1,z2,...,T,}, We denote by
C,(t) the cycle with a chord z;z;. The balance index sets of C4(3), Cs(4)
and Cg(5) are shown in Figure 2. All of them equal to {0,1}. o

We note here that not every graph has a balance index set consisting of
an arithmetic progression.
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Figure 2: The balance index sets of C4(3), Ce(4) and Cg(5).

Example 3. The graph &(1,3,1,1) is composed of Cy4(3) with a pendant
edge appended to each of x;, z3 and x4, and three pendant edges appended
to z3. Figure 3 shows that BI(®(1,3,1,1)) = {0,1,2,3,4,6}. Note that 5
is missing from the balance index set. o

In general, it is difficult to determine the balance index set of a given
graph. Most of existing research on this problem have focused on some
special families of graphs with simple structures, see [1, 2, 6, 8]. Here are
a couple of examples:

_ [{o,1} if n is even,
BI(C.(t)) = { {0,1,2} if n is odd.

and

BI(St(n)) = { Ek}_ 1,k} ;f : = 2k.

The balance index sets of the graph which are formed by the amalgama-
tion of complete graphs, stars, and generalized theta graphs were studied
in [4, 5]. In [10], the second author, with Zhang, Ho and Wen, investigated
some trees of diameter at most four.

2 Generalized L-Product

Let H be a connected graph with a distinguished vertex s. Construct a new
graph G x 1, (H, s) as follows: take |V (G)| copies of (H, s) and identify each

87



[e(0) —e(1)} =3 |e(0) — e(1)| = 4 e(0) — e(1)| = 6

Figure 3: The six friendly labelings of ®(1,3,1,1).

vertex of G with s of a single copy of H. We call the resulting graph the
L-product of G and (H, s). More generally, the n copies of the graphs to
be identified with the vertices of G need not be identical. Let Gph* be the
family of pairs (H, s), where H is a connected graph with a distinguished
vertex s. For any graph G and any mapping ® : V(G) — Gph*, we
construct the generalized L-product of G and ®, denoted by G x;, ®, by
identifying each v € V(G) with s of the respective ®(v).

Example 4. Figure 4 shows that BI(Cy x 1, (Ks,s)) = {0,2,4}. o

Example 5. Figure 5 shows that the generalized L-products of a cycle C;
with a mapping ® : V(G) — Gph*, where ®(¢;) = K5, ®(c2) = K3 and
@(03) = K4. (]

Example 6. The balance index set of a graph depends on its topological
structure. For example, let the vertices on P; be u;, up and ug, and de-
noted by St(m), the star with center ¢ and m pendant vertices. We find
that BI(P3 xr ®) = {1,2,4} if ®(u1) = ®(u2) = (St(2),¢), and ®(uz) =
(8t(3),c); but BI(Pz xz ®) = {0,2,4} if ®(u;1) = ®(u3) = (St(2),¢), and
®(ug) = (St(3),c). See Figure 6. o
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Figure 4: The balance index sets of Cy x 1, (Ks, s).

€3,4

Figure 5: The balance index sets of C3 x, .
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Figure 6: The balance index sets of P; x 1 ®.

3 Balance Index Sets of the Generalized L-
Product of C, with Cycles

The proofs of the next two results can be found in [5]. Nonetheless, we
provide the alternate proofs below.

Lemma 3.1 For any (not necessarily friendly) vertez labeling of C,, we
have e(0) — e(1) = v(0) — v(1).

Proof. It is straightforward to verify that switching the labels of two
adjacent vertices does not alter the value of e(0) —e(1) or v(0)—(1). Hence,
we may assume the O-vertices (vertices that are labeled 0) are adjacent to
each other, and so are the 1-vertices. The result follows immediately from
the observation that e(0) = v(0) — 1, and e(1) = v(1) - 1. o

Lemma 3.2 If a graph contains a cycle of length m as a subgraph, which
has z vertices labeled 0 and m — z vertices labeled 1, then, restricted to that
cycle, e(0) —e(1) =2z—m

Proof. It follows from the proof of Lemma 3.1 that e(0) — e(1) = v(0) —
v(l)=z—(m—-2)=2z—m. o
Theorem 3.3 For any n and ® such that ®(v) is a cycle for any vertez v,
assume |V(C, X ®)| =2g+ 7, where0 <r < 1. Then

{n+rn+r—2,n+r—4,...,1} ifn+r is odd,

BI(C, XL§)={{n+r,n+T—2n+'r— .,0} ifn+r is even.
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Proof. Let v;(0), v;(1), e;(0) and e;(1) denote the respective values re-
stricted to the ith cycle ®(c;), and let z be the number of 0-vertices on Cy,.
Then

e(0)—e(l) = 22—n+ ) [e(0)— e(1)]
i=1

= 2z—n+» [v:(0) — v;(1)]
=1

= 2z—n+v(0) —v(1),

where 0 < z < n. Notice that this formula does not depend on how we
label the vertices of ®(c;). Hence, one can easily obtain a friendly labeling
with any z-value between 0 and n. If r = 0, we need v(0) — v(1) = 0; hence

{e(0)—e(1)|0<z<n}={—n,-n+2,—n+4,...,n—-2,n}.
In a similar manner, if 7 = 1, then v(0) — v(1) = +1; hence
{e(0)—e(1) |0<z<n}={-n-1,-n+1,-n+3,...,n—-1,n+1}.
The result follows immediately. a

Corollary 3.4 For any n and ® such that ®(v) is a cycle for any vertez
v, the values in BI(C,, X ®) always form an arithmetic progression.

Example 7.
BI(Cs x, ®) = {E(I): 3}4} i; mgi zz g: Ezﬁ’
meowd) = {508 G s
BiG < ®) = { s Ehie o ot

4 Balance Index Sets of the Generalized L-
Product of G with Cycles

Theorem 3.3 can be extended to the L-product of any graph G with cycles.
Given any friendly labeling f of G x ®, where ®(v) is a cycle for any
v € V(G), denoted by e}(0) and e}(1) the restriction of e(0) and e(1) on
G; that is, €}(0) and e}(l) represent the number of edges in G that are
labeled by 0 and 1 respectively.
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Theorem 4.1 For any ® such that ®(v) is a cycle for any vertex v, let
p =|V(G xr ®)|, and let F denote the set of friendly labelings of G x 1, ®.
Then

{le}(0) —e3(1)| : f € F} if V(G x ®)| is even,

BI(G xp ®) = { {le}(o) —e}(l) + 1| i fe F} if V(G x 1, ®)| is odd.

Proof. Let v;(0), v;(1), €;(0) and e;(1) denote the respective values re-
stricted to the ith cycle ®(¢;). Then

e0) —e(l) = e}(0)—ej(1)+ ) [ei(0) - ex(1)]
i=1

= €}(0) — e}(1) + Y_[v:(0) — vi(1)]

i=1

= €}(0) —e}(1) +v(0) — v(1).
The result follows immediately. a

To determine BI(G x ; ®), we need to go over all friendly labelings f of
G x ®, study their restrictions on G, and gather the values of e3(0) —e}(1)
to form the balance index set.

Corollary 4.2 For any ® such that ®(v) is a cycle for any vertez v, let
p = |V(St(n) x, ®)|. Then

_Jf{0,1,2,...,n} if p is even,
BI(St(n) x 1, ®) = { 0,1,2,...,n+1} ifp is odd.

Proof. Without loss of generality, we may assume the center ¢ of the star
St(n) is labeled 0. If z of the n pendant vertices of St(n) are labeled 0, then
€}(0) = z, and e}(1) = 0. Thus, €}(0) — e}(1) = 2. It is easy to verify that
0 < z < n, because we can label the remaining vertices of St(n) xr ® such
that the overall labeling is friendly. The result follows immediately from
Theorem 4.1. m]

Corollary 4.8 For any ® such that ®(v) is e cycle for any vertex v, let
p=|V(Pn xr ®)|. Then

_J{0,1,2,...,n+1} ifp is even,
BI(P"XL‘I')‘{{0,1,2,...,n+2} if p is odd.
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Proof. Let the two pendant vertices of P, be v and v. Without loss of
generality, we may assume that u is labeled 0. Using an argument similar
to the ones used in proving Lemma 3.2, one can show that

* * 2z— if f(v) = ’
ef(o)_ef(1)={2z—z+1 ;fﬁv;=;.

If f(v) =1, we have 0 < z < n — 1, hence
2z-n=-n,—n+2,...,n—4,n-2.
If f(v) =0, we have 0 < 2z < n, hence
2z2—-n—-1=-n-1,-n+1,...,.n—-3,n-1.
The result follows from Theorem 4.1. o

Corollary 4.4 For any ® such that ®(v) is a cycle for any vertex v, let
p=|V(Kn xr ®)|. Then

{I(g)—(n—l)kI:OSkSn} if p is even,

Proof. Let k& be the number vertices in K, that are labeled 1, then the
(g) edges among them are labeled 1. The other n — k vertices in K, are
labeled 0, hence the (";"’) edges among them are labeled 0. All other edges
are unlabeled. Consequently, e3(0) —e}(1) = "3 -G =) - (n-1)k,
and the result follows from Theorem 4.1. m]

5 Balance Index Sets of the L-Products with
Complete Graphs

Lemma 5.1 For C, x1 (Km,s), where n,m 2 3,
1
e(0) - e(1) = 22 = n+ 5(m — Dp(0) — o1},
where 0 < z < n.

Proof. Let the vertices of C,, be uy,us,...,u,. Let 2 be the number of
0O-vertices in V(®(u;)) — V(Cy). Thus, the number of 1-vertices in the same
set is m — 1 — 2z;. In a similar manner, let z and n — z be the number
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of 0- and 1-vertices of Cy, respectively. Then v(0) = z + Y -, z; and
v(l)=n—-2z+ Z:;l(m —1- z). Consequently,

n
v(0) —v(1)=22—n—-n(m—-1) +2zz,~.
i=1
On the base cycle C,, it is easy to verify that switching any two adjacent
vertices does not alter the value of e(0) — e(1). Hence, we may assume
the O-vertices are adjacent to each other, and likewise the 1-vertices form a
block of adjacent vertices. Then, we have

w5 5,60

i=1 t=2z+1
and . n
e(1) =n—z—1+z (m—;—zi) + Z (m;z,-).
i=]1 i=z+1
It follows from

() - (")
= (m+Dz-[m-1)-z][(m-1) - (z +1)]
= ~(m-1)2%4+(m—-1)(2z +1)

and

2 [(2) - (m;)] = 2z —1)=[(m—1) = (= D][(m - 1) - 2]
= —(m-1)2+(m-1)(2z—1)

that

2[e(0) — e(1)]
= 2(2z-n)—-n(m-12+(m-1)(2z —n)+2(m— I)Zzi

i=1

= 2(2z —n)+ (m — 1)[v(0) — v(1)].

Since the result does not depend on how the vertices of each copy of K,

are labeled, we have 0 < z < n. The proof is now complete. a

Theorem 5.2 For any integer n,m > 3,

BICnx1(Km,s)) = {“22 —nl:0<z<n) fmn s cven,
{|2z—n:!:%(m—1)l:0$z$n} if mn is odd.

Proof. The result follows from Lemma 5.1 and the fact that C,, x 1, (K, s)
has mn vertices. i
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Example 8. We find
BI(Cy %1 (K5,8)) = {|22 —4]: 0 < 2 < 4} = {0,2,4},
which is confirmed in Example 4. We also find
BI(Cy xz (Ko,8)) = {1223 : 0< 2 < 3} = (1,3},
and
BI(Cs x (K3,8)) ={|22-5+1|:0<2<5}={0,2,4,6}. O

What if ®(u;) is the complete graph on m; vertices, where the m;s are
not the same? The argument is almost identical, except that we no longer
have a nice simple formula. In particular, we find that v(0) =z + ) i, 2
and v(1) =n—2z+ )Y [ (m; — 1 — ). Hence,

v(0) —v(l)=2z2—-n+ 2":(22,- -mi+1)=2z+ Zn:(2zi ~m;).

i=1 i=1
We also find
2 g 1 n :
6(0)=z—1+2(z ;- )+ > (Z),
i=1 i=z+1

and

e (I 4 3 (M)

i=1 i=z+1
It follows from

2 [(z" N 1) - (m" ‘21 - z‘)] = —(mq = 1)% + (mq — 1)(22 + 1)

2| (5) - (™5 *)] = -1+ (me - 12z - )
that

e(0) — e(1) = ~3 > (ms ~ 1) + > (ms = )z + 5 [Zm,-- > mi],

i=1 =1 i=1 i=z+1

and

subject to the conditions that

2z + 2(22,- -m;)| < 1.

i=1

0<z<m; and

Since we cannot factor out (m; — 1), it is not an easy task to find a simple
formula. Nevertheless, we do have a generalization of Theorem 5.2.
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Theorem 5.3 For any integer m > 3, and any graph G with n vertices,
and let F' denote the set of friendly labelings of G x; ®. Then

BI(G x, (K, s))
_ {le*(0) - e‘(l)l :feF} if mn is even,
B { {le*(Q)—e*()) £ &(m —1)|: f€ F} if mn is odd,
where e*(0) and e*(1) are the restriction of e(0) and e(1) on the graph G.

Proof. The proof is almost identical to that of Theorem 5.2. The difference

occurs at the base graph G, hence we only need to replace 2z — n with
e*(0) — e*(1). m}
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