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Abstract

The n-cube is the graph whose vertices are all binary words of
length 7 > 1 and whose edges join vertices that differ in exactly
one entry; i.e., are at Hamming distance 1 from each other. If a
word has a non-empty prefix, not the entire word, which is also a
suffix then it is said to be bordered. A word that is not bordered
is unbordered. Unbordered words have been studied extensively and
have applications in synchronizable coding and pattern matching.
The neighborhood of an unbordered word w is the word itself to-
gether with the set of words at Hamming distance 1 from w. Over
the binary alphabet the neighborhood of an unbordered word w al-
ways contains two bordered words obtained by complementing the
first and last entries of w. We determine those unbordered words w
whose neighborhoods otherwise contain only only unbordered words.

1 Introduction

Words have been given various names in the literature: strings, sequences,
lists, texts, or vectors. Formally, A word is a finite ordered sequence of
elements chosen from a finite alphabet. For emphasis words will be written
in boldface. The alphabet used in this paper is the binary set {0,1}. The
n-cube, Qn, n > 1, is the graph whose vertices are words of length n over
the alphabet {0,1} with two vertices joined by an edge if they differ in
exactly one entry, i.e., two vertices are joined by an edge if the Hamming
distance between them is 1. The Hamming distance between two words
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in @ is the number of entries in which they differ. The complement of
z € {0,1} is denoted by 7; i.e., 0 =1,1=0. If w = w;...w, is a word
with entries w;, then a border of w is a non-empty word that is both a
proper prefix and a suffix of w. That is, w has a border if there exists an
integer p, 1 < p < n, such that w; ... wp = wp_py1 ... wn. A word without
a border is said to be unbordered. In the engineering literature, a border
of a word in the n-cube is called a bifix and an unbordered word is called
bifix-free [8]. Lothaire[6, Chapter 8] refers to unbordered words as primary
words.

Every bordered word has a shortest border which is necessarily unbor-
dered. The shortest border of a word is the only border of the word that is
itself unbordered [4, Lemma 2]. By Nielsen’s lemma given below as Lemma
1, the shortest border of a word is not longer than half the word length.

Let B, denote the set of bordered binary words of fixed length n over
{0,1} and Uy, the set of unbordered binary words of length n. Every binary
word of length » > 1 which both begins and ends in 0 or begins and ends
in 1 is bordered. Accordingly, unbordered words must either begin in 0 and
end in 1 or begin in 1 and end in 0. We study the subgraphs of @Q,, induced
by unbordered words.

Definition 1 Define the following induced subgraphs of Qy,:

le = {WEQn|W=0-..1}
B = {weQ%weB,}
U,?l = {we lelw eU,}.

and similarly define QX°, BX, and ULC. If n = 2 then By = {00, 11} and
U, = {01,10} while BY! is empty and U9 = {01}.

The neighborhood of an unbordered word w in @,, is the word itself
together with the set of words at Hamming distance 1 from w and will
be denoted simply N(w). The set of words at Hamming distance 1 from
a vertex w in the subgraph Q% together with w itself will be denoted
N%(w); i.e.

N%Y(w) = N(w) n Q9.
Similarly define N'%(w). For example, if w = 01 then N(w) = {01,00,11}

while N°!(w)= {01}.
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The vertices which are unbordered words in the n-cube are partitioned
into two disjoint subgraphs:

U, =UuUD,

It was shown in [1] that the induced subgraphs UJ!, U0 in Q, are con-
nected. It is immediate that the Hamming distance between a word in Q9!
and a word in Q10 is at least 2.

Since U2 and U}? are isomorphic as graphs under both reversal and
complementation, results are stated only for US! in the following .

2 Generating Unbordered Words

The following lemma of Nielsen [8] ensures that any algorithm to determine
whether a word of length n is unbordered need not check for borders of
length greater than | % |.

Lemma 1 (Nielsen, 1973) A word w of length n over an arbitrary al-
phabet is unbordered if and only if it has no borders of lengths 1,2,...|%].

Nielsen [8] also gave a recursive method for generating unbordered words
over any finite alphabet. We restrict attention to the binary case since
our interest is the geometrical relations between bordered and unbordered
words in Q.

Definition 2 Ifn =2k, k> 0, and w = w; - - - wox, € Q,, define for each
z € {0,1} vertex mappings o5 : Qax — Q2r41 by

0z (W) = wy + WeTWky1 * + - Wak-
Clearly, each o is injective but not surjective.
Definition 8 If n = 2k, k > 0, and w = w; - -wy € @Qn define for
a,b € {0,1} vertez mappings Tap : Qax — Q242 by

‘rab(w) =W -wkabwk.,.l e Wk

As with o, 745 is injective but not surjective.
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Theorem 1 (Nielsen, 1978) If w = w; - w, € Q, and n = 2k then
0z(W) €EUpty = wevuU, 1)

and
Tab(W) € Uppo => w € U,,. (2)

The converse of the latter implication holds if and only if
Wy W = Wg4] ' Wpo] = W) # b orw, #a.
Comment: Any border of 74(W) = w - - - wgabwyy - - - w,, With length

less than or equal to k + 1 is either a border of w or is w;---wga =
bwgty - - - wp.

3 Pure Neighborhoods of Unbordered Words

If n = 3 then the neighbors of 001 in Q3 are 001,101,011,000 and the
neighbors of 011 in Q3 are 011,111,001,010. However, when restricted to
the induced subgraph, @3, N°1(001) = {001,011} = N°1(011).

Proposition 1 If w is any unbordered word in US! and n > 1 then w has
at least two bordered neighbors in B,,.

Proof: If w € U2! then w = Owg -+ wy-11 for w; € {0,1}. Both
Ows -+ wp—10 and w = 1wy - - wy—11 are neighboring bordered words.

Proposition 2 Let w € Ull,n = 2k, k > 1, and w' € NYw). If
w #w, then

H(oz(W),04(w')) =1 3

and
H(w,w') = H(Tap(W), Tap(W')) = 1 (4)

where H denotes Hamming distance.

Proof: Since w and w’ agree in all entries except one, the same is true for
oz(w) and o, (w') by Definition 2. The argument is similiar for 7,5.
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Proposition 3 Ifw € Q%, n =2k, k > 1 then
az(N°(w)) C N% (04(w)) (5)
and

Tab(NOH (W) C N (155(w)). (6)

Proof: Let w' # w € N%(w). By (3), o(w') € N%(o,(w )). Therefore,
(5) holds. By (4), Tab(W’) € N (7a6(W)). Therefore, (6) holds.

Definition 4 An unbordered word w € U2 has a pure neighborhood if
NO(w) N BY = ¢,

There are no pure neighborhoods for unbordered words in @, itself as
was noted in Proposition 1.

Lemma 2 Let w € U' where n = 2k,k > 1. Then, N (w) is a pure
neighborhood if and only if N°(o-(w)) is pure.

Proof: Assume N%(w) is pure and let w = w; - - - wy,. If v is any word
in N°(o;(w)) not o(w) then v differs from o,(w) in exactly one entry.

Case 1. If v differs from o;(w) in entry k + 1 then
V= wy - W Wht1 * Wy = 0x(W) )

since the alphabet is {0,1}. If v has a border then it has a border of length
less than or equal to k + 1 by Lemma 1. Thus, by Definition 2, any such
border of v is necessarily a border of w, contradicting the assumption that
w € UQL. Therefore, N% (o, (w)) is pure in this case.

Case 2. Now suppose
v=w1...ﬁi...wkzwk+l...wn (8)

or
V=w1...wk$wk+1...u_1'i...wn (9)

for some ¢, 1 <4 < n. Since v € N%(o,(w)), 1 <i<n.

If (8) then v = o, (w*) where w* = w; - - - W; - - - wy,. Clearly, w* e N (w),
which is pure by hypothesis. Thus, by Theorem 1, v € U2!. Since v was
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an arbitrary element of N%(o,(w)) we conclude the latter is pure. The
argument is similiar if (9). In conclusion,

NYoz(w)) = 0o (N (w) U {o5(w)}. (10)

Conversely, suppose N°(o,(w)) is pure and let w' € NY(w),w' # w.
If w’ is bordered then it has a border of length shorter than 5] by
Lemma 1. By the definition of o,,0.(w’) would have the same border.
But w' € N%(w) implies 0,(w’) € N°(o(w)) by Proposition 2 and
N%{(g,(w)) is pure by assumption. Thus, by Theorem 1, w’ is unbor-
dered. Hence N (w) is pure.

Lemma 3 Let w = w; ---wp, € US! where n = 2k,k > 1. If N (7,5(w))
is pure then N°Y(w) is pure. Conversely, if N (w) is pure and
wy # b, wy, # a then N (74(w)) is pure.

Proof: First assume N%(7,,(w)) is pure and let w' € N (w), w’ # w.
By (6), Tab(W') € NO(7,5(w)) which is pure by assumption. If w’ were
bordered then 7,5(w’) would be by Lemma 1, a contradiction. Therefore,
N%(w) is pure.

Conversely assume N°!(w) is pure and first suppose v € NO!(7,,(w))
differs from 7,5(w) in some entry other than the two central ones, say,
VvV = wy- Wy wrabwgyy - - wy, since the alphabet is binary. Then,
vV = Ta(u) where u = wy -+ Wy + - - WpW1 - W, € N (w). Since N (w)
is pure, u is unbordered and therefore v = 745(u) is unbordered since it
would inherit all borders of u with length strictly less than k. But the pos-
sibility remains of a border with length exactly k; i.e., wy - @5 - wga =
bwgyq « - w,. However, in that case, , w; = b and w, = a, contrary to the
hypothesis.

Now assume that v differs from 7,5(W) in entry k + 1 or k + 2 so that
v is one of:

V=wye.: wkbibwk.*.l W, = mb(w) (11)
vV =w - wWgabweyr o wn, = T3(W). (12)
If, say, (11) then any border of v of length less than or equal to k + 1 is

either a border of w or is

w1 -+ WkE = bWyyy ++ - W (13)
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But if (13) holds then w; = b, contrary to hypothesis. Similiarly, if
(12) holds then w, = a, again contradicting the hypothesis. Accordingly,
NOY(7,,(w)) is pure.

It will be convenient to use the notation of formal language theory and
write words from U?! in the form 0% 151...0%1b 0 < a;,b;5i = 1,...¢.
where z° denotes the concatenation of z with itself ¢ times.

If t = 1 it is easy to see that any word w of the form 0%1%, a,b> 0 is
unbordered. In particular, 0"~11 is unbordered. If n = 2 then N%(w) is
the singleton {01} and 01 is unbordered.

Lemma 4 For every n > 2, none of the words 0"~11 € US! have pure
netghborhoods.

Proof: Let w = 0"~!1. For n > 2 the neighbors 0" and 10"~21 of w
in Q,, are bordered but are not in U2'. The word 0"~!1 has n — 2 other
neighbors in Q9! all which have the form 0°10°1 where a + b =n — 2 and
a > b > 0. These are the n — 2 words

0"211,0"-%101,...,010"31.

If a < b in 0°10°1 then 0°1 is a border of 0°10°1 and any border of 0%10°1
must have this form. Thus, the other unbordered neighbors of 0"~!1 in
Q9! are of the form 0910°1,a > b > 0. If n is even the others are the 252
words
0"-211,0"-%101,...,0%310%F" 1.
If n is odd then the other unbordered neighbors of 0"~11 in UQare the 251
words
0"211,07-%101,...,0"# 10"7" 1.

The argument is similar for words of the form 1*~10 € U2°.

Definition 5 A word v € Q,, is a descendant of a word u € Q,,,, m < n, if
there exists a sequence fi, fa,** fx, fi € {0z, Tab|Z,a,b € {0,1}} such that
fxofk—10---0 fi(u) =v.

Note that the empty sequence ensures that every word is considered a
descendant of itself. Since the images of o, have odd length the composi-
tions oz o o, and 7,3 0 6 never occur in a sequence of descendants. Thus,
the possible descendant sequences are the words o, o be, and be,k >0,
for z,a,b € {0,1}.
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If n = 4 then it is easy to see that UJ' = {0001,0011,0111}. Of
these three unbordered words only 0011 has a pure neighborhood, since
by Lemma 4, 0001 and 0111 cannot have pure neighborhoods. In fact,
both 0001 and 0111 are adjacent to the bordered word 0101. N°(0011) =
{0011,0111,0001} is the only pure neighborhood when n = 4.

Example 1 Assume w € Qs is a descendant of 0011. Then, w = 00all
where either a = 0 or a = 1. These two words and their Q3! pure neigh-
borhoods are

00011 0 0111
01011 01111
00111 00011
0 0001 0 01001

The following theorem shows that the only unbordered words in Q%!
with pure neighborhoods are descendants of 0011 and only descendants of
these length 4 words satisfying a mild restriction have pure neighborhoods.
Because of Theorem 1, the inductive proof naturally falls into two parts
depending on whether f; in Definition 5 is a o or a 7gp.

Theorem 2 Ifn > 5 is odd any unbordered word w € US! has a pure
neighborhood if and only if it is a descendant of 0011 € U,

Proof: Since n is odd, let n =2k +1, k£ > 1 and w € U2}, Theorem 1
implies there is v € USL, such that w = oy, +1(Vv), where w = w; -+ w,,.
Assume NOY(w) c U2 is pure. By Lemma 2, N°Y(v) c U%,. By in-
duction, v is a descendant of 0011. Hence w is a descendant of 0011 since
the first two and last two entries of w are the same as those of v by the
definition of .

Conversely, let w € U2 be a descendant of 0011. By Theorem 1,
w = o5(u) for some z € {0,1} and u € U%'. Since w is a descendant
of 0011 by hypothesis, the unbordered word u is a descendant of 0011 by
definition. By induction, N%(u) is pure. By Lemma 2 N%(o,(w)) is pure
for each z € {0,1}.

Theorem 3 Let n > 6 be even and w € UQ'. Necessarily, w = 1op(u) for
some u € UM, and a,b € {0,1}. If w has a pure neighborhood then it is a
descendant of 0011. Conversely, if w is a descendant of G011 then it has a
pure neighborhood provided only that wy # b and w, # a.
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Proof: Let w = w;---w,. Since n is even, Theorem 1 implies w =
Tap(u) for a,b € {0,1} and u € UQ',. By the definition of 7, u is
unbordered since w is. Assume N°(w) C U2! is a pure neighborhood.
By Lemma 3, N°!(u) is pure. By induction u is a descendant of 0011 and
hence w is.

Conversely, suppose w € UQ! is a descendant of 0011. If u = uy---u,
then u; = w; and u, = w, by the definition of 7,5. Accordingly, The
condition w; # b and w, # a necessarily applies to u. By induction,
NO%(u) is a pure neighborhood. Therefore, N°!(w) is pure by Lemma 3.

Example 2 The siz arrays below are all the pure neighborhoods in U?!.
The first line of each array s the central word.

00000O0T11 0000111
0100011 0100111
0010011 0010111
0001011 0001111
000071171 0000GO0T1°1
00000O0TO0:1 0000T10°1
0001111 0011111
0101111 0111111
0011111 0001111
0000111 0010111
0001011 0011011
0001101 0011101
00010011 0010111
0101011 0110111
0011011 0000T1T1°1
00000O0T171 0011111
0001111 0010011
0001001 0010101
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