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Abstract

A domination graph of a digraph D, dom (D), is created using the
vertex set of D and edge uv € E(dom (D)) whenever (u,2) € A(D)
or (v,z) € A(D) for any other vertex z € V(D). Here, we consider
directed graphs whose underlying graphs are isomorphic to their domi-
nation graphs. Specifically, digraphs are completely characterized where
UG* (D) is the union of two disjoint paths.

1 Introduction

Domination graphs were first introduced by Merz, Lundgren, Reid and Fisher
[10] to describe the structure of the domination graphs and competition graphs
of tournaments. Since that time, further refinements have been made in the
work on tournaments, including that done by Cho, Doherty, Kim and Lundgren
((1], [2]) and Merz et al. ([6), [7], (8], [9], [10], [11]). However, the characteriza-
tion of the structure of the domination graph of arbitrary digraphs has remained
elusive. The authors have added to the knowledge in this area by characterizing
digraphs D where the underlying graph of D is equal to its domination graph
3], and have characterized some digraphs where the graphs are isomorphic ([4],
[5]). We add to that body of knowledge in this paper by characterizing digraphs
whose underlying and domination graphs are isomorphic, UG (D) = dom (D),
and UG* (D) is the graph of two disjoint paths.

Let D be a directed graph, or digraph, with nonempty vertex set V (D) and
arcset A(D). If (u,v) € A(D), then u is said to dominate v. Further, u is the
origin of the arc (u,v), and v is the terminating veriez. When for every other
vertex z in V (D), either (u,z) or (v,z) is an arc in D, then v and v form a

JCMCC 72 (2010), pp. 3-32



dominating pair. The domination graph of D, dom (D), is an undirected graph
with the vertex set V (D), where there is an edge between every dominating
pair. A digraph D is considered a biorientation of a graph G if for every edge
w € E(G), either (,v) or (v,u) or both are arcs in D, and D contains no
other arcs. The underlying graph of D, UG (D), is the graph for which D is
a biorientation. If for edge uv in G, only one of edges (u,v) or (v,u) is in
D, then the arc is called an orientation of edge uv. When all edges of G are
bidirected edges in D, then D is a complete biorientation of G, also known as a
symmetric digraph. Although bidirected edges are allowed in D, there are no
directed loops.

When the underlying graph of D is isomorphic to the domination graph of
D, it is its nature to have many edges. Thus, in most cases, it is easier to obtain
results regarding UG (D) and dom (D) by observing patterns in UG* (D) and
dom® (D), which are sparse graphs. To relate the results obtained from the
complements to UG (D) and dom (D), we use the concepts of the union and the
join of graphs and digraphs. The union of two graphs or digraphs is the graph
or digraph formed by the union of their vertices as well as their sets of edges or
arcs. The join of two graphs G and H, G + H, is the graph that consists of
GUH and all edges joining the vertices in G with the vertices in H. We extend
this definition to directed graphs as follows. The join of D; and Dz consists of
D, U D, together with all bidirectional edges between every vertex of D and
every vertex of Ds.

We know that the structure of UG (D) is limited to a small number of
constructs. It can be summed up by the following three results.

Theorem 1.1 [{] If D1,..., Dy, are directed graphs such that UG (D;) = dom (D)
fori=1,....k and D= Dy + Dy + ... + D, then UG (D) = dom (D). Also

1. UG(D)=Yi UG (D)

2. dom (D) = ¥f_, dom (D)
3. UG (D) = UL, UG* (Ds)
4. dome (D) = US_, dom* (D;)

Theorem 1.2 (4] If UG (D) is isomorphic to dom (D), then UG* (D) is com-
prised of one or more connected components, each either a complete graph, a
path, or a cycle.

Corollary 1.3 [4] If UG (D) is isomorphic to dom (D), then D is the join of
Dy,Ds, ..., Dy, where UG (D;) is isomorphic to an independent set, the comple-
ment of a path, or the complement of a cycle.

Theorem 1.2 gives three basic components that comprise the complement
of the underlying graph in which we are interested. The structure of D and
UG (D) where UG€ (D) is one component has been completely characterized 4],



as has the case where Py, P; and C; are the components [5]. In this paper, we
further the research by characterizing the underlying graphs and the directed
graphs where UG (D) = dom (D), and UG (D) = P,UP;. In the next section,
we determine for what values of j UG°(D) = P, U P; exists for the special
cases of ¢ = 1,2. 'We then use the information from Section 2 to formulate
the characterizations of the digraphs D that can be formed for the associated
underlying graphs. Finally, we conclude the characterizations of UGS (D) and
D where ¢,j > 3 in Sections 4 and 5. Some of the proofs required are quite long
and interrupt the flow of information, so have been placed in their own section
at the end of the paper.

2 Structure of UG(D) = FUP;,i=1,2

Of immediate consequence when determining the structure of UG*® (D) for any
i and j is the edges that are formed in dom® (D) regardless of the structure of
D. The following lemma lists the paths that are always part of dom® (D) when
P, for n > 3 is a component of UG (D). These paths are used extensively in
this paper, and will be referred to as the generated subpaths in dom® (D).

Lemma 2.1 [{] IfUG®(D) = P, = x1,%Z3,...,Zn for n > 3, then
1. ifn is odd, z1,23,...,2,, and 22,%4,...,Tn—1 are paths in dom® (D), and
2. if n is even, z1,Z3,...,Zn-) and T2,T4,...,T, are paths in dom® (D).

Further, we know that a biorientation of UG (D) exists for each of the Py,
n > 3, where UG (D) = dom (D). This is stated in the following lemma.

Lemma 2.2 [{] Let D be a directed graph on n > 3 vertices and UG (D) =
P, = z1,..,2n. Then dom®(D) = P, if and only if for every edge uv €
E(UG (D)), (u,v) and (v,u) are arcs in D ezcept for the following:

1. if n is odd, ezactly one of the following is en orientation of the associated
edge(s) in UG (D):

(G) (zl rzn)r
(b) (zn,x1),
(c) (z1,25) and (Tn,Tn-3), or
(d) (zn,z1) and (z1,24), and
2. if n is even, ezactly one of the following is an orientation of the associated
edge(s) in UG (D):
(a) (xlaxn—l)v

(b) (Zn,2),

(C) (:El,zn—l) and (xin:cQ)r



(d) (xn)x2) and (xltzd); or
(e) (xhxn—l) and (xmmn—s)-

Of particular note, the oriented edges (z», Zn—3) and (1, z4) of the preceding
lemma. form edges in dom® (D) that are in the generated subpaths of Lemma
2.1. These serve a special purpose when we characterize D, so the following
two corollaries are listed here for later use. The first follows from construction
of dom¢® (D).

Corollary 2.3 If UG (D) = P,, n 2 4, oriented edges (z1,Z4) and (Tn,Tn-3)
produce edges T4 and Tn_1Tn-3 in dom® (D).

Further, this guarantees that when we use oriented edges (zn,Zn-3) and
(1,4), there will be no new edges appearing in dom* (D).

Corollary 2.4 IfUGS (D) = P, n 2> 4, oriented edges (z1,%4) and (Tn,Zn-3)
create no additional edges in dom® (D).

To show that UGS (D) = P, U P; can exist for all j > 1 such that UG (D) &
dom (D), we need to show that if the component P; is added to the graph
UG<(D) = Pj, an underlying graph will be created where it is possible to
still create a digraph D preserving isomorphism. We can do that using the
orientations given in Lemma 2.2.

Theorem 2.5 Let UGS (D) = PyUP;. Forall j > 1, there erists a biorienta-
tion of the edges of UG (D) such that UG (D) = dom (D).

Proof. Let j = 1. Then UG (D) equals the edge uv. The vertices u and v
dominate for either orientation of the edge uv or the bidirection of the edge.
Thus, UG (D) = dom (D).

Let j = 2. Then UG (D) = uv; Uuvy. The orientation (u,v1) U (u,v2)
produces edges uv; and uvg in dom (D). Thus, UG (D) = dom (D).

Let j > 3. If D, = P, and Dy = P;, where UG° (D) = D, U Dy, then by
Theorem 1.1, UG (D) = dom (D) where D =D, + D2. ®

Now we turn our attention to characterizing the j for which UG (D) =
dom (D) and UG¢ (D) = P,UP;. To do so, there must be more understanding
of the orientation of edges to form D and the affect this has on dom® (D). We
work with dom® (D) because when UG (D) = dom (D), UG (D) = dom® (D),
and it is easier to work with the fewer edges in the complements.

Given any edge uv in dom® (D), we know that vertices u and v cannot form
a dominating pair in D. Therefore, there must be at least one vertex z in D
such that neither (u, z) nor (v, z) is an arc. We will call z a source of edge uv
in dome (D). Note that an edge in dom® (D) may have multiple sources.

The next few results eliminate certain vertices as candidates for sources,
and restrict the number of edges for which a vertex may be a source. In our
construction of a digraph where UG® (D) is the union of two paths, it is natural
to ask whether it is possible for a vertex to be the source of more than one edge
in dom® (D).



Lemma 2.6 [5] IfUG (D) = dom (D) and y is the source of two or more edges
in dom® (D), then the set of vertices which do not dominate y is contained in a
component isomorphic to K,, r > 3 in UG° (D).

Since we have no components isomorphic to K., r > 3 in UG® (D), we have
no vertices that are the source of more than one edge in dom¢(D). There are
two ways in which a vertex z may be a source of edge uv in dom® (D). The
first is if it is not adjacent to vertices u and v in UG (D). The second is if we
create the source z by making it the origin of the oriented edge (z,w) if z is not
adjacent to v, or (z,v) if z is not adjacent to u, or both if z is adjacent to both
u and v. We can obtain the list of vertices that are candidates for becoming
the origin of an oriented edge. The following lemma is used as the foundation

for the choices.

Lemma 2.7 [§] Let D be a digraph on n vertices, and (u,v) in D be the orien-
tation of edge uv in UG (D), where deg(u) =k in UG (D). Ifk <n -2, then
K3 is a subgraph of dom* (D).

The preceding lemma thus leads to the following set of vertices that may
serve as the origin for any oriented edge in D when UG (D) & dom (D) and
UGF* (D) is comprised of disjoint paths.

Lemma 2.8 Let D be any digraph such that UG (D) & dom (D) and UG® (D)
is comprised of components Uf=1 P,, where P,, = z1;,%2;,....2n,;: and n; 2 1
is the number of vertices for path Pn,. If UG (D) = dom (D) and (u,v) in D
is an orientation of edge wv in UG (D), then u = zy; or u = z,,; for some j,
1<j<k.

Proof. Consider UG (D) = Ule Py; where P,, = z1;,%2i,...,Zn,; and n; > 1,
and (u,v) is an orientation of edge uv. Letn = Z:.;l n;. According to Lemma
2.7, if deg (u) < n — 2 in UG (D), then Kj is a subgraph of dom¢ (D). Thus,
deg(u) > n — 2. This indicates that in UG® (D), deg(u) < 1. So, u must be
K, or the end vertex of a path. Therefore, we obtain the list of vertices, which
are the first and last vertices of each P,,. m

Lemma 2.6 states that a vertex can be the source for at most one edge in
dom® (D). Now we ask whether a vertex z may be the source of one edge uv
if z is adjacent to both u and v in UG (D). The answer is given in the next
lemma where we find that if 2 is the origin of one oriented edge in D, it cannot
be the origin of another oriented edge in D when the paths have at least three
vertices. The results are generalized to k£ paths.

Lemma 2.9 Let D be any digraph such that UG (D) = dom (D) and UGS (D)
1s comprised of components Uf:n Py, where Py, = %14, %24, ..., %n,; and n; > 2 is
the number of vertices for path P,,. If (2,u) in D is an orientation of edge uz
in UG (D), then there is no vertez v such that (z,v) in D is an orientation of
edge vz in UG (D).



Proof. Suppose that there are orientations (z,u) and (z,v) in D. By Lemma
2.8, z must be one of the end vertices of the path, and there exists a vertex z
that is not adjacent to z in UG (D). So, z, u and v do not dominate z and
form K3 in dom¢ (D), contradicting UG (D) & dom (D). Thus, (z,u) or (z,v)
may be an orientation of an edge in D, but not both. ®

Now we turn our attention to the structure of the paths themselves in
dom® (D). The generated subpaths in dom® (D) are only in constructions for
P; when j > 3. However Lemma 2.1 does give an indication of the length of the
paths formed automatically in dom® (D). As j becomes larger, the generated
subpaths in dom® (D) on the vertices vy, ...,v; become longer than P. Thus,
it is necessary to know if P, = ujuz in UG® (D) can also form P, = ujuy in
dome¢ (D). If not, there are only a few possible values for j so that UG (D) =
Py U P; can yield an isomorphic dom® (D). The following lemma states that
P; = ujug in UG® (D) is not possible.

Lemma 2.10 Let UG (D) = dom (D), and UG® (D) = P,UP; for j > 3, where
P, = wjup and Pj = vy,...,vj. Then uyuz is not an edge in dom® (D).

Proof. Suppose that u;u; is an edge in dom® (D). Then some vertex z must
be a source of that edge. Vertices u; and uy cannot be the source of an edge
with which they are incident. Thus, z = v for some k = 1,...,j. Since vy is
adjacent to both u; and ug, the oriented edges (v, u1) and (vk,u2) must both
bein D. But Lemma 2.9 states that this cannot be. Therefore, uju; is not an
edge in dom® (D). =

Corollary 2.11 Let UG (D) = dom (D), and UG®(D) = P,UP; forj 2 3,
where P, = wup and Pj = vy,...,v;. Then P; in dom® (D) is either equal to
u;vx for somei=1,2 and some k =1,...,j or v;vx forsomel1<i <k<j.

Now we can formulate the structure of UG* (D) given the preceding results.
When it is shown that UG® (D) & dom® (D), we generally skip directly to the
consequence of UG (D) = dom (D). Figure 1 shows the construction for j = 4
given in the proof for Theorem 2.12. Bidirectional edges are not shown. The
dashed lines represent the edges in UG® (D), so are not bidirected edges in D.
In the figure, Pz = vov4 in dom® (D).

Theorem 2.12 Let UGS = P, U P;. There egists a biorientation D of the
edges of UG (D) such that UG (D) & dom (D) if and only if j = 1,2,3,4,5.

Proof. (==) Theorem 2.5 shows the case where j = 1. For j > 2, according
to Corollary 2.11, we must construct P; in dom® (D) using w;vx or vgv,. First
consider P, = u;vy in dom® (D). Here, v must be the generated subpath P
so that u;ux = Py in dom® (D). Therefore, j < 3. Next consider P> = vyu
in dom¢ (D). The edge vxv; must be the generated subpath P2, so Lemma 2.1
gives us j < 5.

(<=) The case where j =1 is shown in Theorem 2.5.
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Figure 1: A digraph D where UG°(D) = P, U P; and the associated graph
dom¢ (D). Dashed lines represent UG* (D), and bioriented edges of D are omit-
ted.

For j = 2, let (u3,v1) and (ug,v;) be oriented edges of UG (D). Vertex uy
is the source of edge uav, in dom® (D), and vertex us is the source of edge u;vs.
No other edges are formed, so UG (D) = dom (D).

For j = 3, let (v1,u;1) and (u;,v3) be oriented edges of UG (D), and bidirect
all other edges of UG (D). Here, v and v;,v3 are generated subpaths in
dom® (D). Additionally, vertex v; is the source of edge u,v; in dom® (D), and
vertex u; is the source of edge uguz. Thus, dom® (D) = uwyvU ug,v3, 1, and
UG (D) = dom (D).

Using similar orientations for j = 4 and j = 5, (u;,v3) with (ug,v1) and
(u1,vs) with (ug,v;) respectively, we find that these biorientations result in
UG(D)=dom(D). m

3 Characterization of D where UG¢ (D) = P,UP;,
1=1,2

As might be expected, the characterization of all digraphs that can be formed
using the underlying graphs specified in the previous section, is a somewhat
tedious process. We will place the longer proofs into the final section of the
paper so that the flow of the results are not interrupted by lengthy construction
proofs.

To begin, we consider i = 1. The following lemma provides all of the addi-
tional support necessary before characterizing the digraphs D where UG (D) &
dom (D) and UG®(D) = P U P;.

Lemma 3.1 Let UG®(D) = P U P;, where P, = u, P; = vy,..,v; for j # 2,
and UG (D) = dom (D). Then u= P, in dom® (D).

Proof. If j = 1, then the edge uv; in UG (D) can be either of the two orien-
tations or the biorientation in D. Thus, u« and v; form a dominating pair, and
are nonadjacent in dom® (D).

If j = 3, then vyv; is a generated subpath in dom® (D). Thus, only u or
v can possibly equal Py in dom®(D). If vp is Py, then either uv; or uvy is



an edge in dom® (D). Say that uwv, is an edge. Then there is a source vertex
z in D such that neither © nor v; dominates z. By Lemma 2.9, z cannot be
adjacent to both u and v;. Vertex u is adjacent to all other vertices in UG (D),
50 z = vo. This implies that (v, u) must be an oriented edge so that v; and
u do not dominate v,. However, va cannot be the origin of an oriented edge
according to Lemma 2.8. Thus, uv, is not an edge in dom®(D). With a
similar argument, we see that uvs is not an edge in dom® (D). Thus,u= P in
dome (D) is the only possibility. It can be realized by applying the assignment
of oriented edges associated with P3 outlined in Lemma 2.2, and bidirecting the
edges uy; fori=1,2,3.

If j > 4, then P, is not a generated subpath in dom¢ (D), so the only
possibility is vertex u. The graph dome (D) that is isomorphic to UG® (D)
can be realized by applying the assignment of oriented edges associated with P;
outlined in Lemma 2.2, and biorienting the edges uv; fori=1,...,5. &

This leads to the following characterization of digraphs where UG (D) =
dom (D) and UG® (D) = P U F;.

Theorem 3.2 Let UGS(D) = P, U P;, where P, = u and P; = v1,...,v;.
UG (D) = dom (D) if and only if D is of the form:

1. If j =1, then D is an orientation of the edge uv, or the biorientation of
that edge.

2. If j = 2, then (v;,u) is an orientation for i = lor 2, and (vy,u) is not
an orientation for i = 1 or 2 and ' the remaining value, or (u,v) and
(u,vj) are orientations.

3. If j > 3 and vy, is the edge in dom® (D) connecting the generated sub-
paths, then D is the digraph where all edges of UG (D) are bidirected in
D exzcept for one of the following:

(a) the only oriented edges are as described in Lemma 2.2, or

(b) (u,v,) and (u,v,) are orientations of edges uv, and uv, respectively,
or

(c) the edges are oriented as described in Lemma 2.2, and u is the origin
of at most two oriented edges (u,ve) and (u,w), k < {, where

i. u is the origin of only one oriented edge, (u,vx), of edge uvi for
k=1,..,3, or

#. u is the origin of two oriented edges where k = 1,...,j — 2 and
l=k+2,ork=pandl=gq.

The proof of Theorem 3.2 can be found in the final section of this paper.

When ¢ = 1, it is possible for a single vertex, namely u, to be the origin of
two oriented edges. However, once ¢,j > 2, that possibility is eliminated, as was
outlined in Lemmas 2.8 and 2.9. Although there are similarities in UG® (D) =
Py U P; for j = 2,3,4,5, the differences are enough that we list the results
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separately. [First, we use the following lemma and its corollary to establish
source vertices for UG® (D) = ujuz Uvi1va. The set of vertices adjacent to a
vertex v is the neighborhood of v, n (v).

Lemma 3.3 [5] If UG (D) & dom (D) and n(y) = {z} in UG (D), then y is
a source of at most one edge in dom® (D), end this edge will be incident to z.

Corollary 3.4 If UG (D) = dom (D) and UG (D) = ujup U v vz, then each
vertez in D can be the source of at most one edge in dom® (D). Furthermore,
u) may only be the source of an edge incident with ua, u, the source of an edge
incident with uy, and similarly for v and v,.

Since there are only two edges in UGS (D), we desire only two edges in
dom® (D). Therefore, we pick only two of the vertices in ujus Uv;vs to be the
origin of the oriented edges in D. Although it might seem possible to orient all
four edges in UG (D) in such a way that only two edges are formed in dom® (D),
this cannot be done. Following, all digraphs D where UG®(D) = P, U P, and
UG (D) = dom (D) are characterized.

Theorem 3.5 Let UGS (D) = P, U Py.  Further, let u be a vertez of one of
the paths and let v’ be the other vertez of that path. Let v be a vertex of the
other path and v’ its second vertez. UG (D) = dom (D) if and only if (u,v)
and (u',v') are oriented edges, and all other edges of UG (D) are bidirected in
D.

Proof. (=) Let u be u; or uz and v be v; or v,. Further, suppose that
(u,v) is an oriented edge in D. This creates edge u'v in dom® (D). Since
UG (D) = dom (D), dom* (D) must contain only one more edge, uv’. According
to Corollary 3.4, only vertex «' or vertex v may be the source of this edge.
Therefore, (u’,v') or (v,u) are the possible oriented edges in D that will create
the edge in dom® (D) = P,U P,. Since (u,v) is an oriented edge, (v,u) is not a
viable choice. Thus, (u’,v') must be an oriented edge in D. Suppose that there
are other oriented edges. No additional edges can be formed in dom® (D). The
only arc that has not been discussed earlier is (v', u’), but it would bidirect edge
u'v’, which is oriented in creating dom® (D). Thus, there are no other oriented
edges possible in D. Since u is any of the four vertices in UG (D), this holds
for all cases

(<) If (u,v) and (u’,v’) are oriented edges, then u’v and uv’ are edges in
dom€ (D). The number of vertices in each path is less than 3, so there are no
generated subpaths in dom® (D). Thus, dom®(D) = P, U P,, so UG* (D) =
dom¢ (D), and UG (D) 2 dom (D). =

Now we characterize D where UG (D) = P,UP;. We begin by determining
what vertices cannot be the sources of edges in dom¢ (D) outside of the edges
in the generated subpaths.

Lemma 3.6 Let UG (D) = ujus U P; where P3 = vy,v9,v3. If UG (D) &
dom (D), then (vy,vs) and (v3,v;) are both arcs in D.
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Proof. If (vy,vs) or (vs,v1) is an oriented edge, then by Lemma 2.2, ver-
tices vy, vo and v3 form P; in dom¢ (D). Since u; and u2 cannot form P; in
dom® (D), according to Lemma 2.10, there is no way to create P; in dom® (D),
and UGS (D) # dom® (D). Thus, both (v;,v3) and (vs,v;) must be arcs in D.
(]

One characteristic that begins to appear now and will follow the construc-
tions through all of the pairs of paths, concerns multiple sources for an edge.
If more than one vertex in these digraphs can be the source of the same edge
in dom¢ (D), then we can use any combination of the oriented edges in D that
create the edge without creating new edges in dom® (D). However, we must be
careful that each vertex is the source of at most one edge.

It is now possible to characterize all digraphs where UG® (D) = P, U Ps.
Figure 2 shows a possible construct using the vertex labeling convention adopted
in the theorem and its proof. The figure shows a digraph where the oriented
edges are formed using part (1) of Theorem 3.7. The random choice of u and
v allows the characterization of all digraphs without listing each isomorphic

labeling.
v : v [ VW\h

D dom® (D)

Figure 2: D shows a maximum number of oriented edges when UG¢(D) =
P, U P;. Vertex labeling is arbitrary.

Theorem 3.7 Let UGS (D) = P, U P;. Further, let u be a vertex of P2 and
let ' be the other vertez. Let v be an end vertex of P and v’ be the other end
vertez. UG (D) = dom (D) if and only if every edge of UG (D) is bidirected in
D except for the following.
1. (a) (u',v), (v,u) or (v',u) or any combination of these are oriented
edges of UG (D) in D, and
(b) (u,v2), (v,u') or (v',u) or any combination of these are oriented
edges of UG (D) in D such that u, v/, v and v’ are the origin of at
most one oriented edge, or

2. (u,v) is an oriented edge of UG (D) in D, and (v',v2) or (v',u) or both
are oriented edges of UG (D) in D.

The proof of Theorem 3.7 can be found in the final section of this paper.
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When UG® (D) = P, U P;, we have the first instance where there are two
nontrivial generated subpaths in dom® (D). Either of these paths will be the
one to form P, in dom®(D). Again, there is much symmetry here, so the
labeling we choose gives us all possible digraphs. Figure 3 represents just one
of the selections that the labeling can produce, and aids in the understanding
of the proof to the theorem.

’
%u
05-0-To--9
Vo oy v

D dom © (D)

Figure 3: Example of labeling used where UG¢ (D) = P, U P;.

Theorem 3.8 Let UG (D) = P, U P;. Further, let P, = u,v’ and Py =
v,u, vy, V' for arbitrary selections of end vertices u, v/, v, and v' in UG (D).
UG (D) = dom (D) if and only if every edge of UG (D) is bidirected in D ezcept
for the following.

1. (v/,v') is an oriented edge of UG (D) in D, and
2. (u,w) or (v,%') or both are oriented edges of UG (D) in D, and

3. (v,v') or (v',v) or both are arcs in D such that v and v’ each are the origin
of at most one oriented edge.

The proof for Theorem 3.8 can be found in the final section of this paper.
% v
-9---0--0-=9, ,
W’ v v

D dom® (D)

Figure 4: D shows a maximum number of oriented edges when UGS (D) =
P U Ps. Dashed edges are UG (D), and bidirectional edges are omitted for
simplicity.

For the final characterization in this section, we have dom® (D) generated
with very little choice of what vertices form . The generated subpaths are
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P; and P;. Since ujup; # P2 in dom®(D), only vpvs can fill that function.
Figure 4 shows a digraph with the maximum number of oriented edges where
UG (D) = P2UPs and UG (D) = dom (D).

Theorem 3.9 Let UGS(D) = P, U Ps. Further, let P, = u,u’ and Ps =
v,u,v3,Y}, V' for arbitrary selections of end vertices u, v, v, and v in UG (D).
UG (D) = dom (D) if and only if every edge of UG (D) is bidirected in D except
for the following.

1. (¢,v) and (u,v’) are both oriented edges of UG (D) in D, and
2. (v,9}) or (v',u) or both or neither are oriented edges of UG (D) in D.

Proof. Paths v,v3,v' and v, v} are generated subpaths in dom® (D).

(=) Since uu' cannot be an edge in dom®(D), P2 = wv;. Thus, Ps =
u,v,v3,v, ¢ in dom® (D). Edges uv and «'v’ need to have a source in D.
Since v is an end vertex, there is no vy that can be used as a source of the edge
for reasons explained in the proof of Theorem 3.8. Therefore, (u,v) is the only
oriented edge that will form uv in dom® (D), so it must be in every biorientation
of UG (D). For similar reasons, (u,v’) is the only oriented edge generating u'v’
in dom® (D), so must be in every biorientation of UG (D), proving part (1).

Corollary 2.4 allows that we may use oriented edges (v, v;) and (v, v;) with-
out creating new edges in dom® (D). Since these oriented edges are not nec-
essary for the production of an additional edge in dom® (D), if they are used,
then they can appear in a biorientation singly or together, proving part (2).
Since u and v are arbitrary selections of the end vertices, we obtain all possible
biorientations.

(<=) Vertices »' and u are sources of edges uv and u'v’ respectively in
dom® (D) when (u',v) and (u,v’) are oriented edges of UG (D) in D. Vertices
v and v’ are both sources of edge vvj when (v,v;) and/or (v',v;) are oriented
edges in D, and v3 is the only source of that edge otherwise. Thus, dom® (D) =
u, v Uu,v,v3,v',v, and UG (D) 2 dom (D). =

4 Structure of UG*(D) = FUP; for i,5 >3

If we were interested in seeing only what pairs of paths can comprise UG* (D)
so that UG (D) = dom (D), the answer would be simple.

Theorem 4.1 Let UGS (D) = P; U P; where i,j > 3. There exists a biorien-
tation of the edges of UG (D) such that UG (D) = dom (D) for every value of
i,j 2 3.

Proof. This follows directly from Theorem 1.1 and Lemma 2.2. ®
However, we are interested in much more than just existence. The main

goal is to characterize all digraphs where UG (D) = P, U P; and U G(D) =
dom (D). Therefore, we must also consider the structure of UG® (D) when
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paths in dom® (D) are formed using vertices from both V (P;) and from V (P;).
We therefore continue the discussion of the underlying graph by expanding upon
Lemma 2.8. Because only the end vertices of the paths in UGS (D) may be
used as origins of oriented edges in D, certain edges cannot occur in dome (D).
The following lemma details the edges that will never appear in that graph.

Lemma 4.2 Let P; = uy, ..., u; and P; = vy, ...,v; be paths that are components
of UGS (D) fori,j 2 3. IfUG < dom (D), then uyv1, u1v;, vy and u;v; are
not edges in dom® (D).

Proof. Lemma 2.8 states that only u), u;, v; or v; can be the origin of an
oriented edge in D. A vertex can also not be the source of more than one
edge or an edge with which it is incident in dom® (D). Thus, to form »;v; in
dom® (D), either u; or v; must be the source. Both u; and v; are adjacent to
u1 and vy, so the oriented edges (u;,v;) and (u;,v;) or (v;,u;) and (vj,v1) need
to be in D for either of the two vertices to be the source of the edge u1v;. This
contradicts Lemma 2.9, so ujv; does not have any possible source and cannot
be produced in dom® (D) when UG (D) = dom (D). Similar arguments hold
for the other three edges between the end vertices of the paths. m

The previous lemma has important consequences for UG® (D) when both 4
and j are odd. Recall that when 7 is odd, u;,us, ..., u; is a generated subpath
in dom® (D). When we have two such paths, they can never be connected to
form a larger path in dom® (D), since we cannot form edges between the end

vertices.

Corollary 4.3 Let P; = uy,...,u; and P; = vy,...,v; be paths that are com-
ponents of UGS (D) for odd i,j > 3. Further, let Uy = uy,us, ..., u;, Uy =
U2, Ugy ooy Uim1, V1 = V), 03,...,¥5 and Vo = v2,v4,...v5-1 be the generated sub-
paths in dom® (D), where UV, denotes the path u;,us, ..., ui,vi, vs, vt If
UG (D) = dom (D), then U1V, is not a path in dom® (D).

Now we have the information necessary to further characterize UG* (D)

where we expect dom® (D) to be formed using vertices from both V (P;) and
V(F).
Theorem 4.4 Let P; = uy,...,u; and P; = vy,...,v; be paths that are compo-
nents of UG (D) for 3 < i < j. There exists a biorientation D of the edges
of UG (D) such that UG (D) = dom (D) and uxv; is an edge in dom® (D) for
some k and | if and only if :

1. j=i1,

2 j=1i+1,
3. j=2i~1,
4. 1 =2, or
5 j=2i+1.

The proof of Theorem 4.4 can be found in the final section of this paper.
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5 Characterization of D where UG*(D) = B,UP;
fori,7>3

In building digraphs as biorientations of their underlying graphs, Theorems 4.1
and 4.4 separate the characterization into two parts. The first is where FP; and
P; are created in dom® (D) using V (P;) and V (P;) respectively from UG* (D).
The second is where generated subpaths from V (P;) and V (P;) are connected
to form the paths. Now, to characterize all D where P; and P; are formed in
dom® (D) using Lemma 2.2, we need the following result.

Lemma 5.1 Let P; = uy,...,u; and P; = v1,...,v; be paths that are components
of UGS (D) fori,j > 3. Also, let u =y, or u; and v =v, orv;. Any oriented
edge (u,v;) or (v,ux) for 1 <k <i and 1 <1 < j, creates an edge in dom (D)
between V (B.) and V (F;).

Proof. If u = u; or u;, then uay; or u;—1v; respectively is an edge in dom® (D).
The same argument holds for v. =

This result makes it clear that in the case where Lemma 2.2 is used to
produce paths P; and P; in dom® (D), all edges in UG (D) between the vertices
of Pf and P§ must be bidirected.

Theorem 5.2 Let UGS (D) = P; U P; for i,j > 3 where P; = uy,...,u; and
P; = vy,...,v;. UG(D) = dom (D) and uxv is not an edge in dom* (D) for
any 1 < k <14, 1 <1< j, if and only if the edges of UG (Pf) and UG (P§) are
bioriented as stated in Lemma 2.2 and all other edges are bidirected to form D.

Proof. (=) Since UG (D) & dom (D) and ugv; is not an edge in dom® (D),
Lemma 5.1 indicates that no oriented edge may exist between uy,...,u; and
v1,...,v;. So all edges between V (P;) and V (P;) in D are bidirected. Thus,
the paths must be formed in dom® (D) as outlined in Lemma 2.2. This produces
P; on the vertices u ...,u; and P; on the vertices vy, ..., v; in dom® (D).

(«<=) Given a biorientation of the edges in UG (Ff) and UG (PJ") pursuant to
Lemma 2.2, we know that P; and P; are formed on vertices u1, ..., u; and vy, ..., V;
respectively in dom¢ (D). Since all other edges are bidirected, all other pairs
of vertices dominate, and no additional edges are created in dom® (D). Thus,
dom® (D) = P;U P; so that UG (D) = dom (D), and uxv; is not an edge for any
1<k<i,1<i<j. =

Now we turn to the more interesting characterization. That where dom® (D)
contains at least one edge between V (P;) and V (P;). We know that only four
vertices may be the origin of oriented edges in D, and each is the source of
at most one edge in dom® (D). In order to construct dom® (D) so that it is
isomorphic to UG® (D) where vertices from both V (P;) and V (P;) are used in
each path, it is helpful to detail what edges are created in dom® (D) given an
oriented edge.
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Lemma 5.3 Let P; = uy,...,u; and P; = v1,...,v; be components of UGS (D)
where 1,7 > 3.

1. If (u1,vk) for 1 < k < j is an oriented edge in D, then ugvy is an edge in
dom?® (D).

2. If (ui,vk) for 1 < k < j is an oriented edge in D, then u;_ v is an edge
in dom® (D).

3. If (v1,ux) for 1 < k < i is an oriented edge in D, then upvp is an edge in
dom® (D).

4. If (vj uk) for 1 < k < j is an oriented edge in D, then uxvj_; is an edge
in dom® (D).

Proof. In each case, the edge created in dom®(D) is between the one vertex
not adjacent to the origin of the oriented edge and the vertex dominated by that
same vertex. They do not dominate, and thus form an edge in dom® (D). m

A consequence of this lemma is that some edges between the paths UV,
can be formed in dom* (D) in two ways, or one way, or cannot be formed. An
example of edges that cannot exist was given in Lemma 4.2. The previous
lemma only addresses edges formed between the two sets of vertices. Sources
for edges within each set were given in Lemma 2.2. The following corollary
restates the results in Lemma 5.3 in terms of the number of ways in which
edge in dom® (D) can be formed using oriented edges in D. This is important
information for proving the final characterizations.

Corollary 5.4 Let P; = u,,...,u; and P; = vy, ...,v; be components of UG® (D)
whered,j > 3. If (ux,v) is an edge in dom® (D) wherek =2 ori—1 andl =2
or j — 1, then there are two possible sources for the edge. All other edges of the
form (us,ve)in dom® (D) have at most one source.

The structure of D supersedes the possible labelings of the vertices, so the
focus is on the relationships of the oriented edges to each other. In this way,
the isomorphic labelings are incorporated into the final results. Of course, to
be able to indicate which vertices are involved with the oriented edges in D and
the edges in dom® (D), some labeling convention must be adopted. Thus, we
will let v and v’ be the end vertices of one path, with v and v’ the end vertices of
the other path. At times, we will need to discuss the vertices that are adjacent
to u, v/, v, and/or v' in UG®(D). Thus, if u = u; or u;, then ux = us or
u; respectively. Likewise, if v = v; or v;, then y; = v, or v;-1 respectively.
Similar labelings will be utilized for u}, and vj.

From Theorem 4.4, the cases we need to consider in our characterization of
D where UG*(D) = P,UPj,are 1) j=1,2)j=i+1,3)j=2i-1,4)
J=2i,and §) j = 2i + 1. First, we consider the case where i = j is odd. The
only oriented edges will be between the end vertices of the original two paths.
Therefore, there are two oriented edge formations possible. These are shown
in Figure 5.
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Figure 5: The only two possible oriented edge formations between V (P;) and
V (P;) when i = j > 3 are odd.

Theorem 5.5 Let UGS (D) = P; U Pj, where i = j > 3 are odd. Further, let
P; = u, ug, ..., U, and P; =v,u,..., v,,v' in UG®(D). UG (D) = dom (D)
where there is an edge between V (P;) and V (P;) in dom® (D) if and only if
every edge of UG (D) is bidirected in D ezcept for the following.

1. (u,v) is an oriented edge of UG (D) in D, and
2. ezactly one of (v,¢') or (V',') is an oriented edge of UG (D) in D, and

3. fori,j > 5, oriented edges may be formed as stated in Corollary 2.3 such
that u, v', v, and v' are each the origin of at most one oriented edge.

Proof. (=) Pursuant to Lemma 2.1, there is one odd generated subpath and
one even generated subpath on each of V (P;) and V (F;) in dom®(D). To
create two paths of length i, each odd path must have an edge to an even
path. Since edges must exist between V (P;) and V (P;) in dom® (D), the odd
subpath generated on V (P;) must have an edge to the even subpath generated
on V (P;), and similarly for their counterparts. Say that uv is any such an
edge in dom® (D), forming path ', ...,%,Vk,...,¥;- Then (u,v) must be an
oriented edge in D. This results in uv; never being an edge in dom® (D) when
UG (D) = dom (D). To create the other path in dom® (D), we must form edge
uvy, u'w, or w'v;. Edges uv] and u'v; are formed by oriented edges (v',u) and
(v,u') in D respectively. These correspond to isomorphic digraphs. Thus, we
only need list (v,u’). This relationship is shown in the first digraph of Figure
5. Finally, if edge u'v} is in dom® (D), (v',u’) must be an oriented edge of D.
Thus, within isomorphic labeling, (u,v) must be an oriented edge along with
one of (v,u’) or (v/,u’) since UG (D) = dom (D). Additionally, oriented edges
listed in part (3) may be created as stated in Corollary 2.4 as long as no vertex
is the origin of more than one oriented edge.

(<=) If (u,v) and (v,u’) are oriented edges in D, then edges uxv and u'y
are formed in dom¢ (D), creating two paths with ¢ vertices each. If (u,v) and
(v',u') are oriented edges in D, then edges uxv and u'v; are formed in dom® (D),
creating two paths with i vertices each. In both cases, UG (D) = dom (D). Any
directed edge in part (3) that does not create a vertex that is the origin of more
than one oriented edge is allowed, with no additional edges formed. Therefore,
dom® (D) = P; U P; where i = j are odd, and UG (D) = dom (D). =
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Next we examine the case where i = j is even. To do so, it is easiest
to separate possible orientations into classes determined by the structure of
dom® (D). We will describe digraphs where the paths in dom® (D) have edges
where 1) two end vertices are used in the two adjoining edges, 2) no end vertices
are used in the two adjoining edges, and 3) one end vertex is used in the two
edges.

In determining the digraphs that result in isomorphic underlying and domi-
nation graphs, we find that there is one formation that is not allowed in D when
we look at the first case listed above. That where two end vertices are in the
two edges of dom® (D). The following lemma shows that in this case in D, the
oriented edges will always be from one set of vertices, V (P;), to the other set,
V (Pj), where the paths are arbitrarily labeled.

Lemma 5.6 Let UG®(D) = P; U P; with i = j even and UG (D) = dom (D).
Further, let z and w be end vertices in UG® (D). If zy and wz are edges between
V (F;) and V (P;) in dom® (D), then x and w are both end vertices of P; or both
end vertices of P;.

Proof. Suppose that £ and w are in separate vertex sets. Let z = u in P,
and u' be the other end vertex. Also, let v = w in P; and v’ be the other end
vertex. Then wu,...,u}, uk,...,%, v,...,v] and v,...,v' are the four generated
subpaths in dom® (D). Since zy = uy and wz = vz are edges in dom® (D),
y # vj and 2z # uy, else paths u},..u,v},...,v and v},...,v,u},...,u are formed,
and v and/or v appears in more than one path in dom¢ (D). Thus, y = v; and
z = ug. But then there is only one way to create edge uv in dom® (D), and
that is with oriented edge (v,u) in D. Likewise, the one way to form edge uxv
in dom® (D) is with oriented edge (u,v) in D. They cannot be used together,
as they form a bidirected edge. Thus, both z and w must be end vertices of
either P; or P;. m

With the preceding lemma, it is now possible to list the oriented edges that
may occur in D when ¢ = j is even. Figure 6 illustrates the possible oriented
edges that may occur in D given the number of end vertices in UG® (D) that
are used to connect the paths in dom® (D).

Theorem 5.7 Let UG®(D) = P; U Pj, where i,j > 3 are even. Further, let
P; = u,ug, ..., up, v’ and P; = v,v,.., v,v" in UG°(D). UG (D) = dom (D)
where there is an edge between V (P;) and V (P;) in dom® (D), if and only if
every edge of UG (D) is bidirected in D except for the following.
1. (a) (u,v) and (v',v’) are both oriented edges in D, or

i. (u,v) or (v.ux) or both are oriented edges in D, and

. (v, vp) or (v',u}) or both are oriented edges in D, or

i. (u,v) is an oriented edge in D, and

#. (u',ve) or (v,uy) or both are edges in D, and
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Figure 6: Digraphs where P; and P; are formed in dom® (D) using (a) two,
(b) zero, and (c) one of the end vertices from UG®(D). All are shown with
the maximum number of oriented edges between V (P;) and V' (P;). Bidirected
edges are omitted.

2. fori,j > 4, oriented edges may be formed as stated in Corollary 2.3 such
that u, v/, v, and v’ are each the origin of at most one oriented edge.

The proof of Theorem 5.7 can be found in the last section of this paper.

To continue the characterization, we observe the case where j =i+ 1. The
values for i and j alternate odd and even, which in practice does not make a
difference with the results. However, it is important to understand when we
are dealing with the even path and when the odd path is discussed. While we
could split the results into odd and even, that is not necessary if we generalize
the paths. So for this case, we will let P. = e, ek, ..., €}, ¢’ be the even path
in UG (D), and P, = o,0,,...,0},0' be the odd path. Thus, one generated
subpath in dom¢ (D) has end vertices e and e’. They can only be joined to an
interior vertex, o; or o, of the other path to create the odd path in dom® (D).
There is only one distinct way to do that. This narrows down the choices.
Once the choice is made, as represented by the directed edge from the upper
left to the lower left corner of every digraph in Figure 7, there is a variety of
ways to produce the even path in dom® (D).

AN R
@) ®) €)

Figure 7: Digraphs where P; and P; are formed in dom® (D) when j =i+1 and
there is an edge between V (P;) and V (P;). All are shown with the maximum
number of oriented edges between V (P;) and V (P;}. The even set of vertices
is on the top, and bidirected edges are omitted.
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Theorem 5.8 Let UG®(D) = P;UP;, wherei >3 andj =i+ 1. Further, let
P, =e,ex,...,€, € be the even path in UGS (D), and P, = 0,0y, .. . 0,0 be the
odd path. UG (D) = dom (D) where there is an edge between V (P;) and V (P;)
in dom® (D), if and only if every edge of UG (D) is bidirected in D except for
the following.

1. (e,0) is an oriented edge in D, and

(e) (', €) is an oriented edge in D, or
(b) (¢',01) or (', €},) or both are oriented edges in D, or
(c) (¢',01) or (o,€,) or both are oriented edges in D, and

2. oriented edges may be formed as stated in Corollary 2.8 such that e, €, o,
and o' are each the origin of at most one oriented edge.

Proof. Part (2) is valid by Corollary 2.4. The remaining arguments deal with
part (1).

(=) If we let o be either of the end vertices of the odd path in UG® (D),
then let ero be the edge formed in dom® (D), we obtain an arbitrary labeling
similar to that in the proof of Theorem 5.7. Path P, = ¢/, ..., 0, ex,...€' is the
odd path formed in dom® (D). The arguments here follow the same logic as the
proofs in Theorems 5.5 and 5.7. However, once we have chosen o and ey, there
is a selection for how to form the remaining path in dom¢(D). Figure 7(a)
illustrates the option of having the one end vertex, e, that is not in P; as one of
the vertices incident with the edge that connects the remaining two subpaths.
The only way for this to occur is for (¢0/,e) to be an oriented edge in D. The
remaining two possible connecting edges, e,.0; and ejo}, can be formed in two
ways each, as listed in parts 1(b) and 1(c) of the theorem statement. These
two options are not isomorphic, as the relationships of the oriented edges are
different, as seen in Figure 7(b) and (c).

(<=) By Lemma 5.3, if (e, 0) is an arc, then edge exo is in dom® (D), and each
of parts (a) through (c) creates an edge connecting the remaining two subpaths
in dom® (D). This results in dom® (D) consisting of two disjoint paths with ¢
and j =i+ 1 vertices. Thus, UG®(D) = dom* (D) and UG (D) = dom (D). m

All of the previous cases have dealt with paths P; and P; in dom¢(D) that
were created by connecting two subpaths for each. Now we turn our attention
to those cases where P; is one of the generated subpaths in dom¢ (D), and P;
is created by connecting the remaining three subpaths.

Remark 5.9 If j = 2i — 1, 2 or 2i + 1, where UG (D) = dom (D), then P; in
dom® (D) is a generated subpath on V (P;).

We begin now with the case where j = 2{ — 1. Figure 8 shows examples
of part (1) in the following theorem. The digraphs are shown on the same
set of vertices as their associated dom® (D) graphs. Edges shown are those for
dom® (D), and bidirected edges of D are omitted for simplicity. Labeling on
part (a) shows the labeling convention adopted.
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Figure 8: Examples of digraphs and their associated dom® (D) graphs where i
is odd, j = 2¢ — 1, and P; is a generated subpath on V (P;). Edges shown are
in dom¢(D), while arcs are in D. Bidirected edges are omitted.

Theorem 5.10 Let UGS (D) = P,UP;, wherei > 3 and j = 2i—1. Further, let
P: = u,ug,..., U, v’ and P; =v,u,.., v,v' in UG*(D). UG(D) = dom (D)
where there is an edge between V (P;) and V (P;) in dom® (D), if and only if
every edge of UG (D) is bidirected in D except for the following.

1. If edges are oriented in V (Pf) as stated in Lemma 2.2, then

(a) (v,u) is an oriented edge in D, or
(b) if i is odd, then (v',v;) or (v,uy) or both are oriented edges in D.

2. If edges are not oriented in V (Pf) as stated in Lemma 2.2, then

(a) (v,u) is an oriented edge in D, and
i. (u,v]) or (v',ux) or both are oriented edges in D, or
#. if 1 is odd, then (u',v]) or (v',u) or both are oriented edges in
D, or
i, if i is even, then (v',u') is an oriented edge in D, or
(b) if i is even, then
i. (u,v) or (v,uk) or both are oriented edges in D, and
#i. (u,v}) or (v',u}) or both are oriented edges in D.

3. If i is odd or even, oriented edges stated in Corollary 2.3 may be used in
addition to the required arcs in (1) and (2) as long as v, u', v, and v’ are
each the origin of at most one oriented edge in D.

The proof of Theorem 5.10 can be found in the final section of this paper.

Continuing with the cases where P; in dom¢ (D) is a generated subpath,
we proceed to j = 2i. Unlike the cases where j = 2i + 1 or 2i — 1, here P,
is on an even number of vertices. This allows the choice of which generated
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subpath, V; or V3, will be P; in dom® (D). Generally, we will let P, = V, =
v,...,v'. Figure 9 shows a digraph and its associated dom® (D) graph on the
same set of vertices. It illustrates part 2(b)(i¢) of the following theorem, and
uses the minimum number of oriented edges. In the figure, P, = V; and P =
U1, v, ..y v, Uz, where Uy = u, 4}, and U = uy, v'.

Uy u'k

Vi V’I

Figure 9: A digraph D where j = 2i on the same set of vertices as dom¢ (D).
Edges shown are those in dom*® (D), while arcs are in D. Bioriented edges of
D are omitted.

Theorem 5.11 Let UG®(D) = P;U P;, where ¢ > 3 and j = 2i. Further, let
P; = u,up, ..., up,, v’ and P; = v,w, ..., v,v in UGS(D). UG (D) = dom (D)
where there is an edge between V (P;) and V (P;) in dom® (D), if and only if
every edge of UG (D) is bidirected in D except for the following.

1. If edges are oriented in V (Pf) as stated in Lemma 2.2, then

(a) (v, u) is an oriented edge in D, or
(b) if i is odd, then (u'v) is an oriented edge in D.

2. If edges are not oriented in V (Pf) as stated in Lemma 2.2, and

(a) if i is odd, then (v',u) is an oriented edge in D, and
i. (u,v) is an oriented edge in D, or
it. (u',v) is an oriented edge in D, or
(b) if i is even, then (u,v) is an oriented edge in D and
i. (v',u) is an oriented edge in D, or
. (u',v;) or (v',u}) or both are oriented edges in D.
3. If i is odd or even, oriented edges stated in Corollary 2.8 may be used in

addition to the required arcs in (1) and (2) as long as u, u', v, and v’ are
each the origin of at most one oriented edge in D.
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The proof of Theorem 5.11 can be found in the final section of this paper.

To conclude the characterization of D where UG® (D) = P;,UP; and UG (D) =
dom (D), the case where j = 2i+1 is examined. With j being odd, the choice for
P; in dom® (D) is set, and V; = v, ..., v’ must be connected to the two generated
subpaths U; and U, to form P; in dom®(D). There are very few nonisomorphic
ways in which this can be done, so the final theorem has few options.

Theorem 5.12 Let UG® (D) = P,UP;, wherei > 3 and j = 2i+1. Further, let
P = u,uk, ..., Uk, u' and P; =v,v,..., v,v' in UG*(D). UG (D) = dom (D)
where there is an edge between V (P;) and V (P;) in dom® (D), if and only if
every edge of UG (D) is bidirected in D except for the following.

1. Ifi is odd, then edges are oriented in V (Pf) as stated in Lemma 2.2, and
(u'v) is an oriented edge in D.

2. Ifi is even, then (u,v) and (v',v') are oriented edges in D.

3. Ifi is odd or even, oriented edges stated in Corollary 2.3 may be used in
addition to the regquired arcs in (1) and (2) as long as u, v/, v, end v’ are
each the origin of at most one oriented edge in D.

Proof. Let V; =v,...,v' and V5 = v,...,v]. The only choice for P; in dom® (D)
is P, = Vs

(=) UG (D) = dom (D) and P; = V; in dom® (D), so subpaths Uy, Uz
and Vi must be connected to form P; in dom® (D). V) has end vertices v and
o', which can only form edges with interior vertices ux and w} in V(P;). Ifi{
is odd, then U, = u,...,u' cannot connect to V; since u and u’ are not interior
vertices. Thus, U; must connect to Uz = ux, «eey U, Which must be connected
to V;. Thus, Lemma 2.2 must be used to connect U; and Uz, forming path
U, ...,u', Uk, ...us. The only edge that can connect this path to V; is ujv, where
v is either end vertex of V;. So oriented edge (u’,v) in D is the only option
when 1 is odd.

If i is even, then Lemma 2.2 creates path u, ..., u}, Uk, ..., ' on V (F;), which
cannot be connected to V; in dom® (D) since u and u’ cannot form an edge
with v or v'. Thus, U; and U; must each be connected to V}, and Lemma 2.2
cannot be used. Only u, and v} can be connected to v and v’. Choose v and
v arbitrarily. Then uxv and v’ are the edges needed in dom® (D). Thus,
edges (u,v) and (u/,v’) are oriented edges in D.

From Corollary 2.4, we are guaranteed that the arcs in part 3 will not alter
the relationship UG (D) = dom (D) as long as vertices u, u/, v, and v’ are each
the origin of at most one oriented edge in D.

(<=) In all constructions for parts (1) and (2), P; = V2. P; is formed as
follows, creating UG (D) = dom (D) with an edge between V (F;) and V (F;).
In part (1), P; = U,U2Vy. Inpart (2), P; = Uy, v, ...,v,Uz. In all cases, the
oriented edges in Corollary 2.3 may be used and create no new edges. Since
u, ¥, v, and v’ are each the origin of at most one oriented cdge, UG(D) =
domt (D). =
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6 Proofs of Selected Results Omitted Earlier

Following is the proof for Theorem 3.2.
Proof. (+=) The case where j = 1 is obvious as the two vertices always
dominate in D.

When j = 2, E(UG(D)) = {uvy,uv2}. If (v1,u) is an orientation and
(v2,u) is not, then u and v; do not dominate, and form P; in dom® (D) with
vy = P;. Likewise, if (v3,u) is an orientation and (v;,u) is not, then u and v;
form P; in dom® (D) with vo = P;. If (u,v1) and (u,v;) are oriented edges,
then vjv; forms P, in dom® (D) with w = P,. Thus, UG (D) 2 dom (D).

When j > 3, for part (a), Lemma. 2.2 gives us constructions that result in the
formation of P; in dom® (D). Since u dominates all of the v;, no relationships
between the v; are changed, and uv; is an edge in dom (D). Thus, u = P,
and the v; form P; in dom® (D), giving UG® (D) = dom* (D) and UG (D) =
dom (D).

For part (b), if (u,vp) and (u,v,) are the only orientations of the edges of
UG (D), then the only edges formed in dom® (D) without the source u are the
generated subpaths. The vertex u is the source for edge vpv, in dom® (D).
There is no vertex in P; that is not adjacent to u, so only the edge vy, is
formed. Since v,v, joins the two subpaths in dom¢ (D), forming P;, and u is
P, for reasons explained in part (a), UG (D) 2 dom (D).

For part (c), let the edges between vertices v; be oriented as in Lemma
2.2. First, consider the additional orientation (u,v;) for £ = 1,...,5. The
vertex u is not the source for any edge in dom® (D) since every vertex other
than vy dominate it. Thus, only the edges in dom® (D) formed by oriented
edges specified in Lemmas 2.2 and 2.1 are created, and u is an isolated vertex.
Therefore, dom® (D) = P, U P; and UG (D) = dom (D). Now consider that u
is the origin of two oriented edges (u,vx) and (u,v;) where k =1,...,5 — 2 and
I =k+2. Then u is a source of the edge vxvk4 in dom* (D), for which vertex
vk+1 is also a source since it is not adjacent to either vertex. Or, if k = p and
! = g, then u is a source for the edge v,v, in dom® (D), for which a vertex v;
is also a source, as determined in Lemma 2.2. In either case, no new edges
are formed in dom¢(D), u is an isolated vertex in dom® (D), and the vertices v;
form the path P;. Thus, UG (D) & dom (D).

(=) The case where j = 1 is obvious as UG (D) = K5 and the two vertices
always dominate in D.

When j = 2 and UG (D) = dom (D), then there must be a source to one
edge in dom® (D). A vertex cannot be the source of any edge with which it is
incident. Therefore, if it is possible, u must be the source for v;v2, v; must be
the source for uv; and v, must be the source for uv,. For the first case, u must
dominate both v; and v; in order to be the source. In the second case, v; and
vz are not adjacent, so the orientation (v, u) of edge uv; makes uv, an edge
in dom® (D) since neither  nor v, dominates v;. However, (u,v;) must be an
oriented edge in D, so that uv; is an edge in UG (D). A similar argument holds
for the case where v, is the source for uv;.

When j > 3, Lemma 2.2 shows a construction that creates an isomorphic
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copy of P; in dom® (D) for j > 3. Lemma 3.1 guarantees that u must be equal
to P, in dom® (D) since UG (D) = dom (D). Therefore, no v; will be the origin
of an oriented edge with terminal vertex u, since edge uv;41 or uv;—, would be
created in dom® (D). Thus, u will be the only possible origin for any additional
oriented edges outside of those created by Lemma 2.2. The vertex u will either
be a source vertex, or it will not be. If it is not, since u is adjacent to all vertices
in UG (D), either all edges uv; for i = 1,...,j will be bidirected, proving part
3(a) above, or exactly one will have the orientation (u,v;). If not, v would be
a source of an edge in dom® (D). This proves part 3(c)(i) above.

If u is a source for an edge in dom* (D) and we do not use Lemma 2.2 to
create path P; in dom (D), then u must be the source for edge v,v, so that P;
is created in dom< (D). Since u is adjacent to both vertices in UG (D), both
(u,vp) and (u,v,) must be oriented edges in D, proving part (2).

If u is a source for an edge in dom® (D) and we use Lemma 2.2 to create P;
in dom® (D), then u must be the source for an edge that is in P;. Thus, u must
be the source of an edge v;vi4+2, for i = 1,...,j — 2, or v must be the source of
edge vpv,. Since u is adjacent to all vertices in UG (D), (u,v;) and (u,vi42) or
(u,vp) and (u,v,) must be oriented edges in D, proving part 3(c)(i).

Lemma 2.6 guarantees that u cannot be the source of more than one edge
in dom® (D), so it is the origin of at most two oriented edges in D. m

Following is the proof for Theorem 3.7.
Proof. (=) By Lemma 2.10, when UG (D) = dom (D), uv’ is not an edge in

dom® (D). Therefore, either vv', u;v;, or ugvz must be P, in dom® (D). Since
u can be either vertex u; or up, the second two choices reduce to uv,. Edge
vv' is a generated subpath in dom® (D), so if vv' = P2 in dom® (D), edges uvs
and u'v, must also be in dom®(D) forming P3. From Lemma 2.8 we know
that only vertices u, %', v, and v’ may be the sources of additional edges in
dom¢ (D). Edge uvq can be generated with oriented edges (u',v2), (v,u) or
(v',u). Likewise, edge u'vs can be generated with oriented edges (u, v2), (v,u')
or (v'v'). We may use any combination of the oriented edges to create each of
the edges in dom® (D). So at least one from each group must be in D so that
the associated edge is created in dom¢ (D). However, Lemma 2.9 restricts the
number of edges we may orient. Therefore, only digraphs where u, u',vand v
are the origin of at most one oriented edge of the preceding form are possible
when UG (D) & dom (D). Additionally, according to Lemma 3.6, edge vv’ must
be bidirected in D. There are no other sources for the given edges in dom€ (D),
so all other edges in UG (D) must be bidirected in D.

If uvp = P, in dom¢ (D), then w'v or v'v' must also be edges in dom® (D).
Within isomorphic labeling, we will generate edge %'v'. This may be done only
by using oriented edge (u,v'). Note that (v,u') will not produce the desired
edge in this case, and there are no other vertices that may serve as the origin
of an oriented edge since u' and v’ cannot be the source of their own edge.
To generate the edge uv,, possible oriented edges are (u’,v2), (v, u) and (v',u).
However, since (1, v') must be an oriented edge in every biorientation of UG (D),
and UG (D) = dom (D). (v',u) can never be used. Thus, we must have (u,v’)
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and any selection of the other two directed edges.

(<=) The edge vv' is generated as stated in Lemma 2.1.  Vertices o',
v and/or v' are sources for the edge uvs in dom® (D) when D has oriented
edges (u,v2), (v,u) and/or (v',u) respectively. No other edges in dom® (D)
are generated by these directed edges. Likewise, vertices u’, v and/or v/ are
sources for the edge u'v; in dom® (D) when D has oriented edges (u, v2), (v,u')
and/or (v',u’) respectively. As long as each of u, ¥/, v and v’ are the origin
of at most one oriented edge in D, any combination of these oriented edges
with at least one from each group results in dom® (D) = vv' U u,vz,u’, and
UG (D) & dom (D).

If (u,v) is an oriented edge in D, then u'v is an edge in dom® (D), and
v',v,v" is a path on three vertices. When D has oriented edges (u',v2) and/or
(v',u), edge uvy is formed in dom® (D). Any digraph D with one or both of
these oriented edges of UG (D) will have the edge uv,. Thus, dom®(D) =
wp U, v,v', and UG(D) = dom (D). =

Following is the proof for Theorem 3.8.

Proof. (=) Paths v,v] and v',v; are generated subpaths in dom¢® (D). Since
uy' cannot be an edge in dom® (D), either vv] or v'y; form P, when UG (D) =
dom (D). Since the choice of v is arbitrary, say that v,v] = P; in dom® (D).
Then u,v’,v,u’ = P4 in dom® (D). Thus, edges uv’ and u'y; must be formed.
The vertex v’ is an end vertex. The only vertex not adjacent to v’ in UG (D)
cannot be used as the source of an edge in dom® (D). Therefore, the only
directed edge that can be used to form uv’ is (u/,v). So (v’,v') must be an
oriented edge in every biorientation of UG (D), proving part (1).

To form edge vw'v; in dom€ (D), we are not restricted in the same way as
that for edge uv’. Here, v is an interior vertex. Vertex v is not adjacent
to v; in UG (D), and may be the origin of an oriented edge in D. Therefore,
the oriented edges that can be used separately or together to form edge u'v; in
dom® (D) are (u,v;) and (v,u’), proving part (2).

Part (3) follows from Corollaries 2.3 and 2.4 as well as Lemma 2.9.

{(+==) Paths vv; and v'v; are generated subpaths in dom® (D). Vertex v’ is
the source for edge uv’ in dom® (D) when (uv/,v') is an oriented edge in D. If
(u,v) and/or (v,u’) are oriented edges in D, edge u'v; is created in dom® (D).
Vertex v is a source of edge v'v; in dom® (D) when (v,v’) is an oriented edge in
D, and v'v; also has the source vj, as neither vertex is adjacent to v} in UG (D).
Likewise, v’ is a source of edge vv; when (v’,v) is an oriented edge in D, where
u; is always a source for vv;. Thus, if either or both of these edges is in D, no
new edges appear in dom° (D). Since all other edges of UG (D) are bidirected
in D, there are no other edges formed in dom® (D). Thus, dom® (D) = v, vjU
u, v, v, v, and UG (D) X dom (D). m

Following is the proof for Theorem 4.4.

Proof. (=) If ¢ or j is even, then there are two generated subpaths, each of
length § or £ in dom®(D). If i or j is odd, then the two generated subpaths
in dom® (D) are of length ! and 3%, or 25! and 43! respectively. When

2
UG (D) = dom (D) and we want edge uxv; to be in dom* (1), we must be
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able to connect each path formed with vertices uy, ..., u; to a path formed with
vertices vy, ..., Vj.

First, we concentrate on each subpath on V (P;) being connected to a dif-
ferent subpath on V' (P;). Consider i and j both even. Then we must have
i+i=iorj,soj=i.

Consider ¢ and j both odd. From Corollary 4.3, we know that we cannot
connect the two odd paths in dom® (D). Therefore, the odd subpath generated
on vertices uy, ..., u; must augment the shorter even subpath generated on ver-
tices v1,...,v;. The same holds true for the other odd subpath. Thus, the only
time that 5-122 + 1;—1 =i and ’-f;—' + £ = j (or vice versa) is when ¢ = j.

Consider one of ¢ or j odd. Say that i is odd. Since uxv; is in dom* (D),
Uy, U3, ..., u; must be connected to a path that is the same length as the path that
Ug, Uq, ..., Ui—y must be connected to, namely vi,vs,...,v;-1 and vz, vy, ..., ;.
Thus, j =i+ 1.

Now we concentrate on the possibility that one subpath is not connected to
another subpath. Since ¢ < j, this subpath must form P; in dom®(D). Thus,
it is one of the generated subpaths formed on V (P;). The length of subpaths
on V (P;) is % if j is even, or 1—31 and L'z’—l- if j is odd. Thus, j =2i, 2+ 1, or
2i — 1 respectively.

(¢=) Constructions that do not depend upon this theorem are given in
Theorems 5.5, 5.7, 5.8, 5.10, 5.11, and 5.12, which take the values for i and j
given in the statement of Theorem 4.4 and give biorientations of the underlying
graph resulting in UG (D) & dom (D) with an edge between V (P;) and V' (P).

Thus, there are biorientation of the edges of UG (D) such that UG (D) =
dom (D) where there are edges between the u; and the v;. =

Following is the proof for Theorem 5.7.

Proof. Part (2) is valid by Corollary 2.4. The remaining arguments deal with
part (1).

(=) The four generated subpaths are of the same length in dom® (D).
Since there is an edge between V (P;) and V (P;) in dom® (D), each of these
paths on a subset of V (P;) must be connected to a path from V (F;) to form
the isomorphic graph. We know that uv, uv’, v'v, and u'v’ cannot be edges in
dom® (D). Thus, only two, zero or one of u, ', v and v’ can be incident with
an edge connecting the two sets of vertices in dom® (D). We will separate the
characterization into these three possibilities.

If two end vertices are used, let v be one of them. From Lemma 5.6, v/
must be the other of the two vertices since they must be from the same set of
vertices, V (P;) or V (P;). Any edge containing v or ¥’ in dom® (D) will have
u or ¢ as a source. Let u be either vertex, and (u,v) an oriented edge in D.
Then (u’,v') must be the other oriented edge so that two edges incident to v
and v’ are created in dom® (D). The arbitrary selection of u and v includes all
possible labelings that produce this. Thus, edges uxv and uyv’ are in dom® (D),
creating two paths that are disjoint, with i vertices each. Figure 6(a) shows
the generic orientation of the only two edges that can accomplish this.

If there are no end vertices connecting P; and P; in dom® (D), then all of the
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vertices u, uj, v;, and v; must be incident with the two edges between vertex
sets.  Arbitrarily pick ux to label one of the four possible interior vertices.
Arbitrarily label one of the other interior vertices of the other vertex set as vy.
So, in UG* (D), we have paths u, ug, ..., u}, 4’ and v, v, .Y, V. Say that ugy
and wjv; are the two edges in dom®(D). This selection includes all possible
edges between the two sets where no end vertices are used. Two paths with
i vertices each are created. To form these edges in dom® (D), Corollary 5.4
indicates that two oriented edges may be used, and we can use one or both of
them in D. Oriented edges (u,v;) or (v,ux) or both may be used to create edge
uxv;, while oriented edges (v, v]) or (v', u;) or both may be used to create edge
uv;. The possibility where all of these arcs are used is shown in Figure 6(b).

If there is one end vertex that is incident with an edge connecting V (P;) and
V (P;) in dom® (D), let us call that vertex v. Choose u to be either end vertex
of the other vertex set. Oriented edges (u,v) and (u’,v) are the only ones that
will produce an edge in dom® (D) that is incident with v. The arbitrary nature
of the labeling of u, allows us to reduce this to (u,v), producing edge uxv in
dom® (D) and path v’, ..., u,v,...v{. So, (u,v) must be an oriented edge in D.
There are only two remaining interior vertices that are not on the path created
by edge u,v in dom® (D). They are the vertices u} and v;. They must form
the second edge, creating the second path of 7 vertices. This can be done if D
contains oriented edges (v, v;) or (v,u},) or both. Figure 6(c) gives the example
where (u,v) and both of the other two oriented edges are in D.

(«=) By Lemma 5.3, parts 1(a), (b) and (c), when used separately, create
edges in dom® (D) between V (P;) and V (P;) that result in dom® (D) consisting
of two disjoint paths with ¢ = j even vertices each. Thus, UG¢ (D) & dom¢ (D)
and UG (D) 2 dom (D). m

Following is the proof for Theorem 5.10.
Proof. The arbitrary selection of u and v generates all nonisomorphic digraphs.
(=) If UG (D) = dom (D), then P; in dom® (D) must be the generated
subpath V} = v,...,v" on V(P;). Thus, subpaths V, = v, ...,v}, U; and U,
must form P; in dom® (D). Either U; and Us are connected by an edge or they
are not.

1. Say that U, and U, are connected by an edge. This implies that oriented
edges must be used as stated in Lemma 2.2. When i is odd, path U, =
Uy ..., u, Uk, ..., U, is formed. When i is even, path U, = Uy ooy Uy Ug,eony U
is formed. In both U, and Uy, the arbitrary vertex u is an end vertex, so
the edge uy; can be created in both cases. Oriented edge (v,u) in D is
the only one that creates edge uv; in dom® (D). For U.,, there is no other
nonisomorphic edge that connects it to V. However, in U,, ujv; is an
option. It is nonisomorphic since w}, is an interior vertex, and « is not.
Oriented edges (u', 1) or (v, u},) create edge u}v; in dom® (D), and can be
used simultaneously. This gives us part (1) of the theorem.

2. If Uy and U, are not connected, this implies that V5, must have one end
vertex adjacent to U, and the other to U,. Whether ¢ is odd or even,
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the edge uv; can be used to connect U; to V2, so (v,u) can be an oriented
edge in D. When it is, Uz must be connected to v;. When ¢ is either
odd or even, the edge uxvj does this, so (,v]) or (v',ux) or both may be
oriented edges in D. Additionally, if ¢ is odd, using uyv; instead of uxy;
is a nonisomorphic construction connecting Uz and V3, where (u/,v]) or
(v',4}) or both are oriented edges in D. Likewise, if 4 is even, using u'v]
instead of uxv] connects Uz and V3, where (v',v’) is an oriented edge of
D. This gives us part (2)(a) of the theorem.

All other choices when i is odd are isomorphic within the labeling. How-
ever, uv; does not have to be an edge if 7 is even. Both interior vertices,
ux and uj,, may be used to connect Uy and U, to V; respectively. Thus,
edges uxv; and u}v} in dom® (D) will create path P;. To do this, D must
have oriented edges (u,v) or (v,ux) or both, and oriented edges (v',v})
or (v',u4) or both. This gives us part (2)(b) of the theorem.

3. From Corollary 2.4, we are guaranteed that the arcs in part 3 will not
alter the relationship UG (D) & dom (D) as long as vertices u, v/, v, and
v’ are each the origin of at most one oriented edge in D.

(=) In all constructions for parts (1) and (2), P; = Vi in dom® (D). P;is
formed as follows, creating UG (D) = dom (D) with an edge between V (P;) and
V (P;). In part (1)(a), P; = vj,...,u, UrU2. In part (1)(b), P; = U UsVe. In
part (2)(a)(i), P; = v, ...,u, VoU,. Inpart (2)(2) (i), P =o', ..., u, Vo, 1), ooy Uk
In part (2)(a)(iii), P; = Uz,v},...,u,U1. In part (2)(b), P; = Ui, v}y ...y w1, Ua.
In all cases, the oriented edges in Corollary 2.3 may be used and only generate
edges already in the generated subpaths. Since u, u', v, and v’ are each the
origin of at most one oriented edge, UG (D) = dom® (D). =

Following is the proof for Theorem 5.11.
Proof. The arbitrary selection of u and v generates all nonisomorphic digraphs.
(=) UG (D) = dom (D) so P; in dom® (D) must be the generated subpath
Vi =v,..,v or V3 = 9,...,v". Without loss of generality, say P; = Va. Thus,
subpaths V;, U; and U, must form P; in dom (D). Either U, and U, are
connected by an edge or they are not.

1. Say that U; and U, are connected. This implies that oriented edges
must be used as stated in Lemma 2.2. When ¢ is odd, path U, =
Uy ooy Uy Uy -y U, IS formed. When ¢ is even, path Ue = u, vy Uy Uk, oey U
is formed. To connect V; to U, or Ue, edge uv; can be formed when
arbitrarily choosing v and v. In both instances, oriented edge (v',u) in
D will create wv] in dom® (D). There is no other way to connect V; to
U. since the only other vertex choices are end vertices that cannot form
edges in dom¢ (D). However, V; can be connected to U, using edge UL,
Oriented edge (u',v) in D is the only way to create that edge, and gives
us part (1) of the theorem.
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2. If U, and U, are not connected, this implies that V; must have one end
vertex adjacent to U; and the other to U;. When i is odd, this can be
done nonisomorphically in two ways. In each, we create edge uv} by using
oriented edge (v',u) in D. In addition, either ux or u}, can be connected
to v. These are nonisomorphic choices since uy. is adjacent to our chosen
u in UG®(D), and uj, is not. We obtain edge uxv or edge ujv only by
creating oriented edges (u,v) or (u'v) respectively in D. This gives us
part (2)(a) of the theorem. When i is even, at least one of ux or u}
must be connected to v since neither u nor 4/ can be. Without loss of
generality, say that uxv is the edge, which implies the (u,v) is an oriented
edge in D. The remaining subpath may connect to v] using either vertex
u or u),. Edge uv] is formed in one way, and that is by creating oriented
edge (v',u) in D. Edge ujv| can be formed in two ways, using oriented
edge (u',v]) or (v/,u}) or both. This gives us part (2)(b) of the theorem.

3. From Corollary 2.4, we are guaranteed that the arcs in part 3 will not
alter the relationship UG (D) 22 dom (D) as long as vertices u, u', v, and
v’ are each the origin of at most one oriented edge in D.

(<) In all constructions for parts (1) and (2), P; = V; is an arbitrary
choice. P; is formed as follows, creating UG (D) = dom (D) with an edge
between V (F;) and V (P;). In part (1)(a), P; = ViU,U,. In part (1)(b),
P; = U\UzVy.  In part (2)(a)(i), P; = uy,...,ux, ViU2. In part (2)(a)(ii),
P; = UWU1.  In part (2)(b)(i), P; = o/,...,ux, WU,. In part (2)(b)(ii),
P; = Uy, v;,...,v,Us. In all cases, the oriented edges in Corollary 2.3 may be
used and only generate edges already in the generated subpaths. Since u, v/,
v, and v’ are each the origin of at most one oriented edge, UG (D) = dom¢ (D).
]
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