The complexity of the edge disjoint multiple paths problem when constructed
over uniformly directed mesh graphs

Hajime Nagashima and C. S. James Wong
Department of Computer Science, San Francisco State University, CA 94122

Abstract : A disjoint multiple paths problem asks if there exist paths between a
given set of vertices. Constraints are applied so that paths are not allowed to
share vertices (vertex disjoint multiple paths) or share edges (edge disjoint
multiple paths). The vertex disjoint multiple paths problem is one of the classic
NP complete problems presented by Karp[1]. The edge disjoint multiple paths
problem is also NP complete since it is easily transformed from the vertex
disjoint multiple paths problem. Because of its importance in electronic circuit
design, studies are done for restricted cases. The edge disjoint multiple paths
problem remains NP complete for acyclic graphs and planar graphs.
Furthermore, the edge disjoint multiple paths problem remains NP complete if
the graph is limited to an undirected mesh.

In this paper, the edge disjoint multiple paths problem when constructed over a
directed mesh is discussed. We found that the multiple paths problem remains
NP complete in this special case. Three polynomial time algorithms are
presented in which the following restrictions are made: (i) disjoint paths with the
same origin row, the same destination row, distinct origin columns, and distinct
destination columns, (ii) disjoint paths with the same origin column, the same
destination column, distinct origin rows, and distinct destination rows and (iii)
disjoint paths with the same origin row, distinct origin columns, and distinct
destination rows.

JCMCC 72 (2010), pp. 145-161

1. Introduction

Both the vertex disjoint multiple paths problem and the edge disjoint multiple
paths problem were proven to be NP complete during the 1970s[1][2]. The
importance of these problems comes from their usefulness in the field of
electronic circuit design[4]. Creating paths between a set of origins and
destinations is an important part of printed circuit board design and LSI design.
In order to avoid signal interferences, paths must be disjoint. Further studies
have been done for special cases that include multiple paths constructed over
planar graphs and acyclic graphs. The edge disjoint multiple paths problem
remains NP complete when the graph is limited to an undirected mesh.

Our interest in the multiple paths problem [6] is derived from different fields of
research. We found that certain scheduling problems [5] have a close
relationship with multiple paths problems. In the case of semiconductor design,
electric currents flow in either direction between two connected terminals. By
contrast, when graphs are used to represent state changes, the possibility of a
transition from one state to another state does not guarantee the possibility of
reverse state transition. Accordingly, edges need to be directed for such
applications. This is the reason we need to study a directed version of the edge
disjoint multiple paths problem.

The edge disjoint multiple paths problem over a uniformly directed mesh
(MPUDM) is defined as the following decision problem.

INSTANCE: A graph G = (V,E) , a collection of vertex pairs

{ (S[Wi)’(32.t2)0 (X "(sbtk) } ’

s;€ V,t; € V and vertices v, € V form a matrix. All vertices except for the
ones with the highest column address have directed edges to their east adjacent
vertex. All vertices except for the ones with the highest row address have
directed edges to their south adjacent vertex.

QUESTION: Does G contain k mutually edge disjoint paths P = {p,,p2,ps,...pi}
where the origin of p; is s; and the destination of p; is £;?

Example: An example of the MPUDM is exhibited in Figure 1. Does G contain
three mutually edge disjoint paths between s; and ;, (1< i < 3)?

146

Figure 1. An instance of edge disjoint multiple paths over mesh.

In the next section, we present the proof of NP completeness of the MPUDM
problem. Several polynomial time algorithms for restricted cases are presented
in Section 3. Finally, the conclusion is presented in Section 4.

2. The proof of NP completeness

The proof is done by reducing an instance of the Satisfiability (SAT) problem [3]
to the MPUDM. The SAT problem is defined in the following manner.

INSTANCE: A set U of Boolean variables and a collection of clauses C over U.
QUESTION: Is there a satisfying truth assignment for U such that the values of
all members of C are true?

Our goal is to create an instance of MPUDM which is transformed from an
arbitrary instance of the SAT problem in polynomial time. We use different
kinds of paths to construct such an instance of the MPUDM.

Road blocks and routes

Consider a path from a given vertex to its adjacent vertex. This path has to
occupy the only edge between the two vertices. There is no alternative way of
reaching the destination vertex. Such short paths are useful in directing other
paths to certain edges by blocking some edges. We call short paths used to direct
other paths road blocks. We use road blocks to construct structures that
represent Boolean variables as well as clauses. Paths that represent the state of
variables and clauses are called structure paths. The majority of edges in the

147

mesh graph are blocked by road blocks and some edges are left unblocked
allowing structure paths to go through them. These unblocked edges form routes.

A route is a series of connected unblocked edges between one origin vertex and
one destination vertex. Edges in a route may be allocated to a path. Figure 2
shows an example of the usage of road blocks and a route.

»0 o
NI
y

O

@)
@) »O—>»O
(a) Road blocks restricting available (b) A route in the same graph.

edges (edges drawn bold are blocked).
Figure 2. Road blocks and a route.
A route has the following properties.

Lemma 1: If two routes have at most one common vertex, then their paths will
not interfere with each other.

Proof: The assumption implies that there is no shared edge between two routes.
The assumption also implies that a path which starts from one route, enters
another route, and comes back to the first route is not feasible. Therefore, the set
of edges available for one path is unaffected by the existence of another route.

For further discussion, we use routes to show structures that represent Boolean
variables and clauses omitting edges blocked by road blocks.

148

Boolean variable structure

Figure 3 is a structure representing a Boolean variable.

true route’

b u'
..false.:oute_—>o

Figure 3. Boolean variable structure.

This structure has tworoutes,# @ wu«’andu b u’. The former is called
the true route and the latter is called the false route. A path from u to u’ either
occupies the true route or the false route since all other edges between u and «’
are blocked. Thus, the path from u to #’ takes one of two states, emulating the
state of a Boolean variable. A Boolean variable structure is constructed for each
variable in the SAT problem. A variable path denotes the path over a Boolean
variable structure.

Multiple variable structures can be arranged so that one includes another, as
shown in Figure 4. By lemma 1, routes consisting of one variable structure do
not interfere with routes consisting of another variable. By convention, the
outermost structure corresponds to the first Boolean variable (with the lowest
index) and the innermost structure corresponds to the last Boolean variable (with
the highest index).

o—= >0
2
Oo— +»0
3
? u3'i
v w,v
O “0

Figure 4. Arranging multiple Boolean variable structures.

149

True/false testing structure and clause structure

The state of a variable structure is tested and translated to be one of feasibility
using the path structure shown in Figure 5.

“O —>

» Oy’

false route

Figure 5. Simple true testing path.

The route from C to C’ shares the edge between x and y with the false route of
the variable structure for u. As a result, the path from C to C’ is feasible if and
only if the variable structure for « follows the true route. The same mechanism
can be used to test if the variable structure for u follows the false route. Since
this structure can test the state of one variable, these are called a simple true
testing structure and a simple false testing structure.

In order to construct a structure which emulates a clause over multiple variables,
we extend the structure in Figure 5 and introduce a true testing structure and
false testing structure. These structures reflect the interaction between a clause
and multiple variables. The true testing structure is constructed in the following
manner.

1) For each Boolean variable u;, processing in ascending order of its index,
create a simple true testing structure if the clause contains u;.

2) Connect the origins of all simple true testing structures.

3) Connect the destinations of all simple true testing structures.

Likewise, the false testing structure is constructed in the following manner.

1) For each Boolean variable u;, processing in ascending order of its index,

create a simple true testing structure if the clause contains ¥; .

2) Connect the origins of all simple false testing structures.
Connect the destinations of all simple false testing structures.

150

A clause structure is constructed by connecting the true testing structure and the
false testing structure. The clause path denotes the path from the northwest edge
to the southeast edge of a clause structure. The clause path is feasible if at least
one of the variable structures positively participating in the clause is in a true
state or at least one of variable structures negatively participating in the clause is
in a false state. The clause path is otherwise infeasible. To summarize, the clause
path is feasible if and only if the states of variable structures represent an
assignment of Boolean variables that satisfies the clause they are configured for.

The clause structure for (1,, Z, u,) is shown in Figure 6.

€O
-
=
e
=
£
N I g
T e
:
[}
:
1]
[}
beerccccaaa
True testing
structure

False routes

Figure 6. Clause structure for (u,,u,,u,).

Building the MPUDM for an arbitrary instance of the SAT problem
A set of variable structures and a clause structure can express an instance of the

SAT problem with only one clause. They can be further generalized by
introducing multiple clause structures. Multiple structures are arranged so that

151

one surrounds the other. Per lemma 1, there is no interaction between clause
structures. An example of structures that express an arbitrary instance of the
SAT is shown in Figure 7.

C

OCS;Z

True testing str.

N I D O
——-i True testing str.

Lf-

-3+ 43 $4-3-4-3 44
s amm—) .
! True testing str.

T

Figure 7. The MPUDM for the SAT instance with m clauses over n variables.

Lemma 2: All paths in the MPUDM built for an instance of the SAT are
simultaneously feasible if and only if the corresponding SAT instance is
satisfiable.

Proof : From the property of clause structures, if all paths including road blocks,
variable paths, and clause paths in the MPUDM are feasible, there exists a set of
states of variable structures that allow all clause paths. The assignment of
variables that satisfy all clauses in the SAT instance is obtained by examining
the states of variable structures.

152

If there is an assignment of variables which satisfies all clauses in the SAT
instance, all clause paths in the MPUDM become feasible by setting variable
structures reflecting the assignments of variables.

Polynomial transformation

The size of the innermost variable structure is determined by the sum of clause
sizes in terms of the number of variables that they include. In the worst case, the
horizontal and vertical sizes of the innermost variable structure are both upper
bounded by |C | X1V |. Therefore, it is constructed in polynomial time as a
function of the complexity of the original SAT problem. Neither the size of the
outermost variable structure nor the size of the outermost clause structure are
much greater than the size of the innermost variable structure. Both are
constructed in polynomial time.

The following theorem is derived from lemma 2 and polynomial transformation.

Theorem 1

The edge disjoint multiple paths problem over a uniformly directed mesh graph
is NP-complete.

3. Polynomial time algorithms for restricted cases

Although the MPUDM is NP complete as discussed in the previous section,
polynomial time solutions exist if additional restrictions are applied to it. We
present three restricted cases and the solutions in this section.

3.1 The edge disjoint multiple paths problem with the same origin row, the
same destination row, distinct origin columns, and distinct destination
columns

Figure 8 illustrates an example of a restricted MPUDM problem with a 4 by 9
directed mesh graph G and a collection of 5 vertex pairs {((1,1),(4,5)), ((1,2),
4,8)), ((1,3),(4,6)), ((1,4),(4,7)), ((1,7),(4,9))}. Notice that all source vertices are
from the same row and distinct columns, and all destination vertices are from the
same row and distinct columns. We assume that source vertices are indexed in
ascending order by their column numbers.

Each path (s;, 1;) occupies the column interval [0;,d;} where the column address

of the s; is 0; and the column address of ¢; is d;. We define

min_row_requirement as the maximum number of overlapped column intervals.
For Figure 8, the column intervals of all 5 vertex pairs are [1,5], [2,8], [3.6], [4,7]

153

and [7,9]. The maximum number of overlapped intervals is 4 which occur at
interval [4,5].

1 2 3 4 5 6 7 8 9
19,700 P T TY
e e S
s S S
4B b sbsb bbb

Figure 8. An example illustrating the restricted MDUMP problem
with the same origin row, same destination row, distinct origin
columns, and distinct destination columns.

Lemma 3: If the number of rows in graph G is less than min_row_requirement
then there do not exist edge disjoint paths for all vertex pairs.

Proof: Assume that min_row_requirement is x in column interval [c, c+1]. This
implies that x edge disjoint paths need to go from column c to column c+1. If
the number of rows in G is less than x, then there are insufficient edges between
column ¢ and column ¢+ for x edge disjoint paths.

If the number of rows is equal to or greater than min_row_requirement, then
there are enough horizontal rows to be allocated to paths at any given column
address. If we are able to distribute paths to rows so that the paths do not
conflict over vertical edges, then all paths are constructed without conflicts. This
process is accomplished by the Origin Column Order algorithm.

154

Origin column order algorithm: Assume source vertices are indexed in
ascending order by their column numbers.

Step 0. Compute min_row_requirement. If min_row_requirement > number of
rows in the graph G, then return “Not all of the vertex pairs have disjoint paths”.

For each vertex pair (s;, ;), fori=1tok: // kis the index of last pair.

Step 1. Find the first unoccupied row—Starting from s, traverse the
vertical edges until the path reaches the unoccupied row. An
unoccupied row is a row such that the edge between it and its east
adjacent vertex is not assigned to any path.

Step 2. Travel horizontally to the destination column—Starting from
the vertex where Step 1 ends, traverse horizontal edges until the path
reaches the destination column address.

Step 3. Travel vertically to the destination vertex—Starting from the
vertex where Step 2 ends, traverse vertical edges until the path reaches
the destination.

A sample execution of the algorithm for Figure 8 is explained below and
exhibited in Figure 9.

p, starts at column 1 and occupies row 1 until it reaches column 5.
D2 starts at column 2 and occupies row 2 until it reaches column 8.
D starts at column 3 and occupies row 3 until it reaches column 6.
Dq Starts at column 4 and occupies row 4 until it reaches column 7.
Ppsstarts at column 7 and occupies row 1 until it reaches column 9.

155

1 2 3 4 5 6 7 8 9
1© - B O
S $2 S3 S4 Ss
2
3
Y
4 0)e 3
t t3 l4 Iz Is

Figure 9. Solution by origin column order algorithm
for the example in Figure 8.

In the remaining section, we will show that the origin column order algorithm is
always able to construct all paths as long as the number of rows is equal to or
greater than min_row_requirement. The main theorem will be based on the next
few lemmas.

Suppose p, p2, P3...., Pi.s are already constructed by the origin column order
algorithm and the algorithm is attempting to construct p;.

Lemma 4: The algorithm always finds an unoccupied row in p;’s origin column.

Proof: If all horizontal edges between p;’s origin column and the next column
are occupied, it implies that the min_row_requirement exceeds the number of
rows in graph G contradicting the assumption.

Lemma 5: The algorithm is always able to allocate the vertical edges until it
reaches the first unoccupied rows.

Proof: With the origin column order algorithm, a path occupies vertical edges in
its origin column or its destination column. Since two paths cannot have the
same origin column address, the only possibility of two paths occupying vertical
edges in the same column is the case where the origin column of a path is
identical to the destination column of another path. Let p; (1 < j <i) be the
path whose destination column is identical to the origin column of p; and x be
the row p; occupies to reach its destination column.

156

If p; finds an unoccupied row before reaching x, there is no conflict over vertical
edges as illustrated in Figure 10 (a). If p; does not find an unoccupied row
before x, p; can occupy vertical edges until it reaches row x and p;can occupy the
vertical edges between row x and the destination as illustrated in Figure 10 (b).
There is no conflict over vertical edges in this case, either.

Si

QP00
. Bip
by \

4 v
llll?‘...-.@ -------------------- .’O

y ¥V v
O OO
:

(a) The case in which p;’s row is larger then p;’s row

O bl ——3O
..l§ <
SN,
v V
O »O »O
4

(b) The case in which p;’s row is equal to p;’s row

Figure 10. The vertical edge allocation for p; at its origin
column and previously constructed paths.

157

Lemma 6: Once the algorithm finds an unoccupied row, it is always able to
allocate horizontal edges to the path until the path reaches the destination
column.

Proof: The origin column order algorithm does not allow paths to change the
row they occupy until they reach their destination column. Therefore, any path

p;(1< j <i) does not obstruct p; in allocating horizontal edges.

Lemma 7: The algorithm is always able to allocate vertical edges from the row it
occupies to the destination.

Proof: Let p;(1 < j <) be one of the previously constructed paths. p;’s origin

column is less than p;’s origin column since paths are constructed in the order of
their origin column. Consequently, p;’s origin column cannot be p;’s exit
column. p;’s exit column cannot be p;’s exit column since two paths cannot share
a destination.

Theorem 2 : If the number of rows is equal to or greater than
min_row_requirement, and all paths have destination column addresses greater
than their origin column, the origin column order algorithm always finds the
solution to a MPUDM with the same origin row, the same destination row,
distinct origin columns and distinct destination columns.

Proof: Lemmas 5, 6, and 7 show that it is always possible to construct the i*
path after (i — 1) paths are constructed by the algorithm. Since it is obviously
possible to construct the first path, the algorithm is always able to build all paths.

3.2 The edge disjoint multiple paths problem with the same origin column,
the same destination column, distinct origin rows and distinct destination
rows

Since rows and columns are symmetric in the MPUDM, we can compute
max_column_requirement to determine the feasibility of the problem. All of the
logic in Section 3.1 works if all references to rows are replaced by columns and
vise versa. The paths are constructed by the origin row order algorithm.

Theorem 3 : If the number of columns is equal to or greater than

max_column_requirement, and all paths have destination row addresses greater
than their origin rows, a polynomial time algorithm exists to find the solution to

158

the MPUDM with the same origin column, the same destination column, distinct
origin rows, and distinct destination rows.

3.3 The edge disjoint multiple paths problem with the same origin row,
distinct origin columns, and distinct destination rows

To solve this case we apply the minimum turn algorithm described below.

The minimum turn algorithm: Assume source vertices are indexed in
ascending order by their column numbers.

For each vertex pair (s, 7)), fori=1tok: //kis the index of the last pair

Step 1. Starting from its origin, traverse vertical edges to the path until
the path reaches the destination row.

Step 2. Traverse horizontal edges until the path reaches the destination.

L) S S
! ?2 o & o o o
5 3
? @) OooooOoo» O
!) @) O O @) O @)
| :
m%@
|

Figure 11. Sample execution of the minimum turn algorithm.

Figure 11 above shows an example and the solution obtained by the minimum
turn algorithm.

159

Lemma 8: Considering the MPUDM with the same origin row, distinct origin
columns, and distinct destination rows, paths constructed by the minimum turn
algorithm do not conflict with each other.

Proof: The vertical edges allocated to a path by the minimum turn algorithm all
have the same column address as the path’s origin. Since two paths cannot share
the same origin, multiple paths do not occupy vertical edges in the same column.
Likewise, the horizontal edges allocated to a path by the minimum turn
algorithm all have the same row address as the path’s destination. Since two
paths cannot have the same destination row, multiple paths do not occupy
horizontal edges in the same row. Thus, there is no conflict over vertical edges
or horizontal edges. The solution that the minimum turn algorithm finds is a
valid solution for the multiple paths problem.

Theorem 4: Considering the MPUDM with the same origin row, distinct origin
columns, and distinct destination rows, the minimum turn algorithm finds the
solution whenever a solution exists.

Proof: The minimum turn algorithm finds a path for any given pair of origins
and destinations whenever the destination is reachable from the origin. From the
previous lemma, paths created by this algorithm don’t conflict with each other.
Consequently, the minimum turn algorithm finds all paths if all destinations are
reachable from their origins. The algorithm does not find the solution if one or
more destinations are unreachable from the origin.

4, Conclusions

In this paper we have studied the edge disjoint multiple paths problem when
constructed over a directed mesh. We have shown that the general problem is
NP complete. We presented polynomial time algorithms for three restricted
cases : (i) disjoint paths with the same origin row, the same destination row,
distinct origin columns, and distinct destination columns, (ii) disjoint paths with
the same origin column, the same destination column, distinct origin rows and
distinct destination rows, and (iii) disjoint paths with the same origin row,
distinct origin columns, and distinct destination rows.

For future research, it would be interesting to investigate the complexity of the
MPUDM with fewer restrictions such as “same origin row to destinations with
an arbitrary row or column”, “arbitrary origin row or column to the same
destination row”, as well as the case allowing two paths to share origins and/or
destinations.

160

References :

(1
(2]
(3]

[4]

(5]

(6]

R. M. Karp, “On the complexity of combinatorial problems,” Networks, 5,
January 1975, pp. 45-68.

M. R. Garey and D. S. Johnson, Computers and Intractability:A Guide to
the Theory of NP-Completeness, W. H. Freeman, NY, 1979,

S. A. Cook, “The complexity of theorem-proving procedures,”
Proceedings Third Annual ACM Symposium on Theory of Computing,
May 1971, pp. 151-158.

M. R. Kramer and J. Leeuwen, “The complexity of wire routing and
finding minimum area layouts for arbitrary VLSI circuits,” Advances in
Computing Research, Vol. 2, 1984, pp. 129-46.

J. Y-T. Leung, T. W. Tam, and G. H. Young, “On Line Routing of Real-
Time Messages,” Journal of Parallel and Distributed Computing, 34,
1996, pp. 211-217.

H. Nagashima, “The complexity of the edge disjoint multiple paths
problem when constructed over uniformly directed mesh graphs,” MS
Project Report TR-05.07 2005, Department of Computer Science, San
Francisco State University, CA 94122,

161

