Locating-Domination in Complementary Prisms

Kristin R.S. Holmes, Denise R. Koessler, and Teresa W. Haynes
Department of Mathematics
East Tennessee State University
Johnson City, TN 37614-0002 USA.

Abstract

Let G=(V, E) be a graph and \overline{G} be the complement of G. The complementary prism of G, denoted $G\overline{G}$, is the graph formed from the disjoint union of G and \overline{G} by adding the edges of a perfect matching between the corresponding vertices of G and \overline{G} . A set $D\subseteq V(G)$ is a locating-dominating set of G if for every $u\in V(G)\backslash D$, its neighborhood $N(u)\cap D$ is nonempty and distinct from $N(v)\cap D$ for all $v\in V(G)\backslash D$ where $v\neq u$. The locating-domination number of G is the minimum cardinality of a locating-dominating set of G. In this paper, we study locating-domination of complementary prisms. We determine the locating-domination number of $G\overline{G}$ for specific graphs G and characterize the complementary prisms with small locating-domination numbers. We also present upper and lower bounds on the locating-domination numbers of complementary prisms, and we show that all values between these bounds are achievable.

Keywords: graph product, cartesian product, complementary prism, locating-domination number, complementary product.

1 Introduction

Complementary products, introduced in [2], are generalizations of cartesian products. Some of the most interesting and well-studied problems in domination involve determining domination invariants of cartesian products [4, 5]. When studying invariants of graph products, the standard question is what can be determined about the invariant of the graph product if the

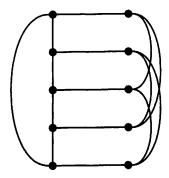


Figure 1: The Petersen Graph $C_5\overline{C}_5$

value of the invariant for the individual factors is known. Accordingly, in this paper, we investigate locating-domination in complementary products.

We restrict our attention to a subset of the complementary products, called complementary prisms, and refer the reader to [2] for the more general case. For a graph G, the complementary prism, denoted $G\overline{G}$, is formed from the disjoint union of G and its complement \overline{G} by adding a perfect matching between corresponding vertices of G and \overline{G} . For each $v \in V(G)$, let \overline{v} denote the vertex v in the copy of \overline{G} . Formally, the graph $G\overline{G}$ is formed from $G \cup \overline{G}$ by adding the edge $v\overline{v}$ for every $v \in V(G)$. We note that complementary prisms are a generalization of the Petersen Graph. In particular, the Petersen graph is the complementary prism $C_5\overline{C}_5$. See Figure 1.

For any graph G = (V, E) and a vertex $v \in V(G)$, the open neighborhood of v is $N(v) = \{u \in V(G) \mid uv \in E(G)\}$, and the closed neighborhood $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V(G)$, its open neighborhood $N(S) = \cup_{v \in S} N(v)$, and its closed neighborhood $N[S] = N(S) \cup S$. A set S is a dominating set if N[S] = V and is a total dominating set if N(S) = V. The minimum cardinality of any dominating set (respectively, total dominating set) of G is the domination number $\gamma(G)$ (respectively, total domination number $\gamma(G)$). For more details on domination, see the book [1].

The need to uniquely identify one vertex from another is the motivation for studying locating-domination in graphs. This concept was first introduced by Slater [6]. A set $L \subseteq V(G)$ is a locating-dominating set (abbreviated LDS) of G, if for every $u \in V(G) \setminus L$, its neighborhood $N(u) \cap L$ is nonempty and distinct from $N(v) \cap L$ for all $v \in V(G) \setminus L$ where $v \neq u$.

The locating-domination number of G, denoted $\gamma_L(G)$, is the minimum cardinality of a locating-dominating set of G. An LDS of G with cardinality $\gamma_L(G)$ is called a $\gamma_L(G)$ -set. See Figure 2 for an example of an LDS for the path P_6 , where the darkened vertices represent the $\gamma_L(G)$ -set, L. Notice that $N(v_2) \cap L = \{v_1\}$, $N(v_3) \cap L = \{v_4\}$ and $N(v_5) \cap L = \{v_4, v_6\}$, so each of the vertices, v_2 , v_3 , and v_5 have unique neighborhoods $V(G) \cap L$. If a set L locating-dominates a set X, then we denote this as $L \succ_L X$.

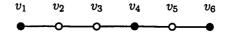


Figure 2: Locating-Dominating Set in P_6

Domination and total domination numbers of complementary prisms were studied in [2] and [3]. In these papers, bounds on the (total) domination numbers of $G\overline{G}$ were given in terms of the (total) domination numbers of G and \overline{G} . Here, we study locating-domination in complementary prisms.

As examples, we determine the value of $\gamma_L(G\overline{G})$ for some specific graphs G and present characterizations of the complementary prisms with small locating-domination numbers in Section 2. In Section 3, we present bounds on the locating-domination number of $G\overline{G}$, and we show that all possible values of $\gamma_L(G\overline{G})$ between the lower and upper bounds are attainable.

We will use the following terminology. The degree of a vertex v is $deg_G(v) = |N(v)|$. A vertex of degree 0 is an *isolated vertex*. A vertex of degree one is called a *leaf* or an *endvertex*, and its neighbor is called a *support vertex*. For any $S \subseteq V(G)$, the subgraph of G induced by G is denoted G. For ease of discussion, we refer to the complementary prism $G\overline{G}$ as a copy of G and a copy of G with a perfect matching between corresponding vertices. For a set $F \subseteq V(G)$, let F be the corresponding set of vertices in F of F is a set F of F of F in the corresponding set of vertices in F of F is a set F of F of F is the corresponding set of vertices in F of F is a set F of F is the corresponding set of vertices in F of F is the corresponding set of vertices in F of F is the corresponding set of vertices in F of F is the corresponding set of vertices in F of F is the corresponding set of vertices in F of F is the corresponding set of vertices in F of F is the corresponding vertices in F is the corresponding vertices in F of F is the corresponding vertices in F is the corresponding vertices.

2 Examples

To illustrate locating-domination in complementary prisms, we determine $\gamma_L(G\overline{G})$ where G is a complete graph and a complete bipartite graph. Further, we characterize the complementary prisms having small locating-domination numbers.

First, we determine the locating-domination number of $G\overline{G}$ when G is a complete graph. The *corona* of a graph G, denoted $G \circ K_1$, is formed from G by adding for each $v \in V(G)$, a new vertex v' and the pendant edge vv'.

Proposition 1 If G is the complete graph K_n , then $\gamma_L(G\overline{G}) = n$.

Proof. For $G = K_n$, the complementary prism $G\overline{G}$ is the corona $K_n \circ K_1$. Any $\gamma_L(G\overline{G})$ -set must contain each leaf or its support vertex. Therefore $\gamma_L(G\overline{G}) \geq n$. The set of leaves forms an LDS, so $\gamma_L(G\overline{G}) \leq n$. Hence $\gamma_L(G\overline{G}) = n$. \square

Next we determine the locating-domination number of $G\overline{G}$ when G is a complete bipartite graph.

Proposition 2 Let G be the complete bipartite graph $K_{r,s}$, where r+s=n and $1 \le r \le s$.

$$\gamma_L(G\overline{G}) = \left\{ egin{array}{ll} n, & if \ r=1 \ n-1, & if \ r=2 \ n-2, & otherwise. \end{array}
ight.$$

Proof. Let $G = K_{r,s}$, $1 \le r \le s$, where R and S are the bipartite sets of G with cardinality r and s, respectively. Let $R = \{x_1, x_2, ..., x_r\}$ and $S = \{y_1, y_2, ..., y_s\}$. Let L be a $\gamma_L(G\overline{G})$ -set.

First let r=1, that is, $G=K_{1,s}, \ 1\leq s$. Clearly V(G) is an LDS of $G\overline{G}$, so $\gamma_L(G\overline{G})\leq n$. To see that $\gamma_L(G\overline{G})\geq n$, note that \overline{x}_1 is a leaf in $G\overline{G}$. This implies that at least one of x_1 and \overline{x}_1 is in L. If $x_1\in L$, then x_1 locating-dominates at most one of its neighbors. Thus, there are n-1 vertices in $N_{G\overline{G}}(x_1)$ that must either be in L or have another neighbor in L. Hence, $\gamma_L(G\overline{G})\geq 1+n-1=n$. If $x_1\notin L$, then $\overline{x}_1\in L$. This implies that at least one of y_i and \overline{y}_i is in L to dominate $y_i, 1\leq i\leq n-1$. And again $\gamma_L(G\overline{G})\geq n$. Thus, if $G=K_{1,s}, \gamma_L(G\overline{G})=n$.

Now assume that $2 \le r \le s$. We first show that $|L \cap (S \cup \overline{S})| \ge s - 1$. Assume that there are two vertices in S, say y_i and y_j , such that none of y_i , y_j , \overline{y}_i , and \overline{y}_j are in L. Then $N_{G\overline{G}}(y_i) \cap L = N_G(y_i) \cap L = R \cap L = N_{G\overline{G}}(y_j) \cap L$. Thus, there exists at most one vertex, $y_i \in S$ such that y_i and \overline{y}_i are in $V(G) \setminus L$. This implies that $|L \cap (S \cup \overline{S})| \ge s - 1$ as desired.

We consider two cases.

Case 1. $2=r\leq s$. To show that $\gamma_L(G\overline{G})\leq n-1$, we note that $R\cup(\overline{S}\setminus\{\overline{y}_1,\overline{y}_2\})\cup\{y_1\}$ is an LDS for $G\overline{G}$. To see this, notice that $N_{G\overline{G}}(\overline{x}_i)\cap L=\{x_i\}$, for $i\in\{1,\ 2\}$. Also $N_{G\overline{G}}(y_2)\cap L=\{x_1,\ x_2\},\ N_{G\overline{G}}(\overline{y}_1)\cap L=\{y_1,\ \overline{y}_i\mid i\geq 3\},\ N_{G\overline{G}}(\overline{y}_2)\cap L=\{\overline{y}_i\mid i\geq 3\}.$ For $i\geq 3,\ N_{G\overline{G}}(y_i)\cap L=\{x_1,\ x_2,\ \overline{y}_i\}$. Thus, every vertex in $V(G\overline{G})\setminus L$ is locating-dominated by L. Hence $\gamma_L(G\overline{G})\leq |R|+|S|-2+1=r+s-1=n-1$.

Next we show that $\gamma_L(G\overline{G}) \geq n-1 = s+1$. We have shown that $|L \cap (S \cup \overline{S})| \geq s-1$. Assume to the contrary, that $\gamma_L(G\overline{G}) \leq s$. Hence $|L \cap (R \cup \overline{R})| = 1$. Without loss of generality, either $L \cap (R \cup \overline{R}) = \{x_1\}$ or $L \cap (R \cup \overline{R}) = \{\overline{x}_1\}$. In the former, \overline{x}_2 is not dominated by L, a contradiction. In the later, at least one vertex from S is not dominated by L, a contradiction. And so, $\gamma_L(G\overline{G}) \geq s+1 = n-1$.

Case 2. $3 \leq r \leq s$. We show that $(\overline{R} \setminus \{\overline{x}_1, \overline{x}_2\}) \cup (\overline{S} \setminus \{\overline{y}_1, \overline{y}_2\}) \cup \{x_1, y_1\}$ is an LDS of $G\overline{G}$. To see this, notice that $N_{G\overline{G}}(x_2) \cap L = \{y_1\}, \ N_{G\overline{G}}(y_2) \cap L = \{x_1\}, \ N_{G\overline{G}}(\overline{x}_1) \cap L = \{x_1, \ \overline{x}_i \mid i \geq 3\}, \ N_{G\overline{G}}(\overline{x}_2) \cap L = \{\overline{x}_i \mid i \geq 3\}, \ N_{G\overline{G}}(\overline{y}_1) \cap L = \{y_1, \ \overline{y}_i \mid i \geq 3\}, \ N_{G\overline{G}}(\overline{y}_2) \cap L = \{\overline{y}_i \mid i \geq 3\}.$ And for $i \geq 3$, $N_{G\overline{G}}(x_i) \cap L = \{y_1, \ \overline{x}_i\}$, and $N_{G\overline{G}}(y_i) \cap L = \{x_1, \overline{y}_i\}$. Thus, every vertex in $V(G\overline{G}) \setminus L$ is locating-dominated by L. Hence, $\gamma(G\overline{G}) \leq |R| - 2 + 2 + |S| - 2 = r + s - 2 = n - 2$.

We have shown $|L \cap (S \cup \overline{S})| \ge s-1$. A similar argument for $R \cup \overline{R}$ will lead to $|L \cap (R \cup \overline{R})| \ge r-1$. Thus, $\gamma_L(G\overline{G}) \ge s-1+r-1 = r+s-2 = n-2$.

Next we consider complementary prisms with small locating-domination numbers.

Proposition 3 For a graph G of order n and its complementary prism $G\overline{G}$,

- (1) $\gamma_L(G\overline{G}) = 1$ if and only if n = 1.
- (2) $\gamma_L(G\overline{G}) = 2$ if and only if n = 2.
- (3) $\gamma_L(G\overline{G}) = 3$ if and only if $n \in \{3, 4\}$ and $G \notin \{K_4, \overline{K}_4, K_{1,3}, \overline{K}_{1,3}\}$.

Proof. (1) If |V(G)| = 1, then $G\overline{G} = K_2$. Thus, $\gamma_L(G\overline{G}) = 1$. Now assume that $\gamma_L(G\overline{G}) = 1$, and without loss of generality, L is a $\gamma_L(G\overline{G})$ -set and $L \subseteq V(G)$. Since L must locating-dominate \overline{G} in $G\overline{G}$, it follows that $|V(\overline{G})| = 1$ and $G = K_1$.

(2) If |V(G)| = 2, then $G \in \{K_2, \overline{K}_2\}$ so $G\overline{G} = P_4$ and $\gamma_L(G\overline{G}) = 2$.

Assume that $\gamma_L(G\overline{G})=2$, and let L be a $\gamma_L(G\overline{G})$ -set. If $L\subseteq V(G)$, then since L must dominate \overline{G} , it follows that |V(G)|=2 and so $G\overline{G}=P_4$. Now assume $L\cap V(G)=1$ and $L\cap V(\overline{G})=1$. Without loss of generality, let $L=\{x,\,\overline{y}\}$.

If $\overline{y} = \overline{x}$, then $\{x\} \succ_L V(G) \setminus \{x\}$ and $\{\overline{x}\} \succ_L V(\overline{G}) \setminus \{\overline{x}\}$. Let $w \in V(G) \setminus \{x\}$. Then w is adjacent to x and \overline{w} is adjacent to \overline{x} , a contradiction. Thus, $V(G) \setminus \{x\} = \emptyset$, that is, |V(G)| = 1. Then $\gamma_L(G\overline{G}) = 1$, a contradiction.

Hence, $\overline{y} \neq \overline{x}$. Then $x \succ_L V(G) \setminus \{x, y\}$ and $\overline{y} \succ_L V(\overline{G}) \setminus \{\overline{x}, \overline{y}\}$. Without loss of generality, we may assume that $xy \in E(G\overline{G})$ and $\overline{xy} \notin E(G\overline{G})$. Let $w \in V(G) \setminus \{x, y\}$. Then $N_{G\overline{G}}(w) \cap L = \{x\} = N_{G\overline{G}}(\overline{x}) \cap L$, contradicting that S is an LDS of $G\overline{G}$. Hence $V(G) \setminus \{x, y\} = \emptyset$, that is, |V(G)| = 2.

(3) Let $n \in \{3, 4\}$. By (2), $\gamma_L(G\overline{G}) \geq 3$. If n = 3, then V(G) is an LDS of $G\overline{G}$, so $\gamma_L(G\overline{G}) \leq 3$ and hence $\gamma_L(G\overline{G}) = 3$. If n = 4, then again V(G) is an LDS of $G\overline{G}$, so $\gamma_L(G\overline{G}) \leq 4$. If $G \in \{K_4, \overline{K}_4, K_{1,3}, \overline{K}_{1,3}\}$, then by Propositions 1 and 2, $\gamma_L(G\overline{G}) = 4$. So assume $G \notin \{K_4, \overline{K}_4, \overline{K}_4, \overline{K}_{1,3}, \overline{K}_{1,3}\}$.

Figure 3 illustrates an LDS of $G\overline{G}$ for all remaining non-isomorphic graphs G of order four. The darkened vertices represent the LDS. Since each has an LDS of cardinality three, $\gamma_L(G\overline{G}) \leq 3$. Hence for these graphs, $\gamma_L(G\overline{G}) = 3$.

Again by Propositions 1 and 2, for $G \in \{K_4, \overline{K}_4, K_{1,3}, \overline{K}_{1,3}\}$, $\gamma_L(G\overline{G}) = 4$. Assume that G is a graph of order n such that $\gamma_L(G\overline{G}) = 3$. We only need to show that $n \in \{3, 4\}$. Clearly $n \geq 3$ by part (2) of this proof. Let L be a $\gamma_L(G\overline{G})$ -set. If $L \subseteq V(G)$ or $L \subseteq V(\overline{G})$, then it follows that n = 3. Hence assume that $L \cap V(G) \neq \emptyset$ and $L \cap V(\overline{G}) \neq \emptyset$. Without loss of generality, let $L = \{x, y, \overline{z}\}$.

Assume first that $\overline{z} \in \{\overline{x}, \overline{y}\}$, and without loss of generality, $\overline{z} = \overline{x}$. Then $\{\overline{x}\} \succ_L V(\overline{G}) \setminus \{\overline{x}, \overline{y}\}$ in $G\overline{G}$, implying that there is at most one vertex in $V(\overline{G}) \setminus \{\overline{x}, \overline{y}\}$ in $G\overline{G}$. Hence n = 3.

Assume that $\overline{z} \notin \{\overline{x}, \overline{y}\}$. Thus, $\{\overline{z}\} \succ_L V(\overline{G}) \setminus \{\overline{x}, \overline{y}, \overline{z}\}$. This implies that there is at most one vertex in $V(\overline{G}) \setminus \{\overline{x}, \overline{y}, \overline{z}\}$. Hence, $n \leq 4$. \square

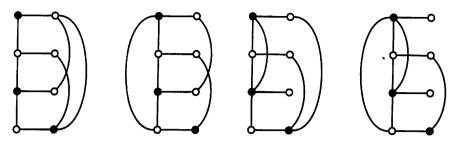


Figure 3: LDS of $G\overline{G}$ when n=4 and $G\notin\{K_4,\ \overline{K}_4,\ K_{1,3},\ \overline{K}_{1,3}\}$

3 Bounds and Realizability

We give lower and upper bounds on $\gamma_L(G\overline{G})$ in terms of $\gamma_L(G)$ and $\gamma_L(\overline{G})$.

Proposition 4 For any graph G, $\max\{\gamma_L(G), \gamma_L(\overline{G})\} \leq \gamma_L(G\overline{G}) \leq \gamma_L(G) + \gamma_L(\overline{G})$.

Proof. By Proposition 1, if $G = K_n$, then $\max\{\gamma_L(G), \gamma_L(\overline{G})\} = n = \gamma_L(G\overline{G}) \leq 2n-1 = \gamma_L(G) + \gamma_L(\overline{G})$. Thus, we may assume G is not complete. Let D be a $\gamma_L(G\overline{G})$ -set, and let $D_1 = D \cap V(G)$ and $D_2 = D \cap V(\overline{G})$. Assume, without loss of generality, that $\gamma_L(G) \geq \gamma_L(\overline{G})$. If D_1 locating-dominates G, then we are finished. So assume there exists a set $T \subseteq V(G)$ such that T is not locating-dominated by D_1 . Thus, T is located and/or dominated by D_2 . Also, each vertex in D_2 is adjacent to at most one vertex in T. Thus, $|T| \leq |D_2|$. But $D_1 \cup T$ is a locating-dominating set of G. So $\gamma_L(G) \leq |D_1 \cup T| = |D_1| + |T| \leq |D_1| + |D_2| = |D| = \gamma_L(G\overline{G})$.

For the upper bound, let S_1 be a $\gamma_L(G)$ -set and S_2 be a $\gamma_L(\overline{G})$ -set, and $S = S_1 \cup S_2$. Also, let $x \in V(G) \setminus S_1$ and $\overline{y} \in V(\overline{G}) \setminus S_2$. Then,

$$N_{G\overline{G}}(x) = \left\{ egin{array}{ll} N_G(x) \cap S_1 \cup \{\overline{x}\}, & if \ \overline{x} \in S_2 \ N_G(x) \cap S_1, & otherwise \end{array}
ight., and$$

$$N_{G\overline{G}}(\overline{y}) = \left\{ \begin{array}{c} N_{\overline{G}}(\overline{y}) \cap S_2 \cup \{y\}, & if \ y \in S_1 \\ N_{\overline{G}}(\overline{y}) \cap S_2, & otherwise. \end{array} \right.$$

Since S_1 and S_2 locating-dominate G and \overline{G} , respectively, it follows that S is an LDS of $G\overline{G}$, Hence $\gamma_L(G\overline{G}) \leq |S| = |S_1| + |S_2| = \gamma_L(G) + \gamma_L(\overline{G})$.

Let $a=\gamma(G)\geq \gamma(\overline{G})$. By Proposition 4, $\gamma_L(G\overline{G})\leq 2a$. We have not been able to find a family of graphs that achieve this upper bound, but we note that for $G=P_5$, $\gamma_L(G)=2\geq \gamma_L(\overline{G})$ and $\gamma_L(G\overline{G})=4$ attaining the bound. Moreover, we conclude this paper by showing that there exists a graph G with $\gamma_L(G)=a$ and $\gamma_L(G\overline{G})=b$ for all integers a and b such that $a\leq b\leq 2a-1$.

Proposition 5 For positive integers a and b such that $a \leq b \leq 2a-1$, there exists a graph G such that $\gamma_L(\overline{G}) \leq \gamma_L(G) = a$ and $\gamma_L(G\overline{G}) = b$.

Proof. Given a and b such that $a \le b \le 2a - 1$, we give a graph G with $\gamma_L(G) = a$ and $\gamma_L(G\overline{G}) = b$. Let m = b - a + 1 and $G = (a - m)K_1 \cup mK_2$. Clearly, $\gamma_L(\overline{G}) \le \gamma_L(G) = a$. We wish to show that $\gamma_L(G\overline{G}) = b = m + a - 1$.

To aid in our discussion, we label the vertices of G as follows. Let $Z=\{z_i\,|\,1\leq i\leq a-m\}$ be the set of isolates. Let the m edges be labeled x_iy_i for $1\leq i\leq m$, and let $X=\{x_i\,|\,1\leq i\leq m\}$ and $Y=\{y_i\,|\,1\leq i\leq m\}$. Note that for each i where $1\leq i\leq m$, $N_{G\overline{G}}[x_i]=\{x_i,\ y_i,\ \overline{x}_i\}$, $N_{G\overline{G}}[y_i]=\{x_i,\ y_i,\ \overline{y}_i\}$, $N_{G\overline{G}}[\overline{x}_i]=\{x_i\}\cup\overline{X}\cup\overline{Z}\cup\overline{Y}\setminus\{\overline{y}_i\}$, and $N_{G\overline{G}}[\overline{y}_i]=\{y_i\}\cup\overline{Y}\cup\overline{Z}\cup\overline{X}\setminus\{\overline{x}_i\}$. Also, for $1\leq i\leq a-m$, $N_{G\overline{G}}[z_i]=\{z_i,\overline{z}_i\}$ and $N_{G\overline{G}}[\overline{z}_i]=\overline{X}\cup\overline{Y}\cup\overline{Z}\cup\{z_i\}$.

Let $L=Z\cup X\cup \overline{Y}\setminus\{\overline{y}_1\}$. Then $N_{G\overline{G}}(y_1)\cap L=\{x_1\}$. For $2\leq i\leq m$, $N_{G\overline{G}}(y_i)\cap L=\{x_i,\ \overline{y}_i\}$ and $N_{G\overline{G}}(\overline{x}_i)\cap L=\{x_i\}\cup \overline{Y}\setminus\{\overline{y}_1,\overline{y}_i\}$. And for $1\leq i\leq a-m$, $N_{G\overline{G}}(\overline{z}_i)\cap L=\{z_i\}\cup \overline{Y}\setminus\{\overline{y}_1\}$. Finally, $N_{G\overline{G}}(\overline{y}_1)\cap L=\overline{Y}\setminus\{\overline{y}_1\}$ and $N_{G\overline{G}}(\overline{x}_1)\cap L=\{x_1\}\cup \overline{Y}\setminus\{\overline{y}_1\}$. Since every vertex in $V(G\overline{G})\setminus L$ has a unique non-empty neighborhood in L, L is an LDS of $G\overline{G}$. Thus, $\gamma_L(G\overline{G})\leq |L|=a-m+m+m-1=a+m-1=b$.

Let L be a $\gamma_L(G\overline{G})$ -set. First note that $|L \cap (Z \cup \overline{Z})| \ge |Z| = a - m$ in order to dominate Z. Note also that to dominate x_i , $|L \cap \{x_i, y_i, \overline{x}_i\}| \ge 1$, and to dominate y_i , $|L \cap \{x_i, y_i, \overline{y}_i\}| \ge 1$.

To show that $\gamma_L(G\overline{G}) \geq b$, it suffices to show that there exists at most one i such that $|L \cap \{x_i, y_i, \overline{x}_i, \overline{y}_i\}| = 1$. For the purposes of contradiction, assume that $|L \cap \{x_i, y_i, \overline{x}_i, \overline{y}_i\}| = 1$ and $|L \cap \{x_j, y_j, \overline{x}_j, \overline{y}_j\}| = 1$ for some $i \neq j$. Since $|L \cap \{x_i, y_i, \overline{x}_i\}| \geq 1$ and $|L \cap \{x_i, y_i, \overline{y}_i\}| \geq 1$, it follows that $L \cap \{x_i, y_i, \overline{x}_i, \overline{y}_i\} \subset \{x_i, y_i\}$. Similarly, $L \cap \{x_j, y_j, \overline{x}_j, \overline{y}_j\}| \subset \{x_j, y_j\}$. Without loss of generality, assume that $L \cap \{x_i, y_i, \overline{x}_i, \overline{y}_i\} = \{x_i\}$. Then $N_{G\overline{G}}(\overline{y}_i) \cap L = V(\overline{G}) \cap L$. Moreover, $V(\overline{G}) \cap L \neq \emptyset$ because \overline{y}_i is dominated by L. Since neither \overline{x}_j nor \overline{y}_j is in L and exactly one of x_j and y_j is in L, it follows that $N_{G\overline{G}}(\overline{y}_j) \cap L = L \cap V(\overline{G})$ or $N_{G\overline{G}}(\overline{x}_j) \cap L = L \cap V(\overline{G})$. Hence $N_{G\overline{G}}(\overline{y}_i) \cap L = N_{G\overline{G}}(\overline{y}_j) \cap L$ or $N_{G\overline{G}}(\overline{y}_i) \cap L = N_{G\overline{G}}(\overline{x}_j) \cap L$, contradicting that L is an LDS.

Hence $|L \cap \{x_i, y_i, \overline{x}_i, \overline{y}_i\}| \ge 2$ for $1 \le i \le m$, except for possibly one j where $|L \cap \{x_j, y_j, \overline{x}_j, \overline{y}_j\}| = 1$. Thus, $\gamma_L(G\overline{G}) = |L| \ge 2(m-1)+1+a-m=2m-2+1+a-m=m+a-1=b$. Hence $\gamma_L(G\overline{G}) = b$, completing the proof. \square

References

- [1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [2] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, The complementary product of two graphs. *Bull. Instit. Combin. Appl.* 51 (2007) 21-30.
- [3] T.W. Haynes, M.A. Henning and L.C. van der Merwe, Domination and total domination in complementary prisms. To appear in *J. Combin. Optimization*.
- [4] W. Imrich and S. Klavzar, *Product Graphs, Structure and Recognition*, Wiley (2000).
- [5] R.J. Nowakowski and D.F. Rall, Associative graph products and their independence, domination, and coloring numbers. *Discuss. Math. Graph Theory* 16 (1996) 53-79.
- [6] P. J. Slater. Locating dominating sets and locating-dominating sets. Graph Theory, Combinatorics, and Applications. (1995) 1073-1079.