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Abstract

Let G = (V, E) be a graph and G be the complement of G.
The complementary prism of G, denoted GG, is the graph formed
from the disjoint union of G and G by adding the edges of a perfect
matching between the corresponding vertices of G and G. A set
D C V(G) is a locating-dominating set of G if for every u € V(G)\D,
its neighborhood N(u)ND is nonempty and distinct from N (v)ND for
all v € V(G)\D where v # u. The locating-domination number of G
is the minimum cardinality of a locating-dominating set of G. In this
paper, we study locating-domination of complementary prisms. We
determine the locating-domination number of GG for specific graphs
G and characterize the complementary prisms with small locating-
domination numbers. We also present upper and lower bounds on
the locating-domination numbers of complementary prisms, and we
show that all values between these bounds are achievable.

Keywords: graph product, cartesian product, complementary prism, locating-
domination number, complementary product.

1 Introduction

Complementary products, introduced in [2], are generalizations of carte-
sian products. Some of the most interesting and well-studied problems in
domination involve determining domination invariants of cartesian products
[4, 5]. When studying invariants of graph products, the standard question
is what can be determined about the invariant of the graph product if the
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Figure 1: The Petersen Graph CsCs

value of the invariant for the individual factors is known. Accordingly, in
this paper, we investigate locating-domination in complementary products.

We restrict our attention to a subset of the complementary products,
called complementary prisms, and refer the reader to (2] for the more general
case. For a graph G, the complementary prism, denoted GG, is formed
from the disjoint union of G and its complement G by adding a perfect
matching between corresponding vertices of G and G. For each v € V(G),
let 7 denote the vertex v in the copy of G. Formally, the graph GG is
formed from G U G by adding the edge vT for every v € V(G). We note
that complementary prisms are a generalization of the Petersen Graph.
In particular, the Petersen graph is the complementary prism CsCs. See
Figure 1.

For any graph G = (V E) and a vertex v € V(G), the open neighborhood
of vis N(v) = {u € V(G) | uv € E(G)}, and the closed neighborhood N[v] =
N(v)U {v}. For a set S g V(G), its open neighborhood N(S) = UyesN(v),
and its closed neighborhood N[S] = N(S)US. A set S is a dominating set
if N[S] = V and is a total dominating set if N(S) = V. The minimum
cardinality of any dominating set (respectively, total dominating set) of
G is the domination number v(G) (respectively, total domination number
~¢(G)). For more details on domination, see the book [1].

The need to uniquely identify one vertex from another is the motiva-
tion for studying locating-domination in graphs. This concept was first
introduced by Slater [6]. A set L C V(G) is a locating-dominating set (ab-
breviated LDS) of G, if for every u € V(G)\L, its neighborhood N(u) N L
is nonempty and distinct from N(v) N L for all v € V(G)\L where v # u.
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The locating-domination number of G, denoted v (G), is the minimum car-
dinality of a locating-dominating set of G. An LDS of G with cardinality
YL(G) is called a v (G)-set. See Figure 2 for an example of an LDS for the
path Ps, where the darkened vertices represent the +.(G)-set, L. Notice
that N(v2) N L = {v1}, N(va)NL = {v4} and N(vs) N L = {vy, v}, s0
each of the vertices, vz, v3, and vs have unique neighborhoods V(G) N L.
If a set L locating-dominates a set X, then we denote this as L =1 X.

M V2 v3 V4 Us Ve
[ O O— *—0 L]

Figure 2: Locating-Dominating Set in Pj

Domination and total domination numbers of complementary prisms
were studied in [2] and [3]. In these papers, bounds on the (total) domina-
tion numbers of GG were given in terms of the (total) domination numbers
of G and G. Here, we study locating-domination in complementary prisms.

As examples, we determine the value of v (GG) for some specific graphs
G and present characterizations of the complementary prisms with small
locating-domination numbers in Section 2. In Section 3, we present bounds
on the locating-domination number of GG, and we show that all possible
values of 7. (GG) between the lower and upper bounds are attainable.

We will use the following terminology. The degree of a vertex v is
degc(v) = |[N(v)|. A vertex of degree 0 is an isolated verter. A vertex
of degree one is called a leaf or an endvertez, and its neighbor is called a
support vertez. For any S C V(G), the subgraph of G induced by S is
denoted (S). For ease of discussion, we refer to the complementary prism
GG as a copy of G and a copy of G with a perfect matching between cor-
responding vertices. For a set P C V(G), let P be the corresponding set of
vertices in V(G).

2 Examples

To illustrate locating-domination in complementary prisms, we determine
vL(GG) where G is a complete graph and a complete bipartite graph.
Further, we characterize the complementary prisms having small locating-
domination numbers.
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First, we determine the locating-domination number of GG when G is a
complete graph. The corona of a graph G, denoted G o K}, is formed from
G by adding for each v € V(G), a new vertex v’ and the pendant edge v

Proposition 1 If G is the complete graph Ky, then y(GG) = n.

Proof. For G = K,,, the complementary prism GG is the corona K, o K;.
Any v(GG)-set must contain each leaf or its support vertex. Therefore
4L(GG) > n. The set of leaves forms an LDS, so v.(GG) < n. Hence
v (GG)=n. O

Next we determine the locating-domination number of GG when G is a
complete bipartite graph.

Proposition 2 Let G be the complete bipartite graph K. 5, wherer+s=n
andl1 <r<s.
n, ifr=1
(GG = n-1, ifr=2
n—2, otherwise.

Proof. Let G = K,s, 1 <t <s, where R and S are the bipartite sets
of G with cardinality r and s, respectively. Let R = {z1, z2, ..., Z,} and
S ={y1, y2, - Ys}. Let L be a 7,(GG)-set.

First let 7 = 1, that is, G = K14, 1 £ s. Clearly V(G) is an LDS of
GG, so 7,(GG) < n. To see that v,(GG) > n, note that 7, is a leaf in
GG. This implies that at least one of z; and Z; is in L. If z; € L, then
z, locating-dominates at most one of its neighbors. Thus, there are n —1
vertices in Nog(z1) that must either be in L or have another neighbor in
L. Hence, 7v.(GG) > 1+n—1=n. If z; ¢ L, then T; € L. This implies
that at least one of y; and 7, is in L to dominate y;, 1 <i<n—1. And
again y.(GG) > n. Thus, if G = K4, 7.(GG) = n.

Now assume that 2 < r < s. We first show that [LN(SUS)| > s - 1.
Assume that there are two vertices in S, say y; and y;, such that none of
Yi, Yj» Ui and J; are in L. Then Noz(yi)N L = Ne(gs)NL=RnNnL =
Ngg(y;) N L. Thus, there exists at most one vertex, y; € S such that y;
and ; are in V(G)\L. This implies that |[L N (SUS)| 2 s — 1 as desired.

We consider two cases.
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_Case 1. 2 =7 < 5. To show that 'yL(G’E) < n -1, we note that R U
(S\ {#1, 72}) U {11} is an LDS for GG. To see this, notice that N z(Z;) N
L = {z:}, for i € {1, 2}. Also Ngg(y2) N L = {z1, 22}, Ngz(@)NL =
(v, 9 1428}, Nog(@) N L= 5 | i 2 8). Fori > 3, Nglu) N L =
{z1, z2, 3;}. Thus, every vertex in V(GG)\L is locating-dominated by L.
Hence 7,(GG) < |R|+|S| -2 +1=r+s—-1=n—1.

Next we show that v,(GG) > n—1 = s+ 1. We have shown that
LN (SUS)| > s— 1. Assume to the contrary, that v,(GG) < s. Hence
|LN(RUR)| = 1. Without loss of generality, either LN(RUR) = {z;} or LN
(RUR) = {7,}. In the former, Z; is not dominated by L, a contradiction. In
the later, at least one vertex from S is not dominated by L, a contradiction.
And so, 7.(GG) > s+1=n—1.

Case 2. 3 < r < s. Weshow that (R\{Z1, Z2HDUB\ {71, Fo})U{z1, 11}
is an LDS of GG. To see this, notice that No=(z2) N L = {11}, Ngg(ye)N
L= {.’El}, NGE(EI) NL = {21, T; I 12> 3}, NGE(EQ) NL = {ii | 1>
3}, Ng@) NL = {u, % | i 2 3}, Ngg@) L = {7 | i > 3}. And
for i > 3, NG'G'(Z,') NL = {yl, Ti}, and NGE(yi) NnL = {x1,37i}. Thus,
every vertex in V(GG)\L is locating-dominated by L. Hence, 7(GG) <
[R|—24+2+|S|-2=r+s-2=n-2.

We have shown |LN (SUS)| > s — 1._A similar argument for RU R will
lead to |[LN(RUR)| > r—1. Thus, v.(GG) 2 s—1+r—1=r+s5-2 =n-2.
]

Next we consider complementary prisms with small locating-domination
numbers.

Proposition 3 For a graph G of order n and its complementary prism
GG,

(1) 7.(GG) =1 if and only if n = 1.

(2) 7.(GG) =2 if and only if n = 2.

(3) 7L(GG) =3 ifand only ifn € {3, 4} and G ¢ {K4, K4, K, 3, -Kl,s}.

Proof. (1) If |V(G)| = 1, then GG = K. Thus, v.(GG) = 1. Now
assume that 7, (GG) = 1, and without loss of generality, L is a . (GG)-set
and L C V(G). Since L must locating-dominate G in GG, it follows that
[V(G)| =1 and G = K;.
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(2) If |V(G)| =2, then G € {K2, K2} so GG = P, and 7(GG) =

Assume that 4(GG) = 2, and let L be a 7,(GG)-set. If L C V(G),
then since L must dominate G it follows that |V(G)| = 2 and so GG = P;.
Now assume L N V(G) =1 and LN V(G) = 1. Without loss of generality,
let L = {z, 7}.

If§ = %, then {z} »1 V(G)\{z} and {z} >. V(G)\{Z}. Let w €

V(G)\{z}. Then w is adjacent to = and % is adjacent to Z, a contradic-
tion. Thus, V(G)\{z} = 0, that is, |V(G)| = 1. Then 7,(GG) =1, a
contradiction.

Hence, § # . Then z »1 V(G)\{z, y} and 7 > V(G)\{Z, 7}. Without
loss of generality, we may assume that zy € E(GG) and 7 ¢ E(GG). Let
w € V(G)\{z, y}. Then Ngz(w) N L = {z} = Ngz(Z) N L, contradicting
that S is an LDS of GG. Hence V(G)\{z, y} =0, that is, [V(G)| = 2.

(3) Letne€ {3, 4}. By (2), v.(GG) > 3. If n = 3, then V(G) is an LDS
of GG, so 'yL(GG) < 3 and hence 7. (GG) = 3. If n = 4, then again V(G)
is an LDS of GG, so ’yL(GG') < 4. If G e {K,, K, K 3 K, 3}, then by
Propositions 1 and 2, v.(GG) = 4. So assume G ¢ {K4, K4, K13, K13}

Figure 3 illustrates an LDS of GG for all remaining non-isomorphic
graphs G of order four. The darkened vertices represent the LDS. Since
each has an LDS of cardinality three, 7,(GG) < 3. Hence for these graphs,
1.(GG) =

Again by Propositions 1 and 2, for G € {Ky, K4, K1,3, K13}, 7.(GG) =
4. Assume that G is a graph of order n such that v, (GG) = 3. We only
need to show that n € {3, 4}. Clearly n > 3 by part (2) of this proof.
Let L be a 4,(GG)-set. If L C V(G) or L C V(G), then it follows that
n = 3. Hence assume that LN V(G) # @ and LN V(G) # 0. Without loss
of generality, let L = {z, y, Z}.

Assume first that Z € {Z, 7}, and without loss of generality, Z = Z. Then
{z} -1 V(G)\{z, F}in GG, implying that there is at most one vertex in
V(G)\{Z, 7} in GG. Hence n = 3.

Assume that Z ¢ {Z, 7}. Thus, {Z} =, V(G)\{Z, 7, Z}. This implies
that there is at most one vertex in V(G)\{Z, 7, Z}. Hence,n < 4. O
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Figure 3: LDS of GG when n =4 and G ¢ {Ky, K4, K13, K13}

3 Bounds and Realizability
We give lower and upper bounds on v.(GG) in terms of v (G) and . (G).

Proposition 4 For any graph G, max{v.(G), 7.(G)} < 7.(GG) < 1.(G)+
7L(G).

Proof. By Proposition 1, if G = K,, then max{y.(G), 1.(G)} = n =
7L(GG) € 2n — 1 = 7.(G) + 7..(G). Thus, we may assume G is not
complete. Let D be a v (GG)-set, and let D; = DNV(G) and D, =
DNV(G). Assume, without loss of generality, that v(G) > v.(G). If D,
locating-dominates G, then we are finished. So assume there exists a set
T C V(G) such that T is not locating-dominated by D;. Thus, T is located
and/or dominated by Dp. Also, each vertex in D, is adjacent to at most
one vertex in T. Thus, |T| < [Dz|. But D; UT is a locating-dominating set
of G. So v.(G) < |D1UT| = |Dy| +T| < |Di| + |De| = |D] = 7.(GG).

For the upper bound, let S; be a y.(G)-set and S be a v, (G)-set, and
S = 851U 8,. Also, let z € V(G)\S; and 7 € V(G)\S,. Then,

Ne(z)nSu{z}, ifzTES:

Neg(z) = { Ng(z) N Sy, otherwise '™

N@)={ Ve®nSU{y}, ifyes
GG\Y Nz(7) N Sa, otherwise.

Since S; and S, _locating-domirlgte G and G, respectively, it follows that
S is an LDS of GG, Hence v,(GG) < |8] = [S1] + |S2| = 72(G) + 7..(G).
m}
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Let a = 4(G) > 7(G). By Proposition 4, 7.(GG) < 2a. We have not
been able to find a family of graphs that achieve this upper bound, but we
note that for G = Ps, 7.(G) = 2 > 7.(G) and 4L (GG) = 4 attaining the
bound. Moreover, we conclude this paper by showing that there exists a
graph G with v, (G) = a and 4L(GG) = b for all integers a and b such that
a<b<2a-1.

Proposition 5 For positive integers a and b such that @ < b < 2a -1,
there ezists a graph G such that v(G) € 7L(G) = a and 7.(GG) = b.

Proof. Given a and b such that @ < b < 2a — 1, we give a graph G with
vL(G) = a and y.(GG) = b. Let m = b—a+1land G = (a—-m)K; U mKa.
Clearly, 72 (C) < 72(G) = a. We wish to show that v, (GG) = b = m+a—1.

To aid in our discussion, we label the vertices of G as follows. Let Z =
{z|1 < i < a—m} be the set of isolates. Let the m edges be labeled
ziyifor 1 <i<m,andlet X = {z;|1 <i<m}andY = {y;|1 <
i < m}. Note that for each i where 1 < i < m, Ngglzi] = {zi, v, Zi},
Nglyil = {zi, v, T}, NgglZi] = {z:} UX UZUY\{%;}, and Nz (:]) =
{;} UY UZ U X\ {%:}. Also, for 1 <i < a-m, Nyg[z] = {2,%} and
NG‘(?[Z"] =XuYu Zu {zi}.

Let L=Z U X UY\ {7} Then Ngg(m)NL={z1}. For2<i<m,
Ngg(y)NL = {z:, 7;} and Ngg(@:)NL = {z:} U Y\ {7, %:} And for1 <
i S a—m, Nog(z)NL = {x} U Y\{7}. Finally, Noz(@)NL = 7\ {7}
and N z(T1) N L = {1} U Y \ {7} Since every vertex in V(GG)\ L
has a unique non-empty neighborhood in L, L is an LDS of GG. Thus,
(GG L|Ll=a-m+m+m—-1=a+m=-1=b

Let L be a v, (GG)-set. First note that [LN(Z U Z)| 2 |Z|=a-min
order to dominate Z. Note also that to dominate z;, |LN {z:, i, Zi}| > 1,
and to dominate v, |L N {zi, i, T} 2 1.

To show that v.(GG) > b, it suffices to show that there exists at most
one i such that |LN{z;, i, Fi, T;}| = 1. For the purposes of contradiction,
assume that |LN{z;, vi, T, 7;}| = 1 and |LN{z;, y;, T4, F;}| = 1 for some
i # j. Since |[LN {z;, v, T:}| = 1 and |[LN{x;, %, F;}| = 1, it follows that
Ln{z;, %, T, 3;} C {zi, v} Similarly, L0 {z;, y;, Tj, §;} € {z;,y;}.
Without loss of generality, assume that L N {z;, v, T, ¥;} = {z:}. Then
Ngg(@;)nL = V(G)N L. Moreover, V(G)N L # 0 because 7; is dominated
by L. Since neither Z; nor ; is in L and exactly one ofzjand y; isin L, it
follows that No5(7;)NL=LN V(G) or Ngs@Z;)NL=Ln V(G). Hence
Ngg(@;) N L = Ngg(@;) N L or Ngg(@:) N L = Ngg(Z;) 0 L, contradicting
that L is an LDS.
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Hence |LN{z;, yi, Ti, ¥;}| = 2 for 1 < i < m, except for possibly one j
where |LN{zj, y;, Zj, §;}| = 1. Thus, 7L(GG) = |L| > 2(m—1)+1+a—
m=2m-2+1+a—m=m+a—1=>. Hence 7,(GG) = b, completing
the proof. D
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