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Abstract

A graph G has a representation modulo n if there exists an in-
jective map f: V(G) — {0,1,...,n — 1} such that vertices u and v
are adjacent if and only if f(u) — f(v) is relatively prime to n. The
representation number rep(G) is the smallest n such that G has a
representation modulo n. In 2000 Evans, Isaak, and Narayan deter-
mined the representation number of a complete graph minus a path.
In this paper we refine their methods and apply them to the family
of complete graphs minus a disjoint union of paths.
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1 Introduction

Let G be a finite graph with vertices {v;,...,v,}. A representation of G
modulo n is an assignment of distinct labels to the vertices such that the
label a; assigned to vertex v; is in {0,1,...,n — 1} and such that a; —
a;j and n are relatively prime if and only if v; and v; are adjacent. We
call {a1,...,a,} a representation of G modulo n. Erdés and Evans [3]
showed that every finite graph can be represented modulo some positive
integer. This result was used to give a simpler proof of a result of Lindner,
Mendelsohn, Mendelsohn, and Wolk [9] that any finite graph can be realized
as an orthogonal Latin square graph. The representation number of a graph
G, rep (G), is the smallest n such that G has a representation modulo n.
Modular representations have appeared in several recent publications.
As part of an existence proof, Erdés and Evans [3] established a general
upper bound for the representation number of a graph. Narayan [10] later
refined this bound by proving that a graph of order r > 1 can be represented
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modulo a positive integer less than or equal to the product of the first 7 —1
primes greater than or equal to 7 — 1, and this bound was shown to be the
best possible.

The determination of rep(G) for an arbitrary graph G is a very dif-
ficult problem indeed. Evans, Isaak, and Narayan [6] showed that the
determination of representation numbers for many disjoint unions of com-
plete graphs is dependent upon the existence of sets of mutually orthogonal
Latin squares. Recently Evans [4] used linked matrices and distance cov-
ering matrices to obtain new results involving representation numbers for
the disjoint union of complete graphs.

Only a few papers have been written on graph representations. The
initial theory was developed in [5]. In [13] the question of how many prime
factors, counting multiplicity, n must have for a given a graph G to be rep-
resentable modulo 7 is partially answered in terms of a type of edge labeling
of the complement of G. The closely related concept of the dimension of a
graph is extensively studied in (8] and [12]. A survey of the tools used to
work on graph representations, as well as several results, can be found in
(7).

Evans, Isaak, and Narayan determined the representation number of a
complete graph minus a path [6]. In this paper we refine their methods
and apply them to the family of complete graphs minus a disjoint union
of paths. Note that in this family of graphs the complement G is disjoint
union of paths along with union a set of isolated vertices.

2 Background

The problem that has received the most interest is the following suggested
in [3].

Problem 1 Given a graph G, determine rep(G). More generally, given a
class of graphs, determine rep(G) for each graph G in this class.

As an example, consider the graph G in Figure 1. The reader can easily
verify that the labels {0,1,2,5,7}, assigned to the vertices of G, form a
representation of G modulo 105. Thus rep(G) < 105. Equality will follow
from Theorem 4 and Lemma 6.
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2
Figure 1. A representation modulo 105.

We restate a short list of known results that characterize graphs repre-
sentable modulo certain types of integers.

Theorem 2 A graph is representable modulo a prime if and only if it is a
complete graph.

Theorem 3 A graph is representable modulo a power of e prime if and
only if it is a complete multipartite graph.

Theorem 4 If G is representable modulo n, and p is a prime divisor of n
then p 2 x(G).

We have the following corollary where w(G) is the size of the largest
complete subgraph in G.

Corollary 5 If G is representable modulo n, and p is a prime divisor of n
then p > w(G).

We restate Corollary 2.12 from Evans, Isaak, and Narayan [6] in the
following lemma Here p;.; is the smallest prime greater than the prime p;.

Lemma 6 If G contains a K, + K1 and p; is the smallest prime satisfying
Pi 2 x(G) then rep(G) > pipit1-+pi + m— 1.

3 Complete graphs minus disjoint paths

In this section we investigate a complete graph minus a disjoint union of
paths Ky, — Py, — Py, —+++— P, . Asnoted in [6] the lower bound for K, — P,
follows from Corollary 5 and Lemma 6. Note that if ny +ny + ---n, =
N, W(Km — Ppy — Py, —+-- P,.) 2 w(Kpm — P,). Hence our approach for
lower bounds will essentially be the same in the case for K,, — P,. In
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6] the upper bounds for rep(Km — Pr) were obtained by constructing an
explicit representation using a table of coordinates. By modifying this
table we are able to obtain upper bounds for certain graphs in the family
K — Py, — Pa; — -+ — P,,,. We demonstrate this refined approach in the
following example.

Example 7 Using the methods of [6] (inverting the rows) we present a
coordinate representation for G = K¢ — Ps. We note that since G contains
a complete subgraph of size 6 — 5 + [%] =4, p;=5and piy1 =17.

ai/p; | 517
(751 00
Qa 1)1
as 112
aq 212
as 213
Qg 313

We modify the last two labels to obtain a representation for the graph
G=K¢—- P —Ps.

aifp; | 5|7
ai 00
ag 111
az 112
Qg 2|2
as 31/3
ag 314

We start by examining the case of a complete graph minus two disjoint
paths.

Theorem 8 Letm >n >3 and m—n+ [%’-] + [922] wheren =ny+ng. If
k is not prime then rep(Km — Pn, — Pn;) = piPi+1 where p; is the smallest
prime greater than or equal to k.

Proof. When n > 3, K,, — P, — Pn, contains K3 + K and a complete
graph of size m —n + [2] + [%]. So by Lemma 6, we have rep(Km —
Pn, — Pp,) 2 piPis1-

Next we show that K, — P, — Py, is representable modulo p;p; 1. We
will start with a coordinate representation f for K, — P, and then modify
it to form a coordinate representation g for Ko — P — Pp,.
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We give a coordinate representation f with respect to p; and p;; to the
vertices K, — P, as follows. Let v1,...,v, be the vertices of the removed
path. Then we assign coordinates f(v;) = (i —1,i—1)fori=1,..,m—n
and f(u;)= (m—-n—-1+|§|,m-n-1+[§]) fori=1,...,n.

We form a new labeling g as follows. The labels for g(v;) = f(v;) for
all i =1,..,m —-n+n;. Then g(v;) = f(viy1) foralli =m—n+n; +
1,..,m—n+n; +ny — 1. Finally we define g(v,,). If g(vm—1) = (t,t) then
9(vm) = (t,t + 1) and if g(vm-1) = (¢, ¢ + 1) then g(vm) = (¢t + 1,t + 1).
Then g is a coordinate representation for K, — P, — F,,, modulo p;p;41.
Hence rep(Km — Py, — Pp,) =rep(Km — P,) = pipiy1. W

4 Conclusion

Examination of this refinement reveals we can modify the representation
coordinate table for K,, — P, whenever there is ‘room’ to include the label
for v,,,. That is the label for v, must have its first coordinate less than p;
and its second coordinate less than p;;+;. Another possibility is an entirely
different set of coordinates where the first coordinates are all less than p;
and the second coordinates are all less than p;;,. It would be an interesting
problem to determine necessary and sufficient conditions for the coordinates
to fit within the table.

It turns out that this method can be generalized to determine repre-
sentation numbers for all K, — P,, — Pn, — -+ — P, where n, > 3. We
suggest a possible approach for solving the problem. In some cases the
representation numbers are the same for various partitions of the removed
path.

We illustrate this in the following example.

Example 9 rep(K20—Py) = rep(K20—FPs—P,) = rep(K20—P3—P3—P3) =
Tep(Kgo - P3 - Pg - P2 - Pz) =17-19 = 323.

Since each of the graphs contains a complete graph on 15 vertices. It
follows by Corollary 5 and Lemma 6 that each has a representation number
of at least 17 - 19 = 323. The coordinate representation found below shows
rep(Kao0 — Py) < 323 and hence rep(Kzo — Pp) = 323.
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ais 11 12
a4 | 12 ] 12
als 13113
Q16 13|14
a7 14 ] 14
aig | 15 15
aig 15| 16
azo 16 | 16

Replacing the last eight rows gives a representation for Kog — P — Py —
P, — P,

a3 11 ] 12
Q14 12 ] 12
Q15 1313
aig 13114
a7 14| 15
a1g | 16 | 15
aig 16 | 16
a20 16 | 17

Hence we have Tep(Kzo - Pg) = ’I‘ep(Kzo - P5 - P4) = ‘I"ep(Kgo - P3 -
P3 - P3) = T’Ep(Kzo - P3 - P2 - P2 - P2) =17-19 = 323.

It would be interesting to see if this technique can be used for the general
family of complete graphs minus a disjoint union of paths. We conclude
with the following question.

Question: If n = n; +ng + - - +n,, when is it true that rep(K,, — P,) =
Tep(Km — Ppy — Ppy, — -+ = Py )?
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