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Abstract

We investigate the problem of decomposing the edges of a connected
circulant graph with n vertices and generating set S into isomorphic
subgraphs each having n edges. For 8-regular circulants, we show
this is always possible when s + 2 < n/4 for all edge lengths s € S.
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1 Introduction

A circulant graph G = CIRC(n;S) is a Cayley graph whose underlying
group is Zy,. The edge set E(G) has cardinality n|S|/2 and is defined by
{z,y} € E(G) @ x—y € S, where S C Z\ {0}. The set S is called the
generating set of G, and we require s € S & —s € S. This insures that
G is an undirected graph. If we write § = {+s;,%s3,...,+s;}, then it is
easy to see G is a connected graph if and only if Z, is generated by S,
equivalently, GCD(n, s, s2,...,8:) = 1. We may assume without loss of
generality that s; € {1,2,...|n/2|}fori=1,...,t,and write S = ST+ U S~
where S* = {s; : i =1,2,...,t} and S~ = {—s; : i = 1,2,...,t}.
Consequently to simplify terminology, we denote S = {+s;, %so,..., +s,}
as simply S = *{s, 83,...,8:}. We say an edge {z,y} is generated by s if
r—y=sorz—y=—s. Asubgraph H is generated by s if every edge in
H is generated by s. Clearly, if the additive order of s (denoted ORD(s))

JCMCC 72 (2010), pp. 197-209



is 2, then s generates a 1-factor (or l-regular spanning subgraph) and if
ORD(s) > 2, s generates a 2-factor of G.

In general, a Hamilton decomposition is a partition of the edge set into
k Hamilton cycles if the graph is 2k-regular or k¥ Hamilton cycles and a
perfect matching if the graph is (2k + 1)-regular. Alspach (3] conjectured
that every connected 2k-regular Cayley graph on a finite abelian group
admits a Hamilton decomposition. For k = 1, the conjecture is trivially
true, and Bermond et. al. [6] resolved the conjecture when k = 2.

Theorem 1.1 (Bermond, Favaron, Maheo [6]) A connected 4-regular Cay-
ley graph on a finite abelian group has e Hamilton decomposition.

Dean considered k¥ = 3, for circulant graphs, and proved the following
result.

Theorem 1.2 (Dean (7, 8]) Let G = CIRC(n; S) be a connected 6-regular
circulant graph. If either n is odd, or both n is even and some element
s € S erists having order n, then G has a Hamilton decomposition.

2 General n-isofactorizations

If F C E(G), where F # @ and E(G) denotes the set of edges of a graph
G, then the subgraph of G induced by F, denoted (F), is defined to be the
graph having as vertex set all vertices of G which are incident with at least
one edge of F, and whose edge set is F'. Given a graph G, a partition of
the edge set E(G) into subsets so that

EG)=E,UE U---UE

where |E;| = |E;| and E; N E; = @ for all i # j is called an isomorphic
factorization of G provided the t subgraphs induced on the edge sets (E:),
i=1,2,...,t are pairwise isomorphic. If G has an isomorphic factorization
into subgraphs with k edges (each being isomorphic to (E;)), we say G has
a k-isofactorization into the subgraph (E;).

In 1982, Alspach ([2],[3]) conjectured that every connected circulant graph
of even valency has a k-isofactorization for all k dividing [E(G)|. The
following two theorems give some recent results on k-isofactorizations.

Theorem 2.1 (Alspach, Dyer, Kreher [4]) If d|n, then CIRC(n; S) has an
28l _isofactorization unless it is the case that n is even, n/2 € S and n/d

2d
18 odd.
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Theorem 2.2 (Alspach, Dyer, Kreher [4]) For a connected circulant graph,
G = CIRC(n; §) of order n, if k divides |E(G)| and either k properly di-
vides n or k divides |S|, then there exists a k-isofactorization of G.

The case when k = n is still vastly unresolved. Our goal is to find an
n-isofactorization of G = CIRC(n; S) into 1-2‘53 subgraphs. We need only
consider circulant graphs with even valency, for otherwise |S|/2 is not an
integer. For odd n, G always has even valency (as s # —s mod n for all
8 € §), and for even n, we require n/2 ¢ S, for otherwise the valency would
be odd. As was just mentioned, it has been proved that the circulant graphs
of valencies 2, 4, and partially for valency 6, all admit n-isofactorizations, in
particular Hamilton decompositions. Additionally, the following is a direct
consequence of Theorem 2.1, using d = |S}/2.

Corollary 2.3 If G = CIRC(n;S) is connected with even valency, and
|S|/2 divides n, then G has an n-isofactorization.

Theorem 2.4 (Alspach, Dyer, Kreher [4]) Let G = CIRC(n; S) be a con-
nected circulant graph of order n with even walency. Partition S into 4-
subsets, namely two elements together with their inverses, so that S =
{£s1, £} U {*s3,£s4} U -+ U {&se_y1,%3,}. If, for each pair, the
GCD(n, si, Si+1) = 1, then G has a Hamilton decomposition.

PROOF. The circulant graph G; = CIRC(n; {+s;, +s;4,}) is connected if
and only if GCD(n, 8;, s;+1) = 1. Hence, by Theorem 1.1, there exists a
Hamilton decomposition of G;, for each i, =1,3,5,...,t — 1. Thus G has
a Hamilton decomposition. [ ]

Let C = CIRC(n;{+1}), the natural n-cycle. The edge joining vertex
z and vertex y in the circulant graph G is said to have length equal to
DISTc(z,y), the length of the shortest path from z to y in C. This
is easy to calculate as DIST¢(z,y) = |z — y| if we assume z > y and
z,y € {0,1,2,...,n— 1} C Z, the reduced residues modulo n. Note that if
ORD(s) = t, for some s € S, then s generates n/t cycles of length ¢ in G.
This leads to a trivial n-isofactorization of G if every s € S has ORD(s) = n,
i.e. s is relatively prime to n (in particular if » is prime).

Theorem 2.5 If G = CIRC(n; S) is a circulant graph, then there exists a
Hamilton decomposition of G when GCD(n,s) =1 for alls € S.

Theorem 2.6 (Liu [11]) Any circulant graph on 2p vertices, where p is a
prime, is Hamilton decomposable.

199



Theorem 2.7 (Liu [11]) Any circulant graph of order at most 15 is Hamil-
ton decomposable.

Let G; = (W4, E1) and Ga = (V, E») be graphs with vertex set V; and edge
set E; respectively. The cartesian product Gy x G2 is the graph having
vertex set V5 x V» and edge set,

{(z,z')(y,¥') : =y € E(G1) and &’ =¥/, or z =y and 2y’ € E(G2)}.

Theorem 2.8 (Aubert and Schneider [5]) Let K, be the complete graph
on n vertices. The cartesian product Km % K, can be decomposed into
2(m+n —2) Hamilton cycles if m+n is even and 3(m +n — 3) Hamilton
cycles and a perfect matching if m + n is odd.

Theorem 2.9 Let G = CIRC(dr;S) with S C H = (r) the unique sub-
group of indez v in Zar. Then G is isomorphic to T copies of G =
CIRC(d; §'), where ' = {2 :V s € S}.

PROOF. The the cosets of H in Z4, are H H +1,--- ,H + (r - 1). Define
G; = (H + 1) to be the subgraph of G induced on the elements in H +i.
It is elementary to show that the mapping ¢ : V(G:) — V(G') given by
¢ : z— (2 —1)/r is an isomorphism. |

For example the the map ¢ : V(G) — V(K3 x K7) given by
¢: v (v(mod 3), v(mod 7))

shows that the circulant graph G = CIRC(21; £{3,6,7,9}) is isomorphic
to K3 x K7 This is because 7 generates 7 cycles of length 3 in G and as
{3,6,9} C (3) we have G' = CIRC(21; *{3,6,9}) is isomorphic to three
copies of CIRC(7; £{1,2, 3}) = K7 by Theorem 2.9 . As 347 =10 is even,
there exists a decomposition of G into four Hamilton cycles by Theorem
2.8.

3 Valency 8: the n-isofactorization for small
lengths

The results in this section give a partial solution to the n-isofactorization
problem of G = CIRC(n;S) when S* = {s1,52,53,54} and ORD(s;) > 2
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for all 7. For the remainder of this paper, we shall assume that G is of this
form and s; < s3 < 83 < 84.

Consider a subset U C V(G) of vertices of G = CIRC(n; S). The subset

of edges
Fy={{z, z+s}: s€ S*, z €U}

is called the set of forward edges on U. Note that Fy = |, ¢y Fi(z) and if
G = CIRC(n; £{s1, 82, 83, 84}), then |F(;;| = 4 for all z € V(G).

Theorem 3.1 Any connected circulant graph of order n = 4z + 4 has an
n-isofactorization.

PROOF. As |S|/2 =4 | n, G has an n-isofactorization by Corollary 2.3. ®

Theorem 3.2 If G = CIRC(n;S) is a circulant graph of order n = 4z +
5, such that z > 5 and s < z for all s € St, then there exists an n-

isofactorization of G.

PROOF. Partition Z, = T U Vy U V; U V5, U V3, where

T = {0,1,z+2,2z+3,3z+4},

Vo = {2,3,...,z+1},
Vi = {z+3,z+4,...,2z+2},
Vo = {2z+4,2z+5,...,3z+3},

Vs = {3z+45,3z+86,...,4z +4}.

For i = 0,1,2,3, let X; = (Fy,), i.e. the subgraph of G induced by the
set of all forward edges on V;. Because each V; consists of £ consecutive
vertices, it is clear that Xy, X;, X2, and X3 are pairwise isomorphic, each
having 4z edges. In fact, ¢ : V; = V; defined by p: z — 2+ (j — i)(z + 1)
is the isomorphism. We consider two cases.

Casel: 1¢ S

Add the edges {0,s;} and {0,s2} to X; and add {0,s3} and {0,s4} to
Xs2. X; and X3 now have two connected components, for the restriction
s < z ensures that no edge has one end in V; and the other in V42 and
no edge in Fy, is incident with a vertex in V;;3 (subscript modulo 4). As
{{0,51},{0,2}} and {1,1 + s;} are vertex disjoint, add {1,1 + s2} to X;
and add {1,1 + s4} to X2 so that X; and X, now have three connected
components each. Add the remaining two forward edges, {1,1 + s;} and
{1,1+ s3}, to Xo. To preserve isomorphism, add {z + 2,z + 2 + s1} and
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{z+2,z+2+s3} to X1, add {2z +3,2x+3+ 51} and {22+ 3,22+ 3+ s3}
to X, and add {3z + 4,3z + 4 + s1} and {3z + 4,3z + 4 + s3} to Xs.
There now remain the last two forward edges from each of the vertices in
T\ {0,1}, a total of six edges. Add the two forward edges from 3z +4 and
a single edge from 2z + 3 to Xo. Lastly, add the two forward edges from
z + 2 and the remaining single edge from 2z + 3 to X3. A simple check
shows this exhausts all forward edges and the resulting isofactors are in the
form of three components, one of size 4z + 2, a 2-path, and a single edge.

Case 2: 1€ S

Let S* = {1,s,83,54} Where 1 < sz < 83 < s¢. Add {0,s3}, {0,s4},
and {1,2} to X; and add {0, sz}, {1,1+ 52}, and {1,1+ s3} to X,. Add
{z+2,2+2+s2}, {z+2,2+2+s3}, and {2z +3,2z+ 3+ 33} to X3 and
add {3z +4,3z+4+ sz}, {3z 44,3z +4+s3}, and {22+ 3,22+ 3+ 52} to
Xo. Next, add {z+2,z+ 3} to Xo, {2z +3,2z+4} to X1, {3z +4, 3z+5}
to X2, and {0,1} to X3. Lastly, add {1,1 + s}, {x + 2,2+ 2 + 54},
{2z + 3,2z + 3 + 84}, and {3z + 4,3z +4 + s4} to Xo, X1, X2, and X,
respectively to achieve the desired result. [ |

Theorem 3.3 If G = CIRC(n; S) is a circulant graph of order n = 4z +
6, such that z > 5 and s < z for all s € S*, then there ezists an n-

isofactorization of G.

PROOF. Partition Z, = T U Vp U V; U V5 U V3, where

T = {0,1,z+2,2z+3,2x+4,3z +5},
Vo = {2,3,...,$+1},

i = {z+3,z+4,...,2c+2},

Vo = {2z+5,2z+6,...,3c+4},

Vs = {32+6,3z+7,...,4z+5}.

As before, the induced subgraphs X; = (Fy,) for 0 < ¢ < 3 are pairwise
isomorphic, each having 4z edges. It remains to distribute the 24 edges in
Fr. Once again, we consider two cases.

Casel: 1 ¢ S

We add three disjoint 2-paths to each X; as follows. Add {0,s:1}, {1,1+
s1}, {0,s3}, and {1,1 + s3} to X; and add {0, s2}, {0, s4},{1,1+ s2} and
{1,1+ 84} to Xo. Likewise, add {2z + 3,2z + 3+ s1},{22 + 3,22+ 3 +
ss}, {2z+4,2z+4+s:} and {2244, 2z+4+ 83} to X3 and add {2z+3,2z+
3+32}, {22 +3,22 4+ 3+ 54}, {22+ 4,2z + 4+ 52} and {22+ 4,22+ 4+ 54}
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to Xo. It remains to distribute the 8 edges in Fz42,3:45). Clearly, adding
e1,€2 € Fiz 9} to X3, and adding Fiz42) \ {e1, €2} to X3, ensures X, and
X3 each have three disjoint 2-paths. Likewise, adding e;, e, € Fiaz45) to
Xo and Fi3z45) \ {e1,e2} to Xi, gives the desired result.

Case 2: 1€ S

We add three pairs of edges to each X; = (Fy,) as shown in Figure 1, which
depicts (for ease of visualization) the edges in Fygy U F(y) \ {0, 1} as vertex
disjoint. [ ]

Theorem 3.4 Let G = CIRC(n;S) be a circulant graph of order n =
4z + 7 where £ > 5 and s < z, for all s € S, then there exists an n-

isofactorization of G.

PROOF. Partition Z, = T U Vo U V; U V5 U V3, where

T = {0,1,z+2,z+43,2z + 4,2z + 5,3z + 6},
Vo 2,3,...,z+1},

12} {z+4,2+5,...,2z+ 3},

Vo, = {2z+6,2z+7,...,3z+ 5},

Va = {3z+7,3z+8,...,4z +6}.

As before, the induced subgraphs X; = (Fy,) where 0 < i < 3 are pairwise
isomorphic, each having 4z edges. It remains to distribute the 28 edges in
Fpr. We consider two cases.

Casel:1¢ S

Add {1,1+ s3} and {1,1 + 34} to Xo, add {z + 3,z + 3 + s3} and {z +
3,z 4+ 3+ 54} to Xy, {20+ 5,22+ 5+ s3} and {2z + 5,22 + 5 + s4} to
Xz, and {3z + 6,3z + 6 + 33} and {3z + 6,3z + 6 + s4} to X3. To the
subgraph X, add {1,1 + s} and {1,1 + s2}. Select e;,e2 € Fyq} that
are not incident with 1 + s; or 1 + s and add e; and e; to X;. Add
Fioy \ {e1,e2} to X and add {22+ 5,2z +5+5,} and {22 +5,2x+ 5+ s2}
to Xo. Select e1,e2 € F(g,44) that are not incident with 2z + 5 + s;
and 2z + 5 + s2, and add e; and e; to Xo and add F{z,.4} \ {e1,€2} to
X3. The vertices z + 3 4+ s; and = + 3 + s2 may be incident with at most
two edges in F{;42) = {e1,ez,e3,e4}. As such, it is always possible to
relabel the edges in F(, ) so that {{z + 3,z + 3 + 3;}} U {e;, €2} and
{{z+3,z+ 3 + s2}} U {e3, e4} are vertex disjoint. Hence, add the former
set to X2 and the latter to X3. Finally, add {3z + 6,3z +6 + 51} to X,
and {3z + 6,3z + 6 + s2} to X to achieve the desired result.
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Figure 1: The n-isofactorization illustrating Case 2 of Theorem 3.3. The
arcs labeled Fy, denote the set of forward edges on the vertices in V;, where

1=0,1,2,3.
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Case2: 1€ S

Once again, let S* = {1,s2,53,54} and 1 < 83 < s3 < s;. Add {0, s3},
{0,s4}, and {1,2} to Xy, add {z + 2,z + 2+ s3}, {z + 2,z + 2+ 54}, and
{1,1+s2} to X2, add {2+3,z+4}, {z+3, z+3+s;}, and {22+5, 2z+5+32}
to X3, and add {2z+4, 2z+4+s3}, {22+4, 2r+4+5,}, and {2245, 22+6} to
Xo. Finally, add the remaining four edges in each of F1,z42)s Flz+3,22+4)
F(2r45,3z+6), and F{az 46,0} to Xo, X1, X2, and X3 respectively, to achieve
the desired result. a

Theorem 3.5 An 8-regular circulant graph G = CIRC(n; +{s1, s2, 53,54})
where n < 23, has an n-isofactorization.

PROOF. We divide into three cases on the value of n.
Case 1: n = 0,3 (mod 4)

This is resolved in Theorem 3.1 when n = 0 (mod 4) or by Theorems 2.7
and 2.5 when n =3 (mod 4).

Case 2: n =1 (mod 4)

Write n = 4z + 5. If z € {1,2,3}, then G = CIRC(n; S) is Hamilton
decomposable by Theorem 2.7 or Theorem 2.5. If z = 4, then n = 21,
S* must be a 4-subset of {1,2,3,4,5,6,7,8,9,10}. However, the only el-
ements which are not co-prime with 21 are 3,6,7,9. Now if St contains
two or more elements relatively prime to 21, then we may remove one
of the Hamilton cycles generated by them, and are left with a connected
valency 6 circulant of odd order which has a Hamilton decomposition by
Theorem 1.2. If S+ contains exactly one element relatively prime with
21, then S* contains a 3-subset of {3,6,7,9}. These cases are Hamil-
ton decomposable by Theorem 2.4 except when {3,6,9} C S*. The case
G = CIRC(21;+{3,6,7,9}) = K3 x K7 has a Hamilton decomposition by
Theorem 2.8. The remaining cases on G = CIRC(21; +{l, 3,6,9}), where
1€{1,2,4,5,8,10} are resolved in Table 2 of Section 4.

Case 3: n =2 (mod 4)

If n = 4z + 6 and = = 1,2,83,4, then n € {10,14,18,22}. For n €
{10, 14,22}, we are guaranteed Hamilton decompositions by Theorem 2.6
or by Theorem 2.7. When n = 18, and S* contains two or three ele-
ments co-prime with 18, there exists a Hamilton decomposition by The-
orem 2.4. The graph G = CIRC(18;+{2,4,6,8}) is isomorphic to two
copies of G* = CIRC(9;+{1,2,3,4}) (namely the subgraphs induced on
the even and odd vertices of G respectively) by Theorem 2.9. As G* has a
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9-isofactorization by [10} or a Hamilton decomposition by Theorem 2.4, we
can create four pairs of subgraphs of G, each pair isomorphic to 2 copies
of a 9-isofactor of G*, and the isofactorization of G into four subgraphs
is complete. There exist Hamilton decompositions for the 18 cases where
s1 € {1,5,7}, s2 = 3, and s3, 84 € {2,4,6,8} by Theorem 2.4. Therefore,
the remaining cases on 18 vertices are s; € {1,3,5,7} and s; € {2,4,6,8}
for i = 2,3,4. See Table 1 of Section 4 for Hamilton decompositions when
s1 € {1,3} and apply the automorphisms a : z — 5z and g : ¢ — Tz to
CIRC(18, {1, s3, 83, 54}) to resolve the remaining cases. [ ]

Combining Theorems 3.1 through 3.5, and noting that s < 3 —2 = s < z,
we have the main result:

Theorem 3.6 If the mazimum edge length in a connected 8-regular circu-
lant graph G of order n is at most  —2 , then G has an n-isofactorization.

4 Data

This section provides Hamilton decompositions for the remaining cases on
18 and 21 vertices which were not covered in Theorem 3.5. Employing a
back-tracking algorithm in a random computer search, Hamilton decompo-
sitions were found for the case when n = 18 and s; = 3, and the cases for
n = 21. Hamilton decompositions when n = 18 and s; = 1 were found us-
ing ad-hoc methods. An example is given for each of these cases in Table 1
and Table 2.
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Table 1: Hamilton cycle decomposition {Hy, Hp, H3, Hy} for Case 3 of

Theorem 3.5.
CIRC(18; +{1, 2,4,6})
H,=(0,1,15,3,9,13,17,5,11,7,6, 10,4, 16,12, 8,2, 14)
H;=(0,2,3,1,17,15,13,11,9,7,5,4, 6,8, 10, 12, 14, 16)
H; =(0,4,8,14,15,9,5,1,13,7,3,17,11,10, 16, 2, 6,12)
Hy=(0,6,5,3,4,2,1,7,8,9,10, 14, 13,12,11, 15, 16, 17)
CIRC(18;+{1,2,4,8})
H,=(0,1,11,3,183,5,15,7,17,9,8, 16,6, 14,4,12,2, 10)
H; =(0,4,8,12,16,2,3,17,13,9,5,1,15,11,7,6, 10, 14)
Hs = (0,2,4,6,8,10,12,13,11,9,7,5,3, 1,17, 15, 14, 16)
H,=(0,8,7,3,4,5,6,2,1,9,10,11,12, 14, 13,15, 16, 17)
CIRC(18;+{1,2,6,8})
H, =(0,1,13,3,11,5,17,7,15,9, 8, 14,6, 16,4, 10, 2, 12)
H, =(0,10,11,1,7,183,5,15,3,9,17, 16, 8,2, 14, 4, 12, 6)

Hs = (0,2,4,6,8,10,12,13,11,9,7,5,3,1, 17, 15, 14, 16)
H,=(0,8,7,6,5,4,3,2,1,9,10, 16, 15,13, 14,12,11,17)
CIRC(18; £{1,4, 6,8})

H; = (0,1,13,3,11,5,17, 7, 15,9, 8, 14,6, 16, 4, 10, 2, 12)
H, = (0,4,8,12,16,2,3,17,13,9,5,1,15,11,7,6,10, 14)
H; = (0,2,4,6,8,10,12,13,11,9,7,5,3,1, 17,15, 14, 16)
H, =(0,8,7,6,5,4,3,2,1,9,10,16, 15,13, 14,12,11,17)
CIRG(18; £2,3.4,6]

4,
1,
)
H, = (0,14,10,8,5,1,16,13,15,3,17,11,7,9,12,6,2, 4)
Hy = (0,12,14,17,15,11,9,3,5,2,8,6,4,1,13,7, 10, 16)
H,=(0,6,9,5,7,3,1,17,13,10,4,8,11,14, 2,16, 12, 15)
CIRC(18; £{2,3,4,8))

H; = (0,10,12,15,17, 14,4, 6,8,16,2,5, 1,9, 13,11, 7, 3)
H, = (0,8,10,2,6,3,17,9,12,14,11,1,16,13,5,15,7, 4)
Hy = (0,16,12,2,17,1,4,8,11,15,13,3,5,9,7, 10, 6, 14)
H,=(0,2,4,12,8,5,7,17,13,10, 14, 16,6,9,11,3,1, 15)
CIRC(18 £{2,3,6,8})

H; = (0,12,4,10,8,16,13,7,17,1,11, 14, 2,5, 15, 3,9, 6)
H2=(081197113 15,12, 6,14,4, 16,10,2,17,5,3)
H3 = (0,10,13,5,8,6,3,11,17,14,12,2,4,7,15,9, 1, 16)
Hy = (0,15,17,9,12,10,7,5,11,13,3,1,4,6,16, 14,8, 2)
CIRC(18; +{3,4,6,8})

H; = (0,3,7,10,14,17,13,16,1,11,15,5,9,6, 2, 8,4, 12)
H, = (0,15,12,16,10,6,3,9,13,1,4,7,11,8,5,17, 2, 14)
Hs = (0,6,12,8,14,4,16,2,5,1,7,15,9,17,11,3, 13, 10)
Hy=(0,4,10,2,12,9,1,15,3,17,7,13,5,11, 14,6, 16, 8)

2,
6})

H, =(0,3,6,10,12,8,14,16,4,7,1,15,9,13,11, 5,17, 2)
1,16
5,1

207



Table 2: Hamilton cycle decomposition {H1,Ha, H3, Hy} for Case 2 of
Theorem 3.5.
CIRC(21; £{1,3,6,9})
H, = (0,15,16,19,13,1,10,4,7,6,12,18,17,14,2, 20,11,5,8,9,3)
H, =(0,6,5,2,8,14,15,3,4,1,7,13, 16,10, 19, 20,17, 11, 12, 9,18)
H; =(0,9,10,7,8,20,5,17,16,1,19,4,13,14,11,2,3, 18,6,15,12)
Hy = (0,20,14,5,4,16,7,19,18,15,9,6,3,12,13,10,11,8,17, 2, 1)
CIRC(21;+{2,3,6,9})
H, = (0,12,14,20,11,17,2,4,13,16,18,9,15,6,8,5,7, 19,10, 1, 3)
H; = (0,6,3,9,12,18,20,2,14,5,11,8,17,15,13,1,4,10,7, 16,19)
Hs = (0,9,7,4,16,1,19,13,10,8,2,11, 14,17, 20,5, 3, 12,6,18,15)
H, = (0,18,3,15,12,10, 16, 14,8, 20,1,7,13,11,9,6,4, 19, 17, 5, 2)
CIRC(21;+{3,4,6,9})

H, = (0,17,13,16,7,19,4,8,2,14,10,6,9, 15,12, 3,20, 11, 5,1,18)
H, = (0,9,18,15,6,12,8,5,2,11,17,14, 20, 16,4, 1,13,19,10,7,3)
Hs; = (0,4,13,10,16,19,1,7,11,14,8,20,2,17,5,9,12, 18,6, 3, 15)
H, = (0,12,16,1,10,4,7,13,9,3,18,14,5,20,17,8,11, 15,19, 2, 6)

CIRC(21; £{3,5,6,9})

T, = (0,15,12,7, 1,4, 20,11, 14,19, 10, 16,1
H, = (0,12,6,15,18,3,9,14,17,11,16,19,1
H; = (0,6,18,12,9,4,19,7,13,10,15,3,8, 1
H, = (0,18,13,4,16,7,10,5,11,6,1,19,3, 1
CIRC(21; £{3,6,8,9})

H, = (0,18,15,9,12, 20,2, 14,17,4,19,6,3,11,5,8,16,7, 10, 1, 13)
H, = (0,6,18,3,12,15,2,5,13,7,4,10,16,1,19,11,14,20,8,17,9

Hs = (0,15,3,16,19,13,4,1,7,20,11,8,14,5,17,2,10,18,9,6,12)
H, = (0,8,2,11,17,20,5,18,12,4,16,13,10,19,7,15,6,14,1,9,3

CIRC(21; £{3,6,9,10})

H, =(0,3,12,1,7,17,6,15, 18,9, 19, 16, 13, 10, 4, 14, 20, 2, 5,8, 11)
H, = (0,6,12,9,20,17,14,8,18,3,15,4,19,1,13,2,11,5,16,7,10

Hs = (0,12,15,5,20,8,19,13,3,14,2,17,11,1,10, 16,4,7,18,6,9)
H, = (0,18,12,2,8,17,5,14,11,20, 10,19, 7,13,4,1,16,6,3,9, 15)

3,8,5,17,2,18,9,6,3)
3,1,10,4,7,2,8,20,5)
1,2,5,14,20,17,1,16)
9,17,8,14,2,20,15,9

r
?
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