n-Isofactorizations of 8-Regular Circulant Graphs

Donald L. Kreher and Erik E. Westlund
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan
U.S.A. 49931

Abstract

We investigate the problem of decomposing the edges of a connected circulant graph with n vertices and generating set S into isomorphic subgraphs each having n edges. For 8-regular circulants, we show this is always possible when $s+2 \le n/4$ for all edge lengths $s \in S$.

keywords: circulant graph; isomorphic factorization; n-isofactorization, forward edge

1 Introduction

A circulant graph G = CIRC(n; S) is a Cayley graph whose underlying group is \mathbb{Z}_n . The edge set E(G) has cardinality n|S|/2 and is defined by $\{x,y\} \in E(G) \Leftrightarrow x-y \in S$, where $S \subset \mathbb{Z} \setminus \{0\}$. The set S is called the generating set of G, and we require $s \in S \Leftrightarrow -s \in S$. This insures that G is an undirected graph. If we write $S = \{\pm s_1, \pm s_2, \ldots, \pm s_t\}$, then it is easy to see G is a connected graph if and only if \mathbb{Z}_n is generated by S, equivalently, $GCD(n, s_1, s_2, \ldots, s_t) = 1$. We may assume without loss of generality that $s_i \in \{1, 2, \ldots \lfloor n/2 \rfloor\}$ for $i = 1, \ldots, t$, and write $S = S^+ \cup S^-$ where $S^+ = \{s_i : i = 1, 2, \ldots, t\}$ and $S^- = \{-s_i : i = 1, 2, \ldots, t\}$. Consequently to simplify terminology, we denote $S = \{\pm s_1, \pm s_2, \ldots, \pm s_t\}$ as simply $S = \pm \{s_1, s_2, \ldots, s_t\}$. We say an edge $\{x, y\}$ is generated by s if x - y = s or x - y = -s. A subgraph s is generated by s if every edge in s is generated by s. Clearly, if the additive order of s (denoted s)

is 2, then s generates a 1-factor (or 1-regular spanning subgraph) and if ORD(s) > 2, s generates a 2-factor of G.

In general, a Hamilton decomposition is a partition of the edge set into k Hamilton cycles if the graph is 2k-regular or k Hamilton cycles and a perfect matching if the graph is (2k+1)-regular. Alspach [3] conjectured that every connected 2k-regular Cayley graph on a finite abelian group admits a Hamilton decomposition. For k=1, the conjecture is trivially true, and Bermond et. al. [6] resolved the conjecture when k=2.

Theorem 1.1 (Bermond, Favaron, Maheo [6]) A connected 4-regular Cayley graph on a finite abelian group has a Hamilton decomposition.

Dean considered k = 3, for circulant graphs, and proved the following result.

Theorem 1.2 (Dean [7, 8]) Let G = CIRC(n; S) be a connected 6-regular circulant graph. If either n is odd, or both n is even and some element $s \in S$ exists having order n, then G has a Hamilton decomposition.

2 General *n*-isofactorizations

If $F \subseteq E(G)$, where $F \neq \emptyset$ and E(G) denotes the set of edges of a graph G, then the subgraph of G induced by F, denoted $\langle F \rangle$, is defined to be the graph having as vertex set all vertices of G which are incident with at least one edge of F, and whose edge set is F. Given a graph G, a partition of the edge set E(G) into subsets so that

$$E(G) = E_1 \cup E_2 \cup \cdots \cup E_t$$

where $|E_i| = |E_j|$ and $E_i \cap E_j = \emptyset$ for all $i \neq j$ is called an *isomorphic factorization* of G provided the t subgraphs induced on the edge sets $\langle E_i \rangle$, $i = 1, 2, \ldots, t$ are pairwise isomorphic. If G has an isomorphic factorization into subgraphs with k edges (each being isomorphic to $\langle E_i \rangle$), we say G has a k-isofactorization into the subgraph $\langle E_i \rangle$.

In 1982, Alspach ([2],[3]) conjectured that every connected circulant graph of even valency has a k-isofactorization for all k dividing |E(G)|. The following two theorems give some recent results on k-isofactorizations.

Theorem 2.1 (Alspach, Dyer, Kreher [4]) If d|n, then CIRC(n; S) has an $\frac{n|S|}{2d}$ -isofactorization unless it is the case that n is even, $n/2 \in S$ and n/d is odd.

Theorem 2.2 (Alspach, Dyer, Kreher [4]) For a connected circulant graph, G = CIRC(n; S) of order n, if k divides |E(G)| and either k properly divides n or k divides |S|, then there exists a k-isofactorization of G.

The case when k=n is still vastly unresolved. Our goal is to find an n-isofactorization of $G=\operatorname{CIRC}(n;S)$ into $\frac{|S|}{2}$ subgraphs. We need only consider circulant graphs with even valency, for otherwise |S|/2 is not an integer. For odd n, G always has even valency (as $s\not\equiv -s \mod n$ for all $s\in S$), and for even n, we require $n/2\not\in S$, for otherwise the valency would be odd. As was just mentioned, it has been proved that the circulant graphs of valencies 2, 4, and partially for valency 6, all admit n-isofactorizations, in particular Hamilton decompositions. Additionally, the following is a direct consequence of Theorem 2.1, using d=|S|/2.

Corollary 2.3 If G = CIRC(n; S) is connected with even valency, and |S|/2 divides n, then G has an n-isofactorization.

Theorem 2.4 (Alspach, Dyer, Kreher [4]) Let G = CIRC(n; S) be a connected circulant graph of order n with even valency. Partition S into 4-subsets, namely two elements together with their inverses, so that $S = \{\pm s_1, \pm s_2\} \cup \{\pm s_3, \pm s_4\} \cup \cdots \cup \{\pm s_{t-1}, \pm s_t\}$. If, for each pair, the $GCD(n, s_i, s_{i+1}) = 1$, then G has a Hamilton decomposition.

PROOF. The circulant graph $G_i = \text{CIRC}(n; \{\pm s_i, \pm s_{i+1}\})$ is connected if and only if $\text{GCD}(n, s_i, s_{i+1}) = 1$. Hence, by Theorem 1.1, there exists a Hamilton decomposition of G_i , for each i, i = 1, 3, 5, ..., t-1. Thus G has a Hamilton decomposition.

Let $C = \operatorname{CIRC}(n; \{\pm 1\})$, the natural n-cycle. The edge joining vertex x and vertex y in the circulant graph G is said to have length equal to $\operatorname{DIST}_C(x,y)$, the length of the shortest path from x to y in C. This is easy to calculate as $\operatorname{DIST}_C(x,y) = |x-y|$ if we assume x > y and $x,y \in \{0,1,2,\ldots,n-1\} \subset \mathbb{Z}$, the reduced residues modulo n. Note that if $\operatorname{ORD}(s) = t$, for some $s \in S$, then s generates n/t cycles of length t in G. This leads to a trivial n-isofactorization of G if every $s \in S$ has $\operatorname{ORD}(s) = n$, i.e. s is relatively prime to n (in particular if n is prime).

Theorem 2.5 If G = CIRC(n; S) is a circulant graph, then there exists a Hamilton decomposition of G when GCD(n, s) = 1 for all $s \in S$.

Theorem 2.6 (Liu [11]) Any circulant graph on 2p vertices, where p is a prime, is Hamilton decomposable.

Theorem 2.7 (Liu [11]) Any circulant graph of order at most 15 is Hamilton decomposable.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs with vertex set V_i and edge set E_i respectively. The *cartesian product* $G_1 \times G_2$ is the graph having vertex set $V_1 \times V_2$ and edge set,

$$\{(x, x')(y, y'): xy \in E(G_1) \text{ and } x' = y', \text{ or } x = y \text{ and } x'y' \in E(G_2)\}.$$

Theorem 2.8 (Aubert and Schneider [5]) Let K_n be the complete graph on n vertices. The cartesian product $K_m \times K_n$ can be decomposed into $\frac{1}{2}(m+n-2)$ Hamilton cycles if m+n is even and $\frac{1}{2}(m+n-3)$ Hamilton cycles and a perfect matching if m+n is odd.

Theorem 2.9 Let G = CIRC(dr; S) with $S \subseteq H = \langle r \rangle$ the unique subgroup of index r in \mathbb{Z}_{dr} . Then G is isomorphic to r copies of G' = CIRC(d; S'), where $S' = \{\frac{s}{s} : \forall s \in S\}$.

PROOF. The the cosets of H in \mathbb{Z}_{dr} are $H, H+1, \cdots, H+(r-1)$. Define $G_i = \langle H+i \rangle$ to be the subgraph of G induced on the elements in H+i. It is elementary to show that the mapping $\phi: V(G_i) \to V(G')$ given by $\phi: z \mapsto (z-i)/r$ is an isomorphism.

For example the the map $\phi:V(G)\to V(K_3\times K_7)$ given by

$$\phi: v \mapsto (v \pmod{3}, v \pmod{7})$$

shows that the circulant graph $G = \text{CIRC}(21; \pm \{3,6,7,9\})$ is isomorphic to $K_3 \times K_7$ This is because 7 generates 7 cycles of length 3 in G and as $\{3,6,9\} \subset \langle 3 \rangle$ we have $G' = \text{CIRC}(21; \pm \{3,6,9\})$ is isomorphic to three copies of $\text{CIRC}(7; \pm \{1,2,3\}) = K_7$ by Theorem 2.9. As 3+7=10 is even, there exists a decomposition of G into four Hamilton cycles by Theorem 2.8.

3 Valency 8: the *n*-isofactorization for small lengths

The results in this section give a partial solution to the *n*-isofactorization problem of G = CIRC(n; S) when $S^+ = \{s_1, s_2, s_3, s_4\}$ and $\text{ORD}(s_i) > 2$

for all i. For the remainder of this paper, we shall assume that G is of this form and $s_1 < s_2 < s_3 < s_4$.

Consider a subset $U \subseteq V(G)$ of vertices of G = CIRC(n; S). The subset of edges

$$F_U = \{ \{ x, \ x+s \} : \ s \in S^+, \ x \in U \}$$

is called the set of forward edges on U. Note that $F_U = \bigcup_{x \in U} F_{\{x\}}$ and if $G = \text{CIRC}(n; \pm \{s_1, s_2, s_3, s_4\})$, then $|F_{\{x\}}| = 4$ for all $x \in V(G)$.

Theorem 3.1 Any connected circulant graph of order n = 4x + 4 has an n-isofactorization.

PROOF. As $|S|/2 = 4 \mid n$, G has an n-isofactorization by Corollary 2.3.

Theorem 3.2 If G = CIRC(n; S) is a circulant graph of order n = 4x + 5, such that $x \ge 5$ and $s \le x$ for all $s \in S^+$, then there exists an n-isofactorization of G.

PROOF. Partition $\mathbb{Z}_n = T \dot{\cup} V_0 \dot{\cup} V_1 \dot{\cup} V_2 \dot{\cup} V_3$, where

$$T = \{0, 1, x+2, 2x+3, 3x+4\},\$$

$$V_0 = \{2,3,\ldots,x+1\},$$

$$V_1 = \{x+3, x+4, \ldots, 2x+2\},\$$

$$V_2 = \{2x+4, 2x+5, \ldots, 3x+3\},\$$

$$V_3 = \{3x+5, 3x+6, \dots, 4x+4\}.$$

For i=0,1,2,3, let $X_i=\langle F_{V_i}\rangle$, i.e. the subgraph of G induced by the set of all forward edges on V_i . Because each V_i consists of x consecutive vertices, it is clear that X_0, X_1, X_2 , and X_3 are pairwise isomorphic, each having 4x edges. In fact, $\varphi: V_i \to V_j$ defined by $\varphi: x \mapsto x + (j-i)(x+1)$ is the isomorphism. We consider two cases.

Case 1: $1 \notin S$

Add the edges $\{0, s_1\}$ and $\{0, s_2\}$ to X_1 and add $\{0, s_3\}$ and $\{0, s_4\}$ to X_2 . X_1 and X_2 now have two connected components, for the restriction $s \leq x$ ensures that no edge has one end in V_i and the other in V_{i+2} and no edge in F_{V_i} is incident with a vertex in V_{i+3} (subscript modulo 4). As $\{\{0, s_1\}, \{0, s_2\}\}$ and $\{1, 1 + s_2\}$ are vertex disjoint, add $\{1, 1 + s_2\}$ to X_1 and add $\{1, 1 + s_4\}$ to X_2 so that X_1 and X_2 now have three connected components each. Add the remaining two forward edges, $\{1, 1 + s_1\}$ and $\{1, 1 + s_3\}$, to X_0 . To preserve isomorphism, add $\{x + 2, x + 2 + s_1\}$ and

 $\{x+2,x+2+s_3\}$ to X_1 , add $\{2x+3,2x+3+s_1\}$ and $\{2x+3,2x+3+s_3\}$ to X_2 , and add $\{3x+4,3x+4+s_1\}$ and $\{3x+4,3x+4+s_3\}$ to X_3 . There now remain the last two forward edges from each of the vertices in $T\setminus\{0,1\}$, a total of six edges. Add the two forward edges from 3x+4 and a single edge from 2x+3 to X_0 . Lastly, add the two forward edges from x+2 and the remaining single edge from 2x+3 to x_3 . A simple check shows this exhausts all forward edges and the resulting isofactors are in the form of three components, one of size 4x+2, a 2-path, and a single edge.

Case 2: $1 \in S$

Let $S^+ = \{1, s_2, s_3, s_4\}$ where $1 < s_2 < s_3 < s_4$. Add $\{0, s_3\}$, $\{0, s_4\}$, and $\{1, 2\}$ to X_1 and add $\{0, s_2\}$, $\{1, 1 + s_2\}$, and $\{1, 1 + s_3\}$ to X_2 . Add $\{x + 2, x + 2 + s_2\}$, $\{x + 2, x + 2 + s_3\}$, and $\{2x + 3, 2x + 3 + s_3\}$ to X_3 and add $\{3x + 4, 3x + 4 + s_2\}$, $\{3x + 4, 3x + 4 + s_3\}$, and $\{2x + 3, 2x + 3 + s_2\}$ to X_0 . Next, add $\{x + 2, x + 3\}$ to X_0 , $\{2x + 3, 2x + 4\}$ to X_1 , $\{3x + 4, 3x + 5\}$ to X_2 , and $\{0, 1\}$ to X_3 . Lastly, add $\{1, 1 + s_4\}$, $\{x + 2, x + 2 + s_4\}$, $\{2x + 3, 2x + 3 + s_4\}$, and $\{3x + 4, 3x + 4 + s_4\}$ to X_0 , X_1 , X_2 , and X_3 , respectively to achieve the desired result.

Theorem 3.3 If G = CIRC(n; S) is a circulant graph of order n = 4x + 6, such that $x \geq 5$ and $s \leq x$ for all $s \in S^+$, then there exists an n-isofactorization of G.

PROOF. Partition $\mathbb{Z}_n = T \dot{\cup} V_0 \dot{\cup} V_1 \dot{\cup} V_2 \dot{\cup} V_3$, where

$$T = \{0, 1, x + 2, 2x + 3, 2x + 4, 3x + 5\},\$$

$$V_0 = \{2, 3, \dots, x + 1\},\$$

$$V_1 = \{x + 3, x + 4, \dots, 2x + 2\},\$$

$$V_2 = \{2x + 5, 2x + 6, \dots, 3x + 4\},\$$

$$V_3 = \{3x + 6, 3x + 7, \dots, 4x + 5\}.$$

As before, the induced subgraphs $X_i = \langle F_{V_i} \rangle$ for $0 \le i \le 3$ are pairwise isomorphic, each having 4x edges. It remains to distribute the 24 edges in F_T . Once again, we consider two cases.

Case 1: $1 \notin S$

We add three disjoint 2-paths to each X_i as follows. Add $\{0, s_1\}$, $\{1, 1 + s_1\}$, $\{0, s_3\}$, and $\{1, 1 + s_3\}$ to X_1 and add $\{0, s_2\}$, $\{0, s_4\}$, $\{1, 1 + s_2\}$ and $\{1, 1 + s_4\}$ to X_2 . Likewise, add $\{2x + 3, 2x + 3 + s_1\}$, $\{2x + 3, 2x + 3 + s_3\}$, $\{2x + 4, 2x + 4 + s_1\}$ and $\{2x + 4, 2x + 4 + s_2\}$ to X_3 and add $\{2x + 3, 2x + 3 + s_2\}$, $\{2x + 3, 2x + 3 + s_4\}$, $\{2x + 4, 2x + 4 + s_2\}$ and $\{2x + 4, 2x + 4 + s_4\}$

to X_0 . It remains to distribute the 8 edges in $F_{\{x+2,3x+5\}}$. Clearly, adding $e_1, e_2 \in F_{\{x+2\}}$ to X_2 , and adding $F_{\{x+2\}} \setminus \{e_1, e_2\}$ to X_3 , ensures X_2 and X_3 each have three disjoint 2-paths. Likewise, adding $e_1, e_2 \in F_{\{3x+5\}}$ to X_0 and $F_{\{3x+5\}} \setminus \{e_1, e_2\}$ to X_1 , gives the desired result.

Case 2: $1 \in S$

We add three pairs of edges to each $X_i = \langle F_{V_i} \rangle$ as shown in Figure 1, which depicts (for ease of visualization) the edges in $F_{\{0\}} \cup F_{\{1\}} \setminus \{0,1\}$ as vertex disjoint.

Theorem 3.4 Let G = CIRC(n; S) be a circulant graph of order n = 4x + 7 where $x \ge 5$ and $s \le x$, for all $s \in S^+$, then there exists an n-isofactorization of G.

PROOF. Partition $\mathbb{Z}_n = T \dot{\cup} V_0 \dot{\cup} V_1 \dot{\cup} V_2 \dot{\cup} V_3$, where

$$T = \{0, 1, x + 2, x + 3, 2x + 4, 2x + 5, 3x + 6\},\$$

$$V_0 = \{2, 3, \dots, x + 1\},\$$

$$V_1 = \{x + 4, x + 5, \dots, 2x + 3\},\$$

$$V_2 = \{2x + 6, 2x + 7, \dots, 3x + 5\},\$$

$$V_3 = \{3x + 7, 3x + 8, \dots, 4x + 6\}.$$

As before, the induced subgraphs $X_i = \langle F_{V_i} \rangle$ where $0 \le i \le 3$ are pairwise isomorphic, each having 4x edges. It remains to distribute the 28 edges in F_T . We consider two cases.

Case 1: $1 \notin S$

Add $\{1, 1+s_3\}$ and $\{1, 1+s_4\}$ to X_0 , add $\{x+3, x+3+s_3\}$ and $\{x+3, x+3+s_4\}$ to X_1 , $\{2x+5, 2x+5+s_3\}$ and $\{2x+5, 2x+5+s_4\}$ to X_2 , and $\{3x+6, 3x+6+s_3\}$ and $\{3x+6, 3x+6+s_4\}$ to X_3 . To the subgraph X_1 , add $\{1, 1+s_1\}$ and $\{1, 1+s_2\}$. Select $e_1, e_2 \in F_{\{0\}}$ that are not incident with $1+s_1$ or $1+s_2$ and add e_1 and e_2 to X_1 . Add $F_{\{0\}}\setminus\{e_1,e_2\}$ to X_2 and add $\{2x+5, 2x+5+s_1\}$ and $\{2x+5, 2x+5+s_2\}$ to X_0 . Select $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $2x+5+s_1$ and $2x+5+s_2$, and add e_1 and e_2 to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ and $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ that are not incident with $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ and $e_2, e_3, e_4 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ to $e_2, e_3, e_4 \in F_{\{2x+4\}}$ to $e_1, e_2 \in F_{\{2x+4\}}$ to $e_1,$

Figure 1: The *n*-isofactorization illustrating Case 2 of Theorem 3.3. The arcs labeled F_{V_i} denote the set of forward edges on the vertices in V_i , where i = 0, 1, 2, 3.

Case 2: $1 \in S$

Once again, let $S^+ = \{1, s_2, s_3, s_4\}$ and $1 < s_2 < s_3 < s_4$. Add $\{0, s_3\}$, $\{0, s_4\}$, and $\{1, 2\}$ to X_1 , add $\{x + 2, x + 2 + s_3\}$, $\{x + 2, x + 2 + s_4\}$, and $\{1, 1+s_2\}$ to X_2 , add $\{x+3, x+4\}$, $\{x+3, x+3+s_2\}$, and $\{2x+5, 2x+5+s_2\}$ to X_3 , and add $\{2x+4, 2x+4+s_3\}$, $\{2x+4, 2x+4+s_4\}$, and $\{2x+5, 2x+6\}$ to X_0 . Finally, add the remaining four edges in each of $F_{\{1,x+2\}}$, $F_{\{x+3,2x+4\}}$, $F_{\{2x+5,3x+6\}}$, and $F_{\{3x+6,0\}}$ to X_0 , X_1 , X_2 , and X_3 respectively, to achieve the desired result.

Theorem 3.5 An 8-regular circulant graph $G = CIRC(n; \pm \{s_1, s_2, s_3, s_4\})$ where $n \leq 23$, has an n-isofactorization.

PROOF. We divide into three cases on the value of n.

Case 1: $n \equiv 0, 3 \pmod{4}$

This is resolved in Theorem 3.1 when $n \equiv 0 \pmod{4}$ or by Theorems 2.7 and 2.5 when $n \equiv 3 \pmod{4}$.

Case 2: $n \equiv 1 \pmod{4}$

Write n=4x+5. If $x\in\{1,2,3\}$, then $G=\mathrm{CIRC}(n;S)$ is Hamilton decomposable by Theorem 2.7 or Theorem 2.5. If x=4, then n=21, S^+ must be a 4-subset of $\{1,2,3,4,5,6,7,8,9,10\}$. However, the only elements which are not co-prime with 21 are 3,6,7,9. Now if S^+ contains two or more elements relatively prime to 21, then we may remove one of the Hamilton cycles generated by them, and are left with a connected valency 6 circulant of odd order which has a Hamilton decomposition by Theorem 1.2. If S^+ contains exactly one element relatively prime with 21, then S^+ contains a 3-subset of $\{3,6,7,9\}$. These cases are Hamilton decomposable by Theorem 2.4 except when $\{3,6,9\} \subset S^+$. The case $G=\mathrm{CIRC}(21;\pm\{3,6,7,9\})\cong K_3\times K_7$ has a Hamilton decomposition by Theorem 2.8. The remaining cases on $G=\mathrm{CIRC}(21;\pm\{l,3,6,9\})$, where $l\in\{1,2,4,5,8,10\}$ are resolved in Table 2 of Section 4.

Case 3: $n \equiv 2 \pmod{4}$

If n=4x+6 and x=1,2,3,4, then $n \in \{10,14,18,22\}$. For $n \in \{10,14,22\}$, we are guaranteed Hamilton decompositions by Theorem 2.6 or by Theorem 2.7. When n=18, and S^+ contains two or three elements co-prime with 18, there exists a Hamilton decomposition by Theorem 2.4. The graph $G=\operatorname{CIRC}(18;\pm\{2,4,6,8\})$ is isomorphic to two copies of $G^*=\operatorname{CIRC}(9;\pm\{1,2,3,4\})$ (namely the subgraphs induced on the even and odd vertices of G respectively) by Theorem 2.9. As G^* has a

9-isofactorization by [10] or a Hamilton decomposition by Theorem 2.4, we can create four pairs of subgraphs of G, each pair isomorphic to 2 copies of a 9-isofactor of G^* , and the isofactorization of G into four subgraphs is complete. There exist Hamilton decompositions for the 18 cases where $s_1 \in \{1,5,7\}$, $s_2 = 3$, and $s_3, s_4 \in \{2,4,6,8\}$ by Theorem 2.4. Therefore, the remaining cases on 18 vertices are $s_1 \in \{1,3,5,7\}$ and $s_i \in \{2,4,6,8\}$ for i = 2,3,4. See Table 1 of Section 4 for Hamilton decompositions when $s_1 \in \{1,3\}$ and apply the automorphisms $\alpha: x \mapsto 5x$ and $\beta: x \mapsto 7x$ to CIRC(18, $\{1,s_2,s_3,s_4\}$) to resolve the remaining cases.

Combining Theorems 3.1 through 3.5, and noting that $s \leq \frac{n}{4} - 2 \Rightarrow s \leq x$, we have the main result:

Theorem 3.6 If the maximum edge length in a connected 8-regular circulant graph G of order n is at most $\frac{n}{4}-2$, then G has an n-isofactorization.

4 Data

This section provides Hamilton decompositions for the remaining cases on 18 and 21 vertices which were not covered in Theorem 3.5. Employing a back-tracking algorithm in a random computer search, Hamilton decompositions were found for the case when n = 18 and $s_1 = 3$, and the cases for n = 21. Hamilton decompositions when n = 18 and $s_1 = 1$ were found using ad-hoc methods. An example is given for each of these cases in Table 1 and Table 2.

Acknowledgments

The authors are grateful to Brian Alspach for his useful suggestions. The authors also thank the referees for their helpful comments.

Table 1: Hamilton cycle decomposition $\{H_1, H_2, H_3, H_4\}$ for Case 3 of Theorem 3.5.

CIRC(18; $\pm \{1, 2, 4, 6\}$)

```
H_1 = (0, 1, 15, 3, 9, 13, 17, 5, 11, 7, 6, 10, 4, 16, 12, 8, 2, 14)
 H_2 = (0, 2, 3, 1, 17, 15, 13, 11, 9, 7, 5, 4, 6, 8, 10, 12, 14, 16)
 H_3 = (0, 4, 8, 14, 15, 9, 5, 1, 13, 7, 3, 17, 11, 10, 16, 2, 6, 12)
 H_4 = (0, 6, 5, 3, 4, 2, 1, 7, 8, 9, 10, 14, 13, 12, 11, 15, 16, 17)
 \overline{CIRC}(18; \pm \{1, 2, 4, 8\})
 H_1 = (0, 1, 11, 3, 13, 5, 15, 7, 17, 9, 8, 16, 6, 14, 4, 12, 2, 10)
 H_2 = (0, 4, 8, 12, 16, 2, 3, 17, 13, 9, 5, 1, 15, 11, 7, 6, 10, 14)
 H_3 = (0, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 1, 17, 15, 14, 16)
 H_4 = (0, 8, 7, 3, 4, 5, 6, 2, 1, 9, 10, 11, 12, 14, 13, 15, 16, 17)
 CIRC(18; \pm \{1, 2, 6, 8\})
 H_1 = (0, 1, 13, 3, 11, 5, 17, 7, 15, 9, 8, 14, 6, 16, 4, 10, 2, 12)
 H_2 = (0, 10, 11, 1, 7, 13, 5, 15, 3, 9, 17, 16, 8, 2, 14, 4, 12, 6)
 H_3 = (0, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 1, 17, 15, 14, 16)
 H_4 = (0, 8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 16, 15, 13, 14, 12, 11, 17)
 CIRC(18; \pm \{1, 4, 6, 8\})
H_1 = (0, 1, 13, 3, 11, 5, 17, 7, 15, 9, 8, 14, 6, 16, 4, 10, 2, 12)
H_2 = (0, 4, 8, 12, 16, 2, 3, 17, 13, 9, 5, 1, 15, 11, 7, 6, 10, 14)
H_3 = (0, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 1, 17, 15, 14, 16)
H_4 = (0, 8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 16, 15, 13, 14, 12, 11, 17)
CIRC(18; \pm \{2, 3, 4, 6\})
H_1 = (0, 3, 6, 10, 12, 8, 14, 16, 4, 7, 1, 15, 9, 13, 11, 5, 17, 2)
H_2 = (0, 14, 10, 8, 5, 1, 16, 13, 15, 3, 17, 11, 7, 9, 12, 6, 2, 4)
H_3 = (0, 12, 14, 17, 15, 11, 9, 3, 5, 2, 8, 6, 4, 1, 13, 7, 10, 16)
H_4 = (0, 6, 9, 5, 7, 3, 1, 17, 13, 10, 4, 8, 11, 14, 2, 16, 12, 15)
CIRC(18; \pm \{2, 3, 4, 8\})
H_1 = (0, 10, 12, 15, 17, 14, 4, 6, 8, 16, 2, 5, 1, 9, 13, 11, 7, 3)
H_2 = (0, 8, 10, 2, 6, 3, 17, 9, 12, 14, 11, 1, 16, 13, 5, 15, 7, 4)
H_3 = (0, 16, 12, 2, 17, 1, 4, 8, 11, 15, 13, 3, 5, 9, 7, 10, 6, 14)
H_4 = (0, 2, 4, 12, 8, 5, 7, 17, 13, 10, 14, 16, 6, 9, 11, 3, 1, 15)
CIRC(18; \pm \{2, 3, 6, 8\})
H_1 = (0, 12, 4, 10, 8, 16, 13, 7, 17, 1, 11, 14, 2, 5, 15, 3, 9, 6)
H_2 = (0, 8, 11, 9, 7, 1, 13, 15, 12, 6, 14, 4, 16, 10, 2, 17, 5, 3)
H_3 = (0, 10, 13, 5, 8, 6, 3, 11, 17, 14, 12, 2, 4, 7, 15, 9, 1, 16)
H_4 = (0, 15, 17, 9, 12, 10, 7, 5, 11, 13, 3, 1, 4, 6, 16, 14, 8, 2)
CIRC(18; \pm \{3, 4, 6, 8\})
H_1 = (0, 3, 7, 10, 14, 17, 13, 16, 1, 11, 15, 5, 9, 6, 2, 8, 4, 12)
H_2 = (0, 15, 12, 16, 10, 6, 3, 9, 13, 1, 4, 7, 11, 8, 5, 17, 2, 14)
H_3 = (0, 6, 12, 8, 14, 4, 16, 2, 5, 1, 7, 15, 9, 17, 11, 3, 13, 10)
H_4 = (0, 4, 10, 2, 12, 9, 1, 15, 3, 17, 7, 13, 5, 11, 14, 6, 16, 8)
```

Table 2: Hamilton cycle decomposition $\{H_1, H_2, H_3, H_4\}$ for Case 2 of Theorem 3.5.

```
CIRC(21; \pm \{1, 3, 6, 9\})
H_1 = (0, 15, 16, 19, 13, 1, 10, 4, 7, 6, 12, 18, 17, 14, 2, 20, 11, 5, 8, 9, 3)
H_2 = (0, 6, 5, 2, 8, 14, 15, 3, 4, 1, 7, 13, 16, 10, 19, 20, 17, 11, 12, 9, 18)
H_3 = (0, 9, 10, 7, 8, 20, 5, 17, 16, 1, 19, 4, 13, 14, 11, 2, 3, 18, 6, 15, 12)
H_4 = (0, 20, 14, 5, 4, 16, 7, 19, 18, 15, 9, 6, 3, 12, 13, 10, 11, 8, 17, 2, 1)
CIRC(21; \pm \{2, 3, 6, 9\})
H_1 = (0, 12, 14, 20, 11, 17, 2, 4, 13, 16, 18, 9, 15, 6, 8, 5, 7, 19, 10, 1, 3)
H_2 = (0, 6, 3, 9, 12, 18, 20, 2, 14, 5, 11, 8, 17, 15, 13, 1, 4, 10, 7, 16, 19)
H_3 = (0, 9, 7, 4, 16, 1, 19, 13, 10, 8, 2, 11, 14, 17, 20, 5, 3, 12, 6, 18, 15)
H_4 = (0, 18, 3, 15, 12, 10, 16, 14, 8, 20, 1, 7, 13, 11, 9, 6, 4, 19, 17, 5, 2)
CIRC(21; \pm \{3, 4, 6, 9\})
H_1 = (0, 17, 13, 16, 7, 19, 4, 8, 2, 14, 10, 6, 9, 15, 12, 3, 20, 11, 5, 1, 18)
H_2 = (0, 9, 18, 15, 6, 12, 8, 5, 2, 11, 17, 14, 20, 16, 4, 1, 13, 19, 10, 7, 3)
H_3 = (0, 4, 13, 10, 16, 19, 1, 7, 11, 14, 8, 20, 2, 17, 5, 9, 12, 18, 6, 3, 15)
H_4 = (0, 12, 16, 1, 10, 4, 7, 13, 9, 3, 18, 14, 5, 20, 17, 8, 11, 15, 19, 2, 6)
CIRC(21; \pm \{3, 5, 6, 9\})
H_1 = (0, 15, 12, 7, 1, 4, 20, 11, 14, 19, 10, 16, 13, 8, 5, 17, 2, 18, 9, 6, 3)
H_2 = (0, 12, 6, 15, 18, 3, 9, 14, 17, 11, 16, 19, 13, 1, 10, 4, 7, 2, 8, 20, 5)
H_3 = (0, 6, 18, 12, 9, 4, 19, 7, 13, 10, 15, 3, 8, 11, 2, 5, 14, 20, 17, 1, 16)
H_4 = (0, 18, 13, 4, 16, 7, 10, 5, 11, 6, 1, 19, 3, 12, 17, 8, 14, 2, 20, 15, 9)
CIRC(21; \pm \{3, 6, 8, 9\})
H_1 = (0, 18, 15, 9, 12, 20, 2, 14, 17, 4, 19, 6, 3, 11, 5, 8, 16, 7, 10, 1, 13)
H_2 = (0, 6, 18, 3, 12, 15, 2, 5, 13, 7, 4, 10, 16, 1, 19, 11, 14, 20, 8, 17, 9)
H_3 = (0, 15, 3, 16, 19, 13, 4, 1, 7, 20, 11, 8, 14, 5, 17, 2, 10, 18, 9, 6, 12)
H_4 = (0, 8, 2, 11, 17, 20, 5, 18, 12, 4, 16, 13, 10, 19, 7, 15, 6, 14, 1, 9, 3)
CIRC(21; \pm \{3, 6, 9, 10\})
H_1 = (0, 3, 12, 1, 7, 17, 6, 15, 18, 9, 19, 16, 13, 10, 4, 14, 20, 2, 5, 8, 11)
H_2 = (0, 6, 12, 9, 20, 17, 14, 8, 18, 3, 15, 4, 19, 1, 13, 2, 11, 5, 16, 7, 10)
H_3 = (0, 12, 15, 5, 20, 8, 19, 13, 3, 14, 2, 17, 11, 1, 10, 16, 4, 7, 18, 6, 9)
H_4 = (0, 18, 12, 2, 8, 17, 5, 14, 11, 20, 10, 19, 7, 13, 4, 1, 16, 6, 3, 9, 15)
```

References

- [1] B. Alspach, Hamiltonian partitions of vertex-transitive graphs of order 2p, Congressus Numeratium 28 (1980), 217-221.
- [2] B. Alspach, Research Problem 19, Discrete Math 40 (1982), 321-322.
- [3] B. Alspach, Research Problem 59, Discrete Math 59 (1984), 115.
- [4] B. Alspach, D. Dyer, and D.L. Kreher, On Isomorphic Factorizations of Circulant Graphs, J. of Combin. Designs 14 (2006), 406-414.
- [5] J. Aubert and B. Schneider, Decomposition De $K_m + K_n$ En Cycles Hamiltoniens, Discrete Mathematics 37 (1981), 19-27.
- [6] J.-C. Bermond, O. Favaron and M. Maheo, Hamilton decomposition of Cayley graphs of degree four, J. Combin. Theory Ser. B 46 (1989), 142-153.
- [7] M. Dean, Hamilton cycle decomposition of 6-regular circulants of odd order, Journal of Combinatorial Designs 15 (2006), 91-97.
- [8] M. Dean, On Hamilton cycle decompositions of 6-regular circulants, Graphs and Combinatorics 22 (2006), 331-340.
- [9] M. Ellingham and N. Wormald, Isomorphic factorization of regular graphs and 3-regular multigraphs, J. London Math. Soc. (2) 37 (1988), 14-24.
- [10] F. Harary, R.W. Robinson and N.C. Wormald, Isomorphic factorisations I: Complete graphs, Trans. Amer. Math. Soc. 242 (1978), 243-260.
- [11] Jiping Liu, The Hamilton Decomposition of Certain Circulant Graphs, Annals of Discrete Mathematics 55 (1993), 367-373.
- [12] Jiuqiang Liu, Hamilton decompositions of Cayley graphs on abelian groups of odd order, J. Combin. Theory Ser. B 66 (1996), 75-86.
- [13] R. Stong, On 1-factorizability of Cayley graphs, J. Combin. Theory Ser. B 39 (1985), 298-307.
- [14] J.F. Wang and Y.S. Zhou, Isomorphic factorization of circulant graphs with prime degree, Chinese Quart. J. Math. 3 (1988), 66-70.
- [15] C.G. Yan and D.L. Chen, Isomorphic factorization of circulant graphs with degree 4, Shandong Kuangye Xueyuan Xuebao 14 (1995) 196-200.