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Abstract

A tournament is an orientation of a complete graph, and a mul-
tipartite or c-partite tournament is an orientation of a complete c-
partite graph. If we speak of a path, then we mean a directed path

Let D be a regular c-partite tournament with r vertices in each
partite set and let X C V(D) be an arbitrary set with exactly 2
vertices from each partite set. For all ¢ > 4 the authors determined in
a recent article the minimal value g(c) such that D— X is Hamiltonian
for every regular multipartite tournament with » > g(c). In this
paper we will supplement this result by postulating a given path
covering number instead of the Hamilonicity of the digraph D — X,
This means, for all ¢ > 4 and k& > 1 we will determine the minimal
value h(k,c) such that D — X can be covered by at most k paths
for every regular c-partite tournament with r > h(k,c). Moreover,
we will present the minimal path covering number of D — X, if D
is a regular 3-partite tournament and X contains exactly s vertices
(s = 2) of every partite set.

Keywords: Multipartite tournaments; Regular multipartite tourna-
ments; Path covering number

1 Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The
vertex set and the arc set of a digraph D are denoted by V(D) and E(D),

JCMCC 72 (2010), pp. 211-230



respectively. If zy is an arc of a digraph D, then we write z — y and say
z dominates y, and if X and Y are two disjoint vertex sets or subdigraphs
of D such that every vertex of X dominates every vertex of Y, then we say
that X dominates Y, denoted by X — Y. Furthermore, X ~ Y denotes
the fact that there is no arc leading from Y to X. For the number of arcs
from X to Y we write d(X,Y).

If D is a digraph, then the out-neighborhood Nj;(x) = N*(z) of a vertex
z is the set of vertices dominated by z and the in-neighborhood N (z) =
N~—(z) is the set of vertices dominating z. Therefore, if there is the arc
zy € E(D), then y is an outer neighbor of x and z is an inner neighbor of y.
The numbers d},(z) = d*(z) = [N*(z)| and dp(z) = d~(z) = [N~ (z)| are
called the outdegree and the indegree of x, respectively. Furthermore, the
numbers §1 = §+ = min{d*(z)|z € V(D)} and dp = 6~ = min{d~(z)|z €
V(D)} are the minimum outdegree and the minimum indegree, respectively.

For a vertex set X of D, we define D[X] as the subdigraph induced
by X. If we replace in a digraph D every arc zy by yz, then we call the
resulting digraph the converse of D, denoted by D-1.

If we speak of a cycle or path, then we mean a directed cycle or dircted
path, and a cycle of length n is called an n-cycle. The length of a cycle C' is
denoted by L(C). A cycle in a digraph D is Hamiltonian, if L(C) = [V(D)|.
A cycle-factor of a digraph D is a spanning subdigraph consisting of disjoint
cycles. The path covering number pc(D) of a digraph D is the minimum
number of paths in D that are pairwise vertex disjoint and cover the vertices
of D.

A digraph D is strongly connected or strong, if for each pair of vertices
» and v, there is a path from u to v in D. A digraph D with at least
k + 1 vertices is k-connected if for any set A of at most k — 1 vertices,
the subdigraph D — A obtained by deleting A is strong. The connectivity,
denoted by k(D), is then defined to be the largest value of k such that D
is k-connected. If k(D) =1 and z is a vertex of D such that D — z is not
strong, then we say that z is a cut-vertez of D.

There are several measures of how much a digraph differs from being
regular. In [16}, Yeo defines the global irregularity of a digraph D by

iy(D) = mex {d*(e),d" (@)}~ min (4*(),d" @)
and the local irregularity by 4(D) = max{|d*(z) — d~(z)||z € V(D)}.
Clearly (D) < ig(D). If ig(D) = 0, then D is regular and if iy(D) < 1,
then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete
c-partite graph. A tournament is a c-partite tournament with exactly c
vertices. If Vi, Va,...,V, are the partite sets of a c-partite tournament D
and the vertex z of D belongs to the partite set V;, then we define V(z) = V..
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If D is a c-partite tournament with the partite sets V4, V5,..., V. such that
[Vi| £ |V2] £ ... £ |V, then |V;] = a(D) is the independence number of
D.

There is an extensive literature on cycles in multipartite tournaments,
see e.g., Bang-Jensen and Gutin (1], Guo [2], Gutin [3], Volkmann [8, 9],
Winzen [14] and Yeo [15]. A new approach on cycles was presented by the
authors in [13]:

Problem 1.1 (Volkmann, Winzen [13]) Let D be a regular c-partite
tournament with ¢ > 4 and ezactly r vertices in each partite set. PFur-
thermore, let X C V(D) be an arbitrary set with exactly s < r vertices of
each partite set. For all s <7 and c > 4 find the minimal value g(s,c) such
that D — X is Hamiltonian for every regular multipartite tournament with
T 2 g(sc).

In [11] and [13], Volkmann and Winzen solved this problem for the cases
s=1and s=2.

Theorem 1.2 (Volkmann, Winzen [11, 13]) Let V1,V;,...,V, be the
partite sets of a regular c-partite tournament D such that |V| = |V,| =
wo.=|Ve| =r. If g(s,c) is defined as in Problem 1.1, then it follows that

g(l,e)=4, if ¢c>4 isodd, g(l,c)=3, if c>4 iseven,
9(2,4) = 9(2, 5) =9, g(2s 6) =7, 9(2: 7) =8
and g(2,¢)=7 ifc>8.

The idea is now to replace the condition that D — X is Hamiltonian in
Problem 1.1 by the weaker condition that pc(D — X) < k for a given integer
1<k < |V(D)l.

Problem 1.3 Let D be a regular c-partite tournament with ¢ > 4 and
ezactly r vertices in each partite set. Furthermore, let X C V(D) be an
arbitrary set with exactly s < r vertices of each partite set. For all integers
1<k |V(D-X)|, s <r andc > 4 find the minimal value h(s,k,c)
such that pc(D — X) < k for every regular multipartite tournament with
T 2 h(s,k,c).

Note that the condition s < 7 in Problem 1.3 implies that h(s, k,c) >

s+1.
The following result of the authors [12] gives a quick answer of Problem
1.3 for the case that s = 1.
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Theorem 1.4 (Volkmann, Winzen [12]) Let V1, V5,...,V, be the par-
tite sets of a regular c-partite tournament D with ¢ > 4 and |V1| = |Vy| =
... = |Ve| = r > 2. Furthermore, let X be an arbitrary subset of V(D)
consisting of ezactly s vertices from each partite set for1 <s<r-—1. If

r23s+[4s—5‘|,
c—3

then D contains a path P such that V(P) = V(D) — X.

The case s = 1 directly implies that h(1,1,c¢) < 3 for all ¢ > 4. Ac-
cording to the well known result of Rédei [6] that every tournament con-
tains a Hamiltonian path we even have h(1,1,c) < 2 and thus k(1,1,c) =
h(l,k,c)=2forall 1 <k <|V(D-X)|.

Since Theorem 1.4 is not applicable for ¢ = 3 we pose the following
similar problem.

Problem 1.5 Let D be a regular c-partite tournament with ¢ > 2 and
ezactly r vertices in each partite set. Furthermore, let X C V(D) be an
arbitrary set with ezactly s < r vertices from each partite set. For all
integers s and ¢ > 2 find the minimal value f(s,c) such that pc(D — X) <
f(s,c) for every regular c-partite tournament with r > s.

Theorem 1.4 with the same considerations as above directly implies that
f(l,¢) =1for all ¢ > 4.

In this article we will determine h(2,k,c), f(2,¢) and f(s,3) for all
¢>4,1<k<|V(D-X)| and s > 1. Furthermore, we will prove that
f(s,0)<2s—1,ifc>4.

Section 2 presents the most important old results used throughout this
paper. In Section 3 we will give a solution of Problem 1.3 for the case that
s =2 and k = 1, and Section 4 deals with Problem 1.3 for the case that
s =2 and k > 2 and with Problem 1.5 for the case that ¢ > 4. Finally, in
Section 5 we will determine f(s,3) for all integers s.

2 Preliminary results

The following results play an important role in our investigations.
A characterization whether a digraph D has a cycle-factor or not was

given by Ore [5].

Theorem 2.1 (Ore [5]) A digraph D has a cycle-factor if and only if
INA(S)| > |S| for each subset S C V(D).

In 1999, Yeo [16] rewrote Theorem 2.1 in the following useful form.
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Theorem 2.2 (Yeo [16]) A digraph D has no cycle-factor if and only if
V(D) can be partitioned into subsets Y, Z, Ry, Ry such that

Ry ~Y, (RUY)~ Ry, Y is an independent set (1)
and |Y| > |Z].

Gutin and Yeo [4] generalized this result to digraphs with a path cov-
ering number pc(D) > k.

Theorem 2.3 (Gutin, Yeo [4]) For e digraph D we have pc(D) > k if
and only if V(D) can be partitioned into subsets Y, Z, Ry, Ry that satisfy
(1) and [Y| > |Z| + k.

The following theorem is a useful supplement to Lemma 4.3 in [16] and
Theorem 3.2 in [4].

Theorem 2.4 (Stella, Volkmann, Winzen [7]) Let D be a semicom-
plete multipartite digraph with the partite sets V1, V3, ..., V. such that |V4| <
Vo| < ... < |V.|. Assume that pc(D) > k for an integer k > 0. Ac-
cording to Theorem 2.8, V(D) can be partitioned into subsets Y,Z, R;, Ry
satisfying (1) such that |Z| + k+1 < |Y| < |V,| — t with an integer
t > 0. Let V; be the partite set with the property that Y C V;. Let
Q=V(D)-2Z-V;,Q1 =QNRy, Q2=QNRy, Y1 =R NV; and
Yo=RyNV;. Then

V(D) = [Ve—1| — 2[Ve| + 3k + 3 + |Y2

ig(D) 2

2 :
if Q1 =0,
io(D) > WD = Ve = 2IVel + 3k + 3 + ]
if Q2 =10, and
iy(D) > iy(D) > V(DN = Vemi —22|Vc| +3k+3+t
if Q1 #0 and Qa2 # 0.

The following corollary presents a direct consequence of the last theo-
rem.

Corollary 2.5 (Volkmann, Winzen [10]) Let D be a semicomplete mul-
tipartite digraph with the partite sets V1, V5, ..., V. such that V1| < |Vo| <
... S |V.|. If there exists a positive integer k such that
[V(D)| = |Ve—1] = 2|Ve| + 3k + 2

2 1

ig(D) <
then pe(D) < k.
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An analysis of the proof of Theorem 2.4 yields the following result.

Corollary 2.8 (Stella, Volkmann, Winzen [7]) Let D be a semicom-
plete multipartite digraph with the partite sets V1, V5, ..., V. such that [V1| <
Va| € ... € |Ve|. Assume that pc(D) > k for an integer k > 1. Let
Y,Z, Ry, R2,Q,Q1,Q2, Vi, Y1 and Y; be defined as in Theorem 2.4.

If Q1 =0 and ig(D) = VARU=lVeur| =2Vl 43643+¥a]  ypen, the following
holds.

i) min{d~(w)lw e Vi} =|Z|=|Y| -k - 1.

i) |Y| = |Vi| — |Ya|, which means that |Y;| =0 and [V;NZ| =0.
i) Y - Q2 — (Y2U 2).
i) d=(g2) =d*(g2) + k — |Y2| +1 for all g2 € Q2.

v) max{d*(w),d (w)|lw € V(D) - Vi} = d~(q) for a vertez q € Q2 such
that |V (g)| = |Ve-al

vi) ig(D) = max{d™(g)lg € Q2} — min{d™ (w)|w € Vi}.
vii) |Vi| = |Ve|.
vidi) [V(D)| = |Ve1| — 2|Ve| + 3k 4 3 + [Y2] is even.

Letj=c—1,ifi=candj=c ifi<c IfQ#0 and Q2 # 0 and
ig(D) = VD)~ |V°"|;2|V°'+3k+3+', then we conclude that

a) ig(D) = u(D).
b) {IVil, [V;1} = {IVel; [Ve-1l}-
) VinZ=0,|Z|=|Y|-1-k, |Y]|=|Vc| -t.

d) [V D@1 =Vin@Q1| and [VuNQ| = [VINQ| forall1 <lm < ¢
such that Vi, NQ # 0 and ViNQ # 0.

o V;cQ.
f) d Ql,l 2) |V(D)l_|vc—1|2—2|Vc|+1+k+t _ |¥2| + |}/1| and
dSQl;sz = |V(D)|""Vc—l|2—2|Vc|+1+k+t + |Y2| _ |}/1|.

g9) d*(q1) = d~(g1) +44(D) for allqy € @y and d™(g2) = d¥(g2) +1ig(D)
for all g2 € Q2.
h) Q: = (ZUY;), (ZuY) — Q1.

i) V(D) = |Vem1| — 2|Ve| + 3k + 3 + 1 is even.
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Theorem 2.7 (Volkmann, Winzen [10]) Let V},V;,...,V, be the par-
tite sets of the semicomplete c-partite digraph D such that 1 < r = |V}| <
[Va| < ... < |Ve| < r+p for an integer p > 0. Ifc > max{2, 3+ ZaP)=5+py
then D contains a Hamiltonian path.

In [12] the authors presented a result about the existence of a path with
all but s vertices from each partite set in regular multipartite tournaments.
The proof of this theorem (Theorem 3.9) provides more than the theorem
states.

Theorem 2.8 (Volkmann, Winzen [12]) Let V},Vs,..., V. be the par-
tite sets of a regular c-partite tournament D with ¢ > 5 such that |Vi| =
V2| = ... = |Vo| = r. Purthermore let X be an arbitrary subset of V(D)
with exactly s > 2 vertices from each partite set. Ifr > 553, then D - X
contains a Hamiltonian path.

The following remark concerning regular multipartite tournaments is
well-known but important for this article.

Remark 2.9 Let V},Va,...,V, be the partite sets of a regular c-partite

tournament. Then it follows that r = |V1| =|V| =... = |V,| and
a*(z),d"(s) = C

for all x € V(D). That means especially that r is even, if ¢ is even.

3 The determination of h(2,1,c)

Let D be a regular c-partite tournament with ¢ > 4 and exactly r > 3
vertices from each partite set. Furthermore let X be an arbitrary subset of
V(D) with exactly two vertices from each partite set. In this section we will
find the minimal value for 7 that guarantees the existence of a Hamiltonian
path in D — X. This means that we will determine h(2, 1, c) of Problem 1.3
for all ¢ > 4.

Applying Theorem 1.4 and Theorem 2.8 with s = 2, it is obvious that
h(2,1,c) < 9 for all ¢ > 4 and h(2,1,c) < 7 for all ¢ > 5. The following
example demonstrates that h(2,1,¢) > 7 for all ¢ > 4.

Example 3.1 Let V; = {v1;,v2,i,...,,i} 1 < i < ¢ be the partite sets
of a regular c-partite tournament D such that Ry = ({v1,5,v2: [ 1 < i £
c¢—2}U{vse1}) = (Y = {v1,6,v2,6,V3,0:Va,c}) = (R = ({v3,5,v4,5 | 1 <
i S c—2}U{vgc-1})) = (Z = {v1,c-1,v2c-1}) = R1~ Rz, Y = Z, (Ry -
{v3,c-1}) = v3,c-1 and vge-1 — (R2 — {vge-1}) ~» (X = {vi; | 5<i <
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6,1<j<c})~ (Ry—{vsc—1}). Furthermore, let Ry —{v3 -1} as well as
Ro—{v4,c—1} be regularly connected. Moreover let {v1,¢,v2,c} = ({vi; | 5 <
i <6, 1<j< |52 U{v;|i=25andj =[], if cisodd}) —
{’03,,:,04",} — ({‘l),"j I 5<i<6, r_c:;_22'| +1< 35 < C—2}U{‘U,-'j I i =
6 and j = [552], if ¢ isodd}) — {vi,c,v2c}, {U5,c-1,%6c-1} — Y,
{(v3,c-1,0a0-1} = (X1 = {v3; | 5<i<61<5< [}V {vs; | 7=
[$53], if ciseven}) = Z — (X2 = {vi; | 5 <@ < 6,[<2]+1 <
j<e=31U{w,; |3 =[5, ifciseven}) - {vgc-1,04c-1}, (ZU
{vae-1}) = {v5,c-2:V6,c-2:V5,c:V6,c} — {V3,c-1,V5,c-1V6,c-1}, Vs —
Vg,e—2 — Vg,c — Us,c—2 — Us,c and X1 — {vs.c-2,%6,c-2,V6,c-1} — X2 =
{v5,crV6,eV5,c—1} = X1. If finally the vertices in X1 U X, are regularly
connected, then it is straightforward to see that D is a regular c partite
tournament and D — X consists of the sets Y, Ry, Ry and Z satisfying (1)
with k = 1. According to Theorem 2.3 it follows that D — X contains no
Hamiltonian path.

Using this example and some of the results of Section 2, we may deter-
mine h(2,1,c¢) for all ¢ > 4.

Theorem 3.2 Let D be a regular c-partite tournament with ¢ > 4 and
ezactly r > 3 wvertices in each partite set. If h(s,k,c) is defined as in
Problem 1.3, then it follows that

h(2,1,¢)=7 forall c2=4.

Proof. Let D be a regular c-partite tournament with the partite sets
Wi, Va,..., V. each of the cardinality 7. To prove this theorem we distinguish
different cases.

Case 1. Let ¢ > 5. According to Theorem 1.4 and Theorem 2.8
with s = 2 we conclude that A(2,1,¢) < 7. Example 3.1 implies that
h(2,1,c) > 7 such that we arrive at the desired result in this case.

Case 2. Let ¢ = 4. Remark 2.9 yields that r has to be even. With
Theorem 1.4 and Example 3.1 we deduce that 7 < h(2,1,4) < 9. Hence,
we have to investigate the case that D contains exactly 8 vertices from each
partite set. Let X be an arbitrary subset of V(D) with exactly 2 vertices
from each partite set. Then the multipartite tournament D' := D — X
has the partite sets V{,V{,...,V/ with ' := |V/| =6foralll < i < e
Moreover it follows that ig(D’) < 6. If ig(D’) < 5, then because of

N 2i9(D6’) ~5 5

2ig(D’) -5
k" A Sl A < e
r! _3+6

3+ 3 <c=4

Theorem 2.7 yields the desired result that D’ contains a Hamiltonian path.
Hence, let t,(D’) = 6.
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Suppose that D' does not contain any Hamiltonian path which means
that pe(D’) > 1. Then V(D’) can be partitioned into subsets Y, Z, R; and
R satisfying (1) with k = 1. Furthermore let Q;,Q2,Y1,Y2, V! and ¢ be
defined as in Theorem 2.4.

Subcase 2.1. Let Q; = @. In this case we observe that |V}| + |Z| <
6 +4 = 10. Now for an arbitrary vertex y € Y # @ we arrive at the
contradiction

12 = d*(y) 2 (@2l = Q] 2 V(D) - V/| - 2] 2 24— 10 = 14,

Subcase 2.2. Let Q; = 0. Observing the coverse D! of D Subcase 2.1.

yields a contradiction.
Subcase 2.8. Assume that Q; # 0 and Q, # 0. Since

V(D) — [Veoal —2IVe| +3+3 _
: =

Theorem 2.4 implies that [Y| = |V/| and thus |Y}| = |Y2| = 0. Applying
Corollary 2.6 a), c), f) and h) we deduce that iy(D') = 4(D’) =6, |Y| =
6=1Z+2,|Q1 =|Q2] =7 and Q2 - Z — Q;. The fact that v = 6
yields that for every vertex z € Z there is a vertex ¢ € Q = @; U Q2 such
that g € V(z), a contradiction to Q2 — Z — Q.

6= ig(D’)

Summarizing our results we see that D' contains a Hamiltonian path.
Since 7 has to be even we conclude that 2(2,1,4) < 7 and hence A(2,1,4) =
7. This completes the proof of this theorem. ad

4 The determination of A(2,k,c¢) and f(2,¢)
and an estimation for f(k,c) if ¢ > 4

To make statements about multipartite tournaments D having a path cov-
ering number pc(D) > 1 we firstly need the following generalizations of the
Theorems 1.4 and 2.7.

Theorem 4.1 Let V1,V5,..., V. be the partite sets of the semicomplete c-
partite digraph D such that 1 <r = |V}| < V| < ... < |Vo| < 7 +p for
an integer p > 0. If ¢ > max {2,3 + M}, then it follows that

pe(D) < k.
Proof. According to Corollary 2.5, it is sufficient to show that

V(D) = [Ve—a| — 2|Ve| + 3k +2

i9(D) < -
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Since ¢ > 3+ 2a2)=3k=24p e conclude that ig(D) < LE=A3k+2oP 4ng

together with |V3|,|Val,...,|Ve=2| 2 7, |Ve| < 7 + p and c > 2 this implies
[V(D)| = [Ve—1] = 2|Ve| + 3k +2
2
Vil + [Val .+ [Veal = Vel + 3k + 2
2
> (c=3)r —2p+3k+2 > iy(D),
the desired result. a

Theorem 4.2 Let V;,Va,..., V. be the partite sets of a regular c-partite
tournament D with ¢ > 4 and |Vi| = |Va| = ... = |Ve| = r > 2. Further-
more, let X be an arbitrary subset of V(D) consisting of exactly s vertices
from each partite sets with1 <s<r—1. If

43—3k—2]

>
r_3s+[ p

then pe(D — X) < k.

Proof. Let D' = D — X with the partite sets V{,V3,..., V! such that
[V{| = |V§] = ... = [V}| = r —s. Since D is regular, it follows that
ig(D') < s(c—1). Using Theorem 4.1 with p = 0, we see that it is sufficient
to show that

o an N ak
+2zg(D) 3k-2 53_I_2s(c 1)-3k-2 <e.

r—38 r—38

3

Since r is an integer the last inequality yields the following equivalent trans-
formations

3_}_23(c—1)—3k—2 <e
r—s

& (c—38)(r—s)=2s(c—1)—3k—2

e r> 2s8(c—1) -3k —2 =35+ 4s -3k -2 .
c—3 c—3

According to the assumptions of this theorem the last inequality is valid.
This completes the proof of the theorem. O

The following two examples demonstrate that 7(2,2,2p + 1) > 6 for all
p22.
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Example 4.3 Let V; = {vy,4,v2,4,...,0s,i},, 1 L1 < 4dm+1, be the partite
sets of a regular (4m + 1)-partite tournament Dy, (m € N) such that R; =
fig |(1Si<2A1<k<2m) V (i=1A 2m+1<k<dm)}
=Y = {vigm+1,V24m+1,V34m+1} 2 Re = {vip | i =3 A 1<k <
2m) V 2<i<3 A2m+1<k<4m)} and Ry ~ Ry. If V! = Van,

2m am
=VinR, 1<i<4m), Ki=UV/, K3= U V,-’,K”-UV”
=1 i=2m+1 =1

4am
and K§ = |J V", then let the vertices K| be connected such that D[K})
t=2m+-1
is (2m — 1)-reqular and the vertices Kj let be connected such that D|K}] is

almost regular and dB[K;](vl,k) = dp;j(vLk)+1 =m for2m+1 < k < 3m
and dB[K;] (vik) = dE[K;] (vik)+1=m for3m+1 < k < 4m. Purthermore
let V/ - V], iff1<i<2mandj € {2m+1+ (i — 1 mod 2m),2m + 1 +
(i mod 2m),...,2m + 1 + (i — 2 + m mod 2m)} and V] — V/ otherwise
for V! C K} and V] € K3. Analogously let the vertices K 4 connected such
that D[K ”] is (2m — 1)-regular and the vertices K{' let be connected such
that D[KY] is almost regular and dD[KN]('U3 k) = dD[K"] (vak) +1=m for
1<k <m and dpyp(vs k) = D[K,,](vg k)+1l=mform+1<k<2m.
Furthermore let V' — V', if2m+1 < j<4dmandi€ {1+ (j —2m -
1 mod 2m), 14 (j—2m mod 2m),...,1+(j—2—-m mod 2m)} end V}' — V"
otherwise for V' C K{ and V' C K” IfX={v;;|4<i<5 A 1 <j<
dm+1} and X; = XnV,, then let {'01 dm+1)V2,4m+1} — (Xom+1UXomy2U

U Xgm) = V3 ame1 = (X1 UXaU...UXon) — {V1,4m41,V2,4mt1}. The
vertz'ces of X let be regularly connected. Finally let Ry ~ X ~ R, with
exception of the following arcs:

{v1,3m+1,V1,3m+2, -+ y V1,am}

(X2m+1 U X2m+2 Uu...U X2m+.?), if m is even
(Xzm41U Xomi2U. ..U Xom_ 143

U{vg2m+ 121 s if mis odd

- {03,1) U3,2y.+4 Us,m},

{v1,2m+1,V1,2m+25 -+, V1,3m}

(Xsm4+1U Xamy2U...UXam_143
U{vaam+z}), if m is even
(X3m+1 UXsmpaU...U X3m+[-’§j) if m>3is odd

— {¥3,m) V3, m41s .-+ V3,2m }
and

Vi
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V4,14 (5 mod 2m), ifm=2

X14( mod 2m) U - -+ U X14(j—24 2 mod 2m)
U{v4,14(j~1+% mod 2m)})» ifm > 4 is even
X1+ mod2m) V.- UX14(j-14|F) mod 2m), ¥ >3 is odd

— Vit+1,j+2m

foralll<i<2andl <j<2m.
The resulting digraph Dy, (see Fig. 1 for Dy) is a 10m-regular (4m+1)-
partite tournament with the property that pc(D — X) = 3.

Y
e o nus
EXA

R

Figure 1: The regular 5-partite tournament D; with the
property that pe(D — X) = 3.

Example 4.4 Let V; = {vy,i,v2,i,...,05:}, 1 £ i < 4m+ 3, be the partite

sets of a regular (4m + 3)-partite tournament Hy (m € N) such that Ry =

(s |[1<Si<2A1<k<2m4+1) V (i=1A2m+2<k<dm+2)}

— Y = {v1,4m+3,V2,4m+3:V3am3} — R2 = {vix | (1 =3 A 1 <k <

2m+1) V (2<i<3 A2m+2<k<4m+2)}and Ry~ Rp. If V] =
‘ 4

2m+1 m+2
VinR, V/ =VinR, 1<i<d4m+2), K;= U V., Ky= U W,
=1 i=2m+2
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4m+42
K{ = U V” and K = |J V', then let the vertices K| be connected
i=2m+2

such that D[K 1) is (2m)-regular and the vertices K} let be connected such
that D[K3) is m-regular. Furthermore let V! — V’, fl<i<2m+1
and j € 2m + 2+ (i — 1 mod (2m+1)),2m+2+(z—1 mod (2m +
1)),...,2m +2 + (i — 1 + m mod (2m + 1))}, and let V] — V; otherwise
for V’ C K} and V! C K{. Analogously let the vertices K 4 connected such
that D[K ”] 18 (2m)-regular and the vertices K{' let be connected such that
D[K”] is m-regular. Furthermore let V" — V', if 2m+2 < j < 4m+2 and
i€ {l+(j—2m—2mod (2m+ 1)),1+(] —%m—1mod (2m+1)),..

(j —2-m mod (2m + 1))} end V' — V" otherwise for V" C K” and
VI/CKy. If X = {v.,|4<z<5/\1<y<4m+3}andX XnV,,
then let {01 am+1,V2,4m+1} = (Xom+2UXompaU. . .UXymy2) — U34mt1 —
(Xl UXaU...U X2m+1) — {‘U1,4m+1;'v2,4m+1}- The vertices of X let
be reqularly connected. Finally let Ry ~ X ~~ R, with exception of the
following arcs:

v, =
(Xam+2+(j-2m—1 mod@m+1)) Y - - - U Xom424(j+ 2 —(2m+2) mod(2m+1))
U{U4,2m+2+(j—2m-1+-",= mod(2m+l))})

— V3,j-2m—1,

if m is even, and

U,; —
Xom+424(j=2m—1 mod(@m+1)) U ... U Xom+24(j~2m=14 3| mod(2m+1))

— V3,j—2m-1,

if m is odd, for all j € {2m +2,2m +3,...,4m + 2}, and

Vi,j —
V4,14 (j mod(2m+1))» ifm=2
14+(j mod(@m+1)) Y - - U X14 (=24 B mod(2m+1))
U{”4.1+(j—1+a"- mod(2m+1)) })» - ifm >4 s even

X14( mod@@m+1)) U+ . U X1 4 (j-14+ %] mod2zm+1)), M >3 is odd
— Vitl,j+2m+1

foralli€ {1,2} and j € {1,2,...,2m + 1}.
The resulting digraph Hy, is a (10m + 5)-regular (4m + 3)-partite tour-
nament with the property that pc(D — X) = 3.

Now we are able to determine the values of h(2,k,c) and f(2,c¢) for all
integers k > 2 and ¢ > 4.
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Theorem 4.5 Let D be a regular c-partite tournament with ¢ > 4 and
ezactly r > 3 vertices in each partite set. If h(s,k,c), s,k and X are
defined as in Problem 1.3, then it follows that

h(2,2,2m) =3, h(2,2,2m+1)=6 and h(2,k,c)=3
for all integers m,k,c withm >2,3 <k <|V(D—-X)| andc 2> 4.

Proof. Let D be a regular c-partite tournament with the partite sets
Wi, Va,...,V. each of the cardinality ». Furthermore let X C V(D) an
arbitrary set with | X NV;|=2forall1<i<cand D'=D-X. Ifkis
defined as in Problem 1.3, then we distinguish different cases.

Case 1. Let k = 2. According to Theorem 4.2 with k = s = 2 we
observe that pe(D’) < 2, if r > 6. Hence we have h(2,2,c) <6.

If ¢ = 2m+1 for an integer m > 2, then the Examples 4.3 and 4.4 imply
that ~(2,2,2m + 1) > 6 and thus k(2,2,2m +1) =6.

If ¢ = 2m for an integer m > 2, then Remark 2.9 yields that r has to
even. Hence, it remains to treat the case that r = 4. Suppose that r = 4
and pc(D’) > 2. Then, according to Theorem 2.3, V/(D') can be partitioned
into subsets Y, Z, R; and R; that satisfy (1) and |Y]| > |Z]|+3 > 3. Since Y
is an independent set this would imply that r = [V(y)| > 5 forally €Y, a
contradiction. Consequently, we have pc(D') < 2, and thus h(2,2,2m) = 3.

Case 2. Let k > 3. Assume that pc(D’) > k > 3. Applying Theorem
2.3 this yields that V(D’) can be partitioned into subsets Y, Z, Ry, R; sat-
isfying (1) and |Y| > |Z| + k+1 > 4. Since Y is an independent set it
follows that 7 = [V (y)| = |Y|+2 > 6 for all y € Y. According to Theorem
4.2 with s = 2 this is sufficient to show that pc(D’') < k, because if r > 6,
then the following inequality chain is fulfilled:

-3 8—-3k-2
— | > .
r26+[c_3-|_6+[ -3 ]

Hence, we have a contradiction to our assumption that pc(D’) > k. This
implies that h(2,k,c) =3 forall 3< k < |V(D - X)| and ¢ > 4.
This completes the proof of this theorem. O

Together with the Examples 3.1, 4.3 and 4.4 this theorem immediately
implies the following corollary.

Corollary 4.6 Let D be a regular c-partite tournament with ¢ > 4 and
ezactly T > 3 vertices in each partite set. If f(s,c), s and X are defined as
in Problem 1.5, then it follows that

fi2,2m)=2 and f(2,2m+1)=3

for all integers m,c withm > 2 andc > 4.
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The following theorem gives an estimation for f(s,c), if ¢ > 4.

Theorem 4.7 Let D be a regular c-partite tournament with ¢ > 4 and
exactly r vertices in each partite set. Furthermore, let f(s,c), s and X with
1 < s < r are defined as in Problem 1.5. Then it follows that f(s,c) <
2s — 1.

Proof. Let D be a regular c-partite tournament with the partite sets
W, Va,...,V, each of the cardinality . Furthermore, for an integer s < r
let X C V(D) an arbitrary set with [ X NV;| =sforalll1 <i < cand
D' = D - X. We assume that pe(D') > k for an integer k with 2s — 1 <
k < |V(D')|. Applying Theorem 2.3 we see that V(D’) can be partitioned
into subsets Y, Z, Ry, Ry satisfying (1) and |Y| > |Z]| + k+1 > 2s. This
yields that 7 = [V(y)| > |Y|+s > 3sforally € Y. Since k > 2s5—1 > 452
for s > 1 and thus 3k + 2 > 4s we deduce that the following inequality
chain is fulfilled:

1-23323s+ '-w.l.
c-3
According to Theorem 4.2 we arrive at pc(D’) < k, a contradiction to our
assumption. This implies that f(s,c) < 2s — 1, the desired result. ]

Since we have the condition r > s in Problem 1.3 this yields the following
result.

Corollary 4.8 Let D be a regular c-partite tournament with ¢ > 4 and
ezactly r vertices in each partite set. Furthermore, let h(s, k,c), s,k and X
with 1 < s < r are defined as in Problem 1.3. If2s— 1<k < [V(D - X)|,
then it follows that h(s, k,c) = s+ 1.

5 The determination of f(s,3)

To find the exact values of f(s,3) we distinguish three cases depending on
the rest that occures by dividing s by 3. The following three examples
demonstrate that f(3m ~ 1,3) > 4m — 2, f(3m — 2,3) > 4m — 3 and
f(3m,3) > 4m.

Example 5.1 Letm > 1 be an integer and let V; = {vy;,v24,...,V7m-3,},
1 < i < 3, be the partite sets of a regular 3-partite tournament G, such
that (R = {v;; |1<i<2m-1,1<j<2})) 5 (Y ={ma|1<i<
dm—-2}) > (Re={v;; |2m <i<dm-2,1<j<2}) and Ry ~ Ry. If
W =ViNnR; and V] = Vo N Ry, then let

Vi1 —

{v1+(i—1 mod(2m—1)),21 Y1+(i mod(2m—1)),2) - + + s V14-(i+m—2 mod(2m—l)),2}
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foralll <i < 2m—1 and vjs — vi,) otherwise, if v;2 € V3 and v;; € V.
Analogously, if V{' = Vi N Ry and V§' = Vo N Ry, then let

{V2m+(j—1 mod(2m—1)),1) V2m+(j mod(2m—1)),11 - - - » V2m+(j+m—2 mod(2m—1)),1}
- Y52

for all 2m < j < 4m — 2 and v;2 — v;,; otherwise, if v;2 € V' and
v;,1 € V{'. Furthermore, let V§' ~ (X = {v;; | 4m-1<i<Tm-3,1<j <
3)) o VI, Vi = vame1,3 = Vi’ ~ (X \ {vame18)) ~ V4. [ Xi = X0V,
then finally let X; — {vizg |1 <i<2m -1} - Xo = {vi3 |2m £ i <
4m -2} = X3 = Xo — X3 — Xi. The resulting digraph G, (see Figure
2 form = 1) is a (Tm — 3)-regular 3-partite tournament with the property
that |X;|=3m -1 (1<i<3) and pc(D — X) =4m — 2.

Figure 2: The regular 3-partite tournament G, with the
property that pe(D — X) = 2.

Example 5.2 Letm > 1 be an integer and let V; = {v1,4, V2,4, -+, VTm—5,i},
1 < i < 3, be the partite sets of a regular 3-partite tournament Ap, such
that (Ry = {vij | (1 €i<2m—-2A1<j<2)V(i=2m—1 Aj=1D}H -

(Y={'Ui'3 | 1 $i$4m—3}) — (R2={v;,j I (2m$i$4m—3 Al <L

j<Vv(@E=2m—1Aj=2)}) and Ry ~ R. If V{ = ViNR, and
3 =VaN Ry, then let

Vi1 —
{V14(i-1 mod(2m=2)),2> V1+(i mod(2m—2)),2s - - - » VL-+(i+m—3 mod(2m—2)),2}

foralll <i<2m—1 and vjz — vi,) otherwise, if vz € V3 and v;y € V}.
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Analogously, if V' = V1N Ry and Vi = Vo N R, then let

{vzm+(j-1 mod(2m~—2)),1> V2m+(j mod(2m—2)),15 - « + » V2m+(j4+m—3 mod(2m—2)),l}
= V5,2

forall2m — 1 < § < 4m — 3 and vj2 — v, otherwise, if v;z € VJ' and
vi,1 € V{'. Furthermore, let (V' U{v;) |3m—-1<i<dm-3}) ~ (X =
{vij |4m -2<i<TM -5,1<j<3}) ~ (VU {v;2 | m<i<2m—-2}),
{‘Ui,g |1 <i< m-—l} — Ugm-2,3 — {’Ug'l | 2m < i < 3m—2} ~
(X\{’l)4m_2'3}) ~ {‘Ui,z I 1 5i$m—1}. IfXi=XnVY (1 <1< 3),
then finally let X; — {vi3|2m —1<i<4dm -3} > Xo — {v;3|1<i <
2m -2} = X; — X3 — X3 — X;. The resulting digraph A,, (see Figure
3 for m = 2) is a (Tm — 5)-regular 3-partite tournament with the property
that [X;| =3m -2 (1<i<3)and pe(D~ X)=4m - 3.

n I%JYLTJ R

I AA

n\ﬁ:

a

Xy

Figure 3: The regular 3-partite tournament Ay with the
property that pe(D — X) = 5.

Example 5.3 Let m > 1 be an integer and let V; = {v1i,v2,i,...,Vrm i},
1 <4 < 3, be the partite sets of a regular 3-partite tournament B,, such
that (R1 = {v;; [1<i<2m,1<j<2}) > (Y ={vi3|1<i<dm}) —
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(R2={v,-,,-|2m+1$i$4m,1 S]S2}) and R; ~ Rj. IfV{=R1r1V1
and V! = Ry N V3, then let

vi,1 = {V14(i—1 mod 2m),21 V1+(i mod 2m),2s - + -» V1+(i+m=2 mod 2m),2}

for all1 < i < 2m and vj2 — vy, otherwise, if vj2 € V3 and v;; € VY.
Analogously, if V{' = Ry NV; and V' = Ry N V2, then let

vi) —
{V2mt14(i=1 mod 2m),21 V2m+14-(i mod 2m),2s - - - » V2m-+1+(i+m—2 mod 2m) 2}

for all 2m +1 < i < 4m and vj2 — vi,1 otherwise, if vj2 € V7' and
v;,1 € V{'. Furthermore, let Ry ~ (X = {vij |4m+1<i<Tm,1<i <
3}) ~ Ry. If Xi = X NV,, then finally let X; — {viz|1<i<2m} —
Xy = {vig|2m+1<i<4m} — X1 = Xo — X3 — X1. The resulting
digraph B,,, (see Figure 4 for m = 1) is a Tm-regular 3-partite tournament
with the property that | X;| = 3m (1 <i < 3) and pc(D — X) = 4m.

Ry Ra

X3

Figure 4: The regular 3-partite tournament B; with the
property that pe(D — X) = 4.

To determine f(s,3) the Examples 5.1, 5.2 and 5.3 are best possible as
we can see in the following theorem.
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Theorem 5.4 Let D be a regular 3-partite tournament with exactly r ver-
tices in each partite set. If f(s,3) and s are defined as in Problem 1.5, then
it follows that

fBm—-1,3)=4m -2, f(3m—-2,3)=4m -3 and f(3m,3)=4m
Jor all integers m > 1.

Proof. Let D be a regular 3-partite tournament with the partite sets
V1,V2, V3 such that |Vi| = Vo] = [V3] = 7. If X is an arbitrary subset
of V(D) such that [ X NV;| = s < r for all 1 < i < 3, then we define
D' := D~ X. D’ has the partite sets V{, V3, V{ such that |V{| = |V{| =
[Vi] = r — 5. Since D is regular, we obviously have iy(D') < 2s. Suppose
that pe(D') > k > ‘-‘33 — 1. Then Corollary 2.5 yields the contradiction

V(D) = V5] = 2|V3] + 3k +3 _ 3k+3

3 2 > 2s.

25 > ig(D') >

Hence, we have

4m — 2 fBm—-1,3)<4m -2
pe(D')<{ 4m—3 } andthus { f(3m—2,3)<4m -3 },
4m f(8m,3) < 4m

s=3m-—-1
if s=3m-2 .
s=3m

According to the Examples 5.1, 5.2 and 5.3, we obtain f(3m—1,3) = 4m—2,
f(3m —2,3) = 4m — 3 and f(3m) = 4m for all integers m > 1, the desired
result. 0
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