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Abstract

Let G be a connected graph. In this paper we introduce the
concepts of vertex-to-clique radius r1, vertex-to-clique diameter d;,
clique-to-vertex radius r2, clique-to-vertex diameter dz, clique-to-
clique radius r3 and clique-to-clique diameter dz in G. We prove
that for any connected graph, rs < di < 2r; + 1fori =1, 2, 3.
We also find expressions for di, d2 and ds for a tree T in terms of
71, T2 and r3 respectively, which determine the cardinality of each
Zi(T), where Z;(T) is the vertex-to-clique, the clique-to -vertex and
the clique-to-clique center respectively of T for i=1,2, 3. f Gis a
graph which is not a tree and if g(G) denotes the girth of the graph,
then its relation with each of dj, d2 and d3 is discussed. We also
characterize the class of graphs G such that G is not a tree, d3 # 0
and ¢g(G) = 2d3 + 3.
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1 Introduction

By a graph G = (V,E), we mean a finite undirected connected graph
without loops or multiple edges. The order and size of G are denoted by
p and g respectively. For basic graph theoretic terminology, we refer to
Buckley and Harary [1]. The distance d(u,v) between two vertices u and v
in G is the length of a shortest u—v path in G. It is known that d is a metric
on the vertex set V. The eccentricity e(v) is the distance between v and a
vertex farthest from v. The set of all vertices for which e is minimized is
called the center of G and is denoted by Z(G). The concept of the center
of a graph arises in the context of selection of a site at which to locate a
facility in a graph. Taking into account the situation that the nature of the
facility to be constructed could necessitate selecting a structure rather than
a vertex to locate a facility, Slater [6] proposed four classes of locational
problems, namely, vertex-serves-vertex, vertex-serves-structure, structure-
serves-vertex and structure-serves-structure.

For subsets S, T C V and any vertex v in V, let d(v, S) = min{d(v, u):
u € S} and d(S,T) = min{d(z,y): z € S,y € T}.

Definition 1.1 ([6]) Let G = (V, E) be a connected graph. Let { = {C::
ieI}and S = {S;: j € J} where each of C; and S; is a subset of
V. Let es(C;) = max{d(C;,S;): j € J}; Ci is called a (¢, S)-center if
es(Ci) < es(Cy) for all k € I.

Slater [5] investigated the centrality of paths by taking S to be the
collection of all paths in G and ¢ to be the collection of all single vertex
sets in G, leading to the concepts of path center, path centroid and path
median of G. A maximal complete subgraph of G is called a clique in G.
Let ¢ denote the set of all cliques in G. Let r and d represent respectively
the radius and diameter of the graph G. For any real number z, |z]
denotes the greatest integer less than or equal to z. Santhakumaran and
Arumugam [4] introduced the concept of (V,()-center, ({,V)-center and
(¢,¢)-center and investigated their properties.

Definition 1.2 ([4]) Let C € ¢ and v € V. We define the vertez-to-clique
eccentricity by ey (v) = max{d(v,C): C is a clique in G}. The clique-to-
vertez eccentricity ea(C) is defined by e2(C) = max{d(C,v): v € V}.The
clique-to-clique eccentricity e3(C) is defined by e3(C) = max{d(C,C’):
C' € ¢}. The set of all vertices for which e;(v) is minimum is called
the (V, ¢)-center of G and is denoted by Z;(G). The set of all cliques C for
which ez(C) is minimum is called the ({, V')-center of G and is denoted by
Z5(G). The set of all cliques C for which e3(C) is minimum is called the
(¢,¢)- center of G and is denoted by Z3(G).
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For a clique C in G, a clique C’ with d(C,C’) = e3(C) is called an
eccentric cligue of C in G. For a vertex v € V, a clique C with d(v,C) =
e1(v) is called an eccentric clique of v in G.

We need the following theorems in the sequel.

Theorem 1.3 ([4]) For every vertex v of a graph G, e;(v) = e(v) or
e(v) — 1. Further e;(v) = e(v) if and only if every vertex of any (V,()-
eccentric clique of v is an eccentric vertex of v.

Theorem 1.4 ([4]) IfG is a tree, then e;(v) = e(v) — 1 for every vertex v.
Theorem 1.5 ([4]) For any tree T, Z,(T) = Z(T).

Theorem 1.6 ({4]) For any clique C of a graph G, e3(C) = e3(C) or
e2(C)—1. Further e3(C) = e(C) if and only if every vertex of any eccentric
clique of C is a ({, V)-eccentric vertex of C.

Theorem 1.7 ([4]) IfG is a connected block graph, then Z»(G) = Z3(G).
Theorem 1.8 ([4]) The (¢, V)-center Z2(T') of a tree T forms a star.

Centrality concepts have interesting applications in social networks (2,
3]. In a social network, a clique represents a group of individuals having a
“common interest” and hence centrality, radius and diameter with respect
to cliques will have useful applications.

2 Radius and diameter with respect to cliques

Definition 2.1 Let G = (V, E) be a connected graph. The (V,{)-radius
71 of G and the (V,()-diameter d; of G are defined by r; = min{e;(v):
v € V} and d; = max{e;(v): v € V} respectively. The ({,V)-radius ro
and the (¢, V)-diameter da are defined by r, = min {e2(C): C € ¢ } and
dz = max {ez(C): C € ¢} respectively. The (¢,()- radius 3 and the (¢, ¢)-
diameter d3 are defined by 73 = min {e3(C): C € ¢} and d3 = max {e3(C):
C € (} respectively.

Remark 2.2 We observe that for any graph G, d; = dz. However r; and 9
need not be equal. For the graph G given in Figure 1, e;(v;) = e;(vg) = 3,
e1(v2) = e1(v3) = e;(vs) = 2 and e1(vs) = 1; ea(v1v2) = ez(viv3) =
e2(vsvs) = 3 and ex(vovs) = ea(v3vg) = ea(vqus) = 2. Thus dy = dp = 3,
rp=1 and T = 2.

233



v V2

v3 V4 Us Ve

Figure 1: G

Example 2.3 Let G be a connected graph which is not complete such
that A = p—1. Then d = 2 and r = 1. Further every clique of G contains
all vertices of degree p— 1 and hence dy = 1,71 =0,dy =1,72=1,d3 =0
and r3 = 0.

Theorem 2.4 Let G be any connected graph and let H be the intersec-
tion graph of the family of all cliques in G. For any clique C in G, let
er(C) denote the eccentricity of the vertex C in H. Let dy and ry denote
respectively the diameter and radius of H. Then

(i) e3(C) = eq(C) — 1.

(ii) d3 = dpg — 1.

(ifi) rs =g — 1.

Proof. Let e3(C) = n. Let D be an eccentric clique of C so that d(C, D) =
n. Let P = (ug, uy, u, ..., Us), where ug € C and u, € D be a shortest
path in G. Let C; be a clique containing the edge u;—1u; (1 < 7 < n).
Since P is a shortest path in G, the cliques C, C1, Cy, ..., Cyn, D are all
distinct and (C, Cy, Ca, ..., Cp, D) is a shortest path joining C and D in
H. Further, since e3(C) = n, it follows that D is an eccentric vertex of C
in H so that eg(C) =n+1 = e3(C) + 1. Thus (i) is proved and now (ii)
and (iii) follow from the definitions of dy, d3, 7y and r3. [ ]

Theorem 2.5 In any connected graph G, (i)di =dord—1landr, =7
orr—1and (ii)dg=dyordy—1andrs=ry orra —1.

Proof. (i) and (ii) follow from Theorem 1.3 and Theorem 1.6 respectively.
[ ]

A nonseparable graph G is connected, nontrivial and has no cut vertices.
A block of a graph G is a maximal nonseparable subgraph of G. A graph
G in which each block is complete is called a block graph.
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Theorem 2.6 Let G be a non-complete connected block graph. Then
d1=d—1, ™ =’I‘—1, d3=d2—1andr3=r2—1.

Proof. Let v be any vertex in G and let C be a (V,()-eccentric clique
of v. Clearly C is an end-block of G containing exactly one cut vertex
say u of G and e;(v) = d(v,C) = d(v,u). For any vertex w in C — {u},
d(v,w) = d(v,u) + 1 and hence e;(v) = e(v) — 1 so that d; = d — 1 and
r1 =7 — 1, Similarly d3 =ds —1and r3 =75 — 1. | |

Corollary 2.7 Let G be a connected block graph with d > 2. Then
d3=d-2.

Proof. Since d; = dy, the result follows from Theorem 2.6. |

The result of Corollary 2.7 is a lower bound for arbitrary connected
graphs, as shown in the following theorem.

Theorem 2.8 Let G be a connected graph withd > 2. Thend -2 <
dz <d.

Proof, Obviously d3 < d. Let u and v be two vertices in G such that
d(u,v) = d. Let P = (u = up, uy, ..., ug = v) be a shortest (u—v) path.
Let C be a clique containing the edge ugu; and D be a clique containing
the last edge uq—juqg. Then d(C,D) = d — 2 and hence e3(C) > d — 2 so
that d3 >d—2. Thusd—-2<d; <d. [ |

Example 2.9 The bounds in Theorem 2.8 are sharp. For the graph G;
in Figure 2, d3 = 1 and d = 2 so that d3 = d — 1 and for the graph G in
Figure 2, d3 = 1 and d = 3 so that d3 = d— 2. Also for the Petersen graph,
ds=d=2.

Figure 2:
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Problem 2.10 Characterize the class of graphs for which (i) ds = d — 2,

The radius 7 and diameter d of a connected graph G satisfy the inequal-
ity r < d < 2r. We now proceed to prove similar results for ; and d; for

i=1,2,3.

Theorem 2.11 Let G be a connected graph. Then r; < d; < 2r; + 1,
(i=1,2 3).

Proof. We prove the result for i = 1. Let n = {d1/2]. Let (v = v, v1,
vy, ..., w) be a (V,{)-diameteral path P of length d; connecting a vertex
v and a clique C, where w € C so that d; = d(v,C) = d(v,w). Let Cp be
a clique in G containing the edge vov;.

We claim that for any vertex u in G, d(u,Cp) > n or d(u,C) > n.
Otherwise, there is a vertex u in G such that d(u,Co) < n and d(u,C) < n.

Let Pp = (u, u1, ug, ..., ux) be a shortest path connecting » and Cp and
let Qo = (u, w1, wo, ..., w) be a shortest path connecting » and C. Hence
k<n-11<n-1,u, € Cyand w; € C. Now (v = vp, U, Ug-1, ...,
u1, U, Wy, Wa,..., wy) is a walk connecting v and C. Hence d(v,C) <

l+k+1<(n—-1)+(n-1)+1=2n-1 < d, which is a contradiction.
Thus d(u,Co) > n or d(u,C) > n so that e;(u) > n = |d1/2]. Hence
71 > |d1/2] so that ry < dy < 27y + 1. The proofs for the cases i = 2, 3
are similar. |

Example 2.12 The bounds given in Theorem 2.11 are sharp in each case.
For any cycle, d; = r; for i = 1, 2, 3. For the path Pym43 on (2m + 3)
vertices, 1 = m and d; = 2m + 1 so that d; = 2r; + 1. For the graph
G given in Figure 3, d = 2m + 1 and 72 = m, where m > 2 so that
dy = 2rp + 1. For the path Py,4+4 on (2m + 4) vertices, 73 = m and
d3 =2m+1 (m > 0) so that d3 = 2ra + 1.

Uo uy u2 Um—1

P @ s s e s s e

Um
...... —
Un+1l U2m V2m+l

@ tremel) + ¢+ s 8 s s v e s e

Vo U1 v2 Um-1

Figure 3: G

Now we proceed to discuss the relation between r; and d; (1 <7 < 3)
for trees.
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It is known that for any tree T, |Z(T')] = 1 if and only if d = 2r, and
|Z(T)| = 2 if and only if d = 2r — 1. Since |Z(T)| = 1 or 2 for any tree, we
observe that for any tree d = 2r — 1 or 2r.

Theorem 2.13 For any nontrivial tree T, |Z,(T)| = 1 if and only if
dy =2r; +1 and IZI(T)I =2 if and only if dy = 2ry.

Proof. By Theorem 1.5, |Z,(T)| = 1 if and only if |Z(T)] = 1. Also we
have |Z(T)| = 1 if and only if d = 2r. Now, it follows from Theorem 2.6
that d = d—1 and r; = r — 1. Hence it follows that |Z,(T)| = 1 if and
only if d; = 2r) + 1. The proof is similar for the case |Z;(T)| = 2. |

Theorem 2.14 For any tree T, |Z3(T')| =1 if and only if d3 = 2rs.

Proof. Let T be a tree such that |Zo(T)| = 1. If T = K, thend; =, = 0.
IfT = Kin (n 2 2), then |Z2(T)| = n 2 2. Hence T is not a star and
V(T)| > 4.

Let Zy(T) = {C}, where C = vou;. Let v be a (¢, V)-eccentric vertex
of C so that ro = e3(C) = d(C,v) = d(v1,v) (say). Clearly v is a pendant
vertex of T. Let P = (v1, v2, ..., ¥, %+1 = v) be the unique path
connecting C and v of length ¢t = rs.

Let C' = vyvp. As T # K and |Z3(T)| = 1, C' € Z5(T) so that
e2(C") > ro. Let v’ be a (¢, V)-eccentric vertex of C’ so that 72 < ex(C’) =
d(C',v'). Clearly v’ does not lie on the path P. Let P’ be the unique path
connecting C’ and v’. The first edge on P’ must be v;vp and so P’ = (v,
Vo, U1, Uz, ..., W = v'), where I > 5. Since e2(C) = r, it follows that
l =r,. Since T is a tree, the paths P and P’ do not have common vertices
except vg and v;. Let C” = vvy41. Now the path P = (v/ = u;, w1, ...,
uy, Vo , Y1, V2, ..., V) connecting v’ and C” is such that d(C",v’) = 2ry
and so ez(C") > 2rp. Hence dy > 2r;. It follows from Theorem 2.11 that
dy = 2rp or 2r9 + 1.

Now if dy = 2r3+1, then there exists a (¢, V')- diameteral path Q = (wy,
wy, Wa, ..., Wp) of length m = 2rp 4+ 1 connecting an edge £ = zwy and
a vertex wy, so that d(E,wn) = 2r; + 1. Hence it follows that for any
edge C in T, d(C,z) > ro or d(C,wm) > 3 so that ex(C) > ra, which is a
contradiction. Hence dy = 2r5.

Conversely, let dy = 2rg. Let P = (v1,v2, ..., Un—1, Un, Unt1,y -+, V2n,
van4+1) be a (¢, V)-diameteral path of length 2n, where n = r;, connecting
an edge C' = vov; and a vertex vgn+1. Thus for the edge C! = vpvpy1, we
have d(C’,van41) = 72 and so e3(C’) > ro. If e2(C’) > 73, then we can
get an edge uv and a vertex w of T such that d(uv,w) > 2rs, which is a
contradiction to dz = 2r;. Thus ez(C’) = r3 so that C’ € Zy(T).

Now, let F' be any edge in T such that F' # C’. Then it is clear that
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d(F,vp) > o or d(F,van+1) > 72 and so ez(F) > r2. Hence F' ¢ Z3(T') and
so Zo(T) = {C’}. Thus |Z,(T)| = 1. |

Theorem 2.15 For any tree T, | Zo(T')| = 2 if and only if dp = 2ry — 1.

Proof. Let T be a tree such that |Z2(T")| = 2. Then obviously T # Ko.
If T = Ki,n (n > 2), then o = d = 1 so that d; = 2rp — 1. Suppose
T # K n (n 2 2) so that |V(T)| > 4.

Let Co, Ep € Z3(T). By Theorem 1.8, Z3(T) forms a star and hence
let Cy = uovp and Ep = wovg. Let vy be a (¢, V)-eccentric vertex of Cp so
that ry = e2(Cp) = d(Co, v¢). Then the unique path P connecting Cp and
v has vg as its origin, for otherwise d(Eo, v;) > T2 so that ea(Ep) > ro,
which is a contradiction. Let P = (vg, v1, V2, ..., v;), Where t = ra.

Let Fo = vorr. If Fy ¢ ZQ(T), then es(Fp) > ra. Let f; be a (¢, V)-
eccentric vertex of Fy so that ex(Fp) = d(Fo, fi) > r2. The unique path
Q of length I > r3 connecting Fp and f; has vg as its origin, for otherwise
both e3(Co) > r2 and ez(Ep) > rp. But the minimum length path from
vp to f; shows that d(Co, fi) > ro. This final contradiction demonstrates
Fy € Z2(T)

Let w,, be a (¢, V)-eccentric vertex of Fy. Since d(Fp, v;) = rp — 1,
we have w,, # v;. Let P' = (vo, w1, wa, ..., Wm) be the path of length
m = ro connecting Fy and w,, with the origin of P’ necessarily vo. Let
F = wp—1Wm. Then Q' = (Wm-1, Wm-2, -+ -, Yo, V1, V2, ..., V;) is a path
connecting F and v, so that d(F,v;) = 2r2 — 1. Hence ez(F) > 2r2 —1 and
50 dg > 2rp — 1. We claim that dy = 2ry — 1. Suppose d2 # 2ro — 1. Then
we have ds = 2rg or 2rp + 1 since dy < 2r + 1, by Theorem 2.11. Also by
Theorem 2.14, d; # 2r; and as in the proof of first part of Theorem 2.14,
we have dy # 2r; + 1. Hence d; = 2rp — 1. The converse follows from
Theorem 2.14. [ |

Corollary 2.16 For any tree T # Ko, |Z3(T)| = 1 if and only if d3 =
2r3+1 and |Z5(T)| > 2 if and only ifd3 = 2r3. Also forT = K>, |Z3(T)| =1
and dz = 2rs.

Proof. For T # K, this follows from Theorem 1.7, Theorem 2.6, Theo-
rem 2.14 and Theorem 2.15. For T' = Kp, it is clear that |Z3(T)| =1 and
ds = r3 = 0 so that d3 = 2r3.

3 Girth and diameter with respect to cliques

It is known that for a connected graph G which is not a tree, g(G) < 2d+1,
where g(G) denotes the girth of the graph.
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We now investigate the relation between the girth g(G) of a connected
graph G and the parameters d;, i = 1, 2, 3.

Theorem 3.1 Let G be a non-complete connected graph which is not a
tree. Then g(G) < 2d; + 2 if g(G) is even and g(G) < 2d; + 1 if g(G) is
odd.

Proof. Since G is connected and non-complete, we have d; > 1. Hence
the result is obvious if g(G) = 3. Suppose g(G) > 4. Then any clique in
G is an edge in G. Let C be a cycle in G of least length. We consider two
cases.
Case (i) C = (v1, v2, ..., Van, v1) is an even cycle of length a least 4.
Then g(G) = 2n. Let F = vpv,41. We claim that d(v,,F) = n — 1.
Suppose that there exists a path P of length less than (n—1) connecting v,
and F. Let v; # v; be the first vertex of the path P that lies on the cycle C.
Then at least one (v; —v;) section, say @, of the cycle C has length at most
n. Hence the cycle formed by the section of P connecting v; and v; followed
by @ has length less than (n—1)+n = 2n—1 < 2n, which is a contradiction.
Hence d(v;, F) = n — 1. Thus g(G) = 2n = 2(d(v;, F) + 1) < 2d; +2.
Case (ii) C = (v1, v2, ..., Van+1, v1) is an odd cycle of length at least 5.
Then g(G) = 2n+ 1. Let F = vp41Vn+2. Then proceeding as in case
(i) we can prove that d(vy, F) = n. Thus g(G) =2n+1=2d(v;,F)+1 <
2dy + 1. |

Remark 3.2 The bounds in Theorem 3.1 are sharp. For any even cycle
G = Cyp, dy = n—1 and so g(G) = 2d; + 2. For any odd cycle G = Cp 4y
of length greater than 3, d; = n and so g(G) = 2d; + 1.

Remark 3.3 If G is a non-complete connected graph which is not a tree,
then since dj = dy, it follows from Theorem 3.1 that g(G) < 2dx +2 if g(G)
is even and g(G) < 2d; + 1 if g(G) is odd.

Problem 3.4 Characterize the class of graphs for which g(G) = 2d; + 2.

Theorem 3.5 IfG is a connected graph which is not a tree, then g(G) <
2d; + 3.

Proof. Let g(G) = n and let C = (v1, vy, ..., vn, v1) be a cycle of
length n in G. Let m = |n/2]. Let E = vjv and E' = v;p41Um42. Then
d(E,E') = m—1. Hence g(G) < 2m+1=2(d(E,E')+1)+1 < 2d3+3. W

Remark 3.6 The bound in Theorem 3.5 is sharp. For any odd cycle
G = Caonq of length greater than 3, d3 = n — 1 and so g(G) = 2d3 + 3.
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For any even cycle G = Ca,,d3 =n — 1 and so g(G) =2d3+2. If G is a
connected graph which is not a tree with d3 = 0, then g(G) = 3.

Theorem 3.7 Let G be a connected graph which is not a tree with d # 0.
Then g(G) = 2d3 + 3 if and only if G = Caqy43-

Proof. Since d3 # 0, G is not complete. Let g(G) = 2d3+3. Since g(G) >
5, any clique of G is an edge in G. Now let C = (v1,v2,3, .. .,V2d3+3, V1)
be a cycle of length 2d3 + 3 in G. If G # C, then there exists a vertex
v ¢ C such that v is adjacent to a vertex say vgy+3 in C. Let E = vjuy
and E'= v4,43v. We claim that d(E, E’') = d3 + 1. Otherwise, there exists
a path P of length at most ds connecting E and E'. Let v; # vy, vz be the
first vertex of the path P that lies on C3q4,43. Then at least one (v; —~ E)
section, say @, of the cycle Ca4,+3 has length at most d3 + 1. Hence the
cycle formed by the section of P connecting E and E’ followed by Q has
length at most d3 + d3 + 1+ 1 (the last 1 being the length of the edge
V4,43V, possibly) = 2d3 + 2 < 2d3 + 3, which is a contradiction. Hence
d(E, E') = d3+1 so that e3(E) > da + 1. It follows that d3 > d3+1, which
is a contradiction. Thus G = Cag,+3. The converse is obvious. |

Remark 3.8 Theorem 3.7 fails if d3 = 0. For the graph G given in Figure
4, d3 = 0 and g(G) = 3 so that g(G) = 2ds + 3.

D__

Figure 4: G
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