Radius and Diameter with respect to Cliques in Graphs

A. P. Santhakumaran¹ S. Arumugam²

- P. G. and Research Department of Mathematics
 St. Xavier's College (Autonomous)
 Palayamkottai 627 002, India.
 e-mail: apskumar1953@yahoo.co.in
- Core Group Research Facility (CGRF)
 National Centre for Advanced Research in
 Discrete Mathematics (n-CARDMATH)
 Kalasalingam University
 Anand Nagar, Krishnankoil-626 190, INDIA.
 e-mail: s_arumugam_akce@yahoo.com

Abstract

Let G be a connected graph. In this paper we introduce the concepts of vertex-to-clique $radius\ r_1$, vertex-to-clique $diameter\ d_1$, clique-to-vertex $radius\ r_2$, clique-to-vertex $diameter\ d_2$, clique-to-clique $radius\ r_3$ and clique-to-clique $diameter\ d_3$ in G. We prove that for any connected graph, $r_i \le d_i \le 2r_i + 1$ for i = 1, 2, 3. We also find expressions for d_1, d_2 and d_3 for a tree T in terms of r_1, r_2 and r_3 respectively, which determine the cardinality of each $Z_i(T)$, where $Z_i(T)$ is the vertex-to-clique, the clique-to-vertex and the clique-to-clique center respectively of T for i = 1, 2, 3. If G is a graph which is not a tree and if g(G) denotes the girth of the graph, then its relation with each of d_1, d_2 and d_3 is discussed. We also characterize the class of graphs G such that G is not a tree, $d_3 \ne 0$ and $g(G) = 2d_3 + 3$.

Key Words: vertex-to-clique radius, vertex-to-clique diameter, clique-to-vertex radius, clique-to-vertex diameter, clique-to-clique radius, clique-to-clique diameter.

AMS Subject Classification: 05C12

1 Introduction

By a graph G=(V,E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Buckley and Harary [1]. The distance d(u,v) between two vertices u and v in G is the length of a shortest u-v path in G. It is known that d is a metric on the vertex set V. The eccentricity e(v) is the distance between v and a vertex farthest from v. The set of all vertices for which e is minimized is called the center of G and is denoted by Z(G). The concept of the center of a graph arises in the context of selection of a site at which to locate a facility in a graph. Taking into account the situation that the nature of the facility to be constructed could necessitate selecting a structure rather than a vertex to locate a facility, Slater [6] proposed four classes of locational problems, namely, vertex-serves-vertex, vertex-serves-structure, structure-serves-vertex and structure-serves-structure.

For subsets $S, T \subseteq V$ and any vertex v in V, let $d(v, S) = \min\{d(v, u): u \in S\}$ and $d(S, T) = \min\{d(x, y): x \in S, y \in T\}$.

Definition 1.1 ([6]) Let G = (V, E) be a connected graph. Let $\zeta = \{C_i : i \in I\}$ and $S = \{S_j : j \in J\}$ where each of C_i and S_j is a subset of V. Let $e_S(C_i) = \max\{d(C_i, S_j): j \in J\}$; C_i is called a (ζ, S) -center if $e_S(C_i) \le e_S(C_k)$ for all $k \in I$.

Slater [5] investigated the centrality of paths by taking S to be the collection of all paths in G and ζ to be the collection of all single vertex sets in G, leading to the concepts of path center, path centroid and path median of G. A maximal complete subgraph of G is called a clique in G. Let ζ denote the set of all cliques in G. Let r and d represent respectively the radius and diameter of the graph G. For any real number x, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x. Santhakumaran and Arumugam [4] introduced the concept of (V, ζ) -center, (ζ, V) -center and (ζ, ζ) -center and investigated their properties.

Definition 1.2 ([4]) Let $C \in \zeta$ and $v \in V$. We define the vertex-to-clique eccentricity by $e_1(v) = \max\{d(v,C): C \text{ is a clique in } G\}$. The clique-to-vertex eccentricity $e_2(C)$ is defined by $e_2(C) = \max\{d(C,v): v \in V\}$. The clique-to-clique eccentricity $e_3(C)$ is defined by $e_3(C) = \max\{d(C,C'): C' \in \zeta\}$. The set of all vertices for which $e_1(v)$ is minimum is called the (V,ζ) -center of G and is denoted by $Z_1(G)$. The set of all cliques C for which $e_2(C)$ is minimum is called the (ζ,V) -center of G and is denoted by $Z_2(G)$. The set of all cliques C for which $e_3(C)$ is minimum is called the (ζ,ζ) -center of G and is denoted by $Z_3(G)$.

For a clique C in G, a clique C' with $d(C, C') = e_3(C)$ is called an eccentric clique of C in G. For a vertex $v \in V$, a clique C with $d(v, C) = e_1(v)$ is called an eccentric clique of v in G.

We need the following theorems in the sequel.

Theorem 1.3 ([4]) For every vertex v of a graph G, $e_1(v) = e(v)$ or e(v) - 1. Further $e_1(v) = e(v)$ if and only if every vertex of any (V, ζ) -eccentric clique of v is an eccentric vertex of v.

Theorem 1.4 ([4]) If G is a tree, then $e_1(v) = e(v) - 1$ for every vertex v.

Theorem 1.5 ([4]) For any tree $T, Z_1(T) = Z(T)$.

Theorem 1.6 ([4]) For any clique C of a graph G, $e_3(C) = e_2(C)$ or $e_2(C)-1$. Further $e_3(C) = e_2(C)$ if and only if every vertex of any eccentric clique of C is a (ζ, V) -eccentric vertex of C.

Theorem 1.7 ([4]) If G is a connected block graph, then $Z_2(G) = Z_3(G)$.

Theorem 1.8 ([4]) The (ζ, V) -center $Z_2(T)$ of a tree T forms a star.

Centrality concepts have interesting applications in social networks [2, 3]. In a social network, a clique represents a group of individuals having a "common interest" and hence centrality, radius and diameter with respect to cliques will have useful applications.

2 Radius and diameter with respect to cliques

Definition 2.1 Let G = (V, E) be a connected graph. The (V, ζ) -radius r_1 of G and the (V, ζ) -diameter d_1 of G are defined by $r_1 = \min\{e_1(v): v \in V\}$ and $d_1 = \max\{e_1(v): v \in V\}$ respectively. The (ζ, V) -radius r_2 and the (ζ, V) -diameter d_2 are defined by $r_2 = \min\{e_2(C): C \in \zeta\}$ and $d_2 = \max\{e_2(C): C \in \zeta\}$ respectively. The (ζ, ζ) -radius r_3 and the (ζ, ζ) -diameter d_3 are defined by $r_3 = \min\{e_3(C): C \in \zeta\}$ and $d_3 = \max\{e_3(C): C \in \zeta\}$ respectively.

Remark 2.2 We observe that for any graph G, $d_1 = d_2$. However r_1 and r_2 need not be equal. For the graph G given in Figure 1, $e_1(v_1) = e_1(v_6) = 3$, $e_1(v_2) = e_1(v_3) = e_1(v_5) = 2$ and $e_1(v_4) = 1$; $e_2(v_1v_2) = e_2(v_1v_3) = e_2(v_5v_6) = 3$ and $e_2(v_2v_4) = e_2(v_3v_4) = e_2(v_4v_5) = 2$. Thus $d_1 = d_2 = 3$, $r_1 = 1$ and $r_2 = 2$.

Figure 1: G

Example 2.3 Let G be a connected graph which is not complete such that $\Delta = p - 1$. Then d = 2 and r = 1. Further every clique of G contains all vertices of degree p - 1 and hence $d_1 = 1$, $r_1 = 0$, $d_2 = 1$, $r_2 = 1$, $d_3 = 0$ and $r_3 = 0$.

Theorem 2.4 Let G be any connected graph and let H be the intersection graph of the family of all cliques in G. For any clique C in G, let $e_H(C)$ denote the eccentricity of the vertex C in H. Let d_H and r_H denote respectively the diameter and radius of H. Then

- (i) $e_3(C) = e_H(C) 1$.
- (ii) $d_3 = d_H 1$.
- (iii) $r_3 = r_H 1$.

Proof. Let $e_3(C) = n$. Let D be an eccentric clique of C so that d(C, D) = n. Let $P = (u_0, u_1, u_2, \ldots, u_n)$, where $u_0 \in C$ and $u_n \in D$ be a shortest path in G. Let C_i be a clique containing the edge $u_{i-1}u_i$ $(1 \le i \le n)$. Since P is a shortest path in G, the cliques $C, C_1, C_2, \ldots, C_n, D$ are all distinct and $(C, C_1, C_2, \ldots, C_n, D)$ is a shortest path joining C and D in C. Further, since $e_3(C) = n$, it follows that D is an eccentric vertex of C in C so that C is an eccentric vertex of C in C so that C is proved and now (ii) and (iii) follow from the definitions of C and C in C so that C is proved and C in C so that C is proved and C in C

Theorem 2.5 In any connected graph G, (i) $d_1 = d$ or d - 1 and $r_1 = r$ or r - 1 and (ii) $d_3 = d_2$ or $d_2 - 1$ and $r_3 = r_2$ or $r_2 - 1$.

Proof. (i) and (ii) follow from Theorem 1.3 and Theorem 1.6 respectively.

A nonseparable graph G is connected, nontrivial and has no cut vertices. A block of a graph G is a maximal nonseparable subgraph of G. A graph G in which each block is complete is called a block graph.

Theorem 2.6 Let G be a non-complete connected block graph. Then $d_1 = d - 1$, $r_1 = r - 1$, $d_3 = d_2 - 1$ and $r_3 = r_2 - 1$.

Proof. Let v be any vertex in G and let C be a (V,ζ) -eccentric clique of v. Clearly C is an end-block of G containing exactly one cut vertex say u of G and $e_1(v) = d(v,C) = d(v,u)$. For any vertex w in $C - \{u\}$, d(v,w) = d(v,u) + 1 and hence $e_1(v) = e(v) - 1$ so that $d_1 = d - 1$ and $r_1 = r - 1$. Similarly $d_3 = d_2 - 1$ and $r_3 = r_2 - 1$.

Corollary 2.7 Let G be a connected block graph with $d \ge 2$. Then $d_3 = d - 2$.

Proof. Since $d_1 = d_2$, the result follows from Theorem 2.6.

The result of Corollary 2.7 is a lower bound for arbitrary connected graphs, as shown in the following theorem.

Theorem 2.8 Let G be a connected graph with $d \geq 2$. Then $d-2 \leq d_3 \leq d$.

Proof. Obviously $d_3 \leq d$. Let u and v be two vertices in G such that d(u,v)=d. Let $P=(u=u_0,\,u_1,\,\ldots,\,u_d=v)$ be a shortest (u-v) path. Let C be a clique containing the edge u_0u_1 and D be a clique containing the last edge $u_{d-1}u_d$. Then d(C,D)=d-2 and hence $e_3(C)\geq d-2$ so that $d_3\geq d-2$. Thus $d-2\leq d_3\leq d$.

Example 2.9 The bounds in Theorem 2.8 are sharp. For the graph G_1 in Figure 2, $d_3 = 1$ and d = 2 so that $d_3 = d - 1$ and for the graph G_2 in Figure 2, $d_3 = 1$ and d = 3 so that $d_3 = d - 2$. Also for the Petersen graph, $d_3 = d = 2$.

Figure 2:

Problem 2.10 Characterize the class of graphs for which (i) $d_3 = d - 2$, (ii) $d_3 = d - 1$ and (iii) $d_3 = d$.

The radius r and diameter d of a connected graph G satisfy the inequality $r \leq d \leq 2r$. We now proceed to prove similar results for r_i and d_i for i = 1, 2, 3.

Theorem 2.11 Let G be a connected graph. Then $r_i \leq d_i \leq 2r_i + 1$, (i = 1, 2, 3).

Proof. We prove the result for i = 1. Let $n = \lfloor d_1/2 \rfloor$. Let $(v = v_0, v_1, v_2, \ldots, w)$ be a (V, ζ) -diameteral path P of length d_1 connecting a vertex v and a clique C, where $w \in C$ so that $d_1 = d(v, C) = d(v, w)$. Let C_0 be a clique in G containing the edge v_0v_1 .

We claim that for any vertex u in G, $d(u,C_0) \geq n$ or $d(u,C) \geq n$. Otherwise, there is a vertex u in G such that $d(u,C_0) < n$ and d(u,C) < n. Let $P_0 = (u, u_1, u_2, \ldots, u_k)$ be a shortest path connecting u and C_0 and let $Q_0 = (u, w_1, w_2, \ldots, w_l)$ be a shortest path connecting u and C. Hence $k \leq n-1$, $l \leq n-1$, $u_k \in C_0$ and $w_l \in C$. Now $(v=v_0, u_k, u_{k-1}, \ldots, u_1, u, w_1, w_2, \ldots, w_l)$ is a walk connecting v and v. Hence v0 and v1 is a contradiction. Thus v1 is a contradiction of v2 is a contradiction. Thus v2 is a contradiction of v3 is a contradiction. Thus v3 is a contradiction of v4 is a contradiction. Thus v4 is a contradiction of v5 is a contradiction. Thus v6 is a contradiction of v8 is a contradiction of v8 is a contradiction. Thus v8 is a contradiction of v9 is a contradiction of v9. In the contradiction of v9 is a contradiction of v9 is a contradiction of v9. The contradiction of v9 is a contradiction of v9 is a contradiction of v9 is a contradiction of v9. The contradiction of v9 is a contradiction of v9 is a

Example 2.12 The bounds given in Theorem 2.11 are sharp in each case. For any cycle, $d_i = r_i$ for i = 1, 2, 3. For the path P_{2m+3} on (2m+3) vertices, $r_1 = m$ and $d_1 = 2m+1$ so that $d_1 = 2r_1 + 1$. For the graph G given in Figure 3, $d_2 = 2m+1$ and $r_2 = m$, where $m \ge 2$ so that $d_2 = 2r_2 + 1$. For the path P_{2m+4} on (2m+4) vertices, $r_3 = m$ and $d_3 = 2m+1$ $(m \ge 0)$ so that $d_3 = 2r_3 + 1$.

Figure 3: G

Now we proceed to discuss the relation between r_i and d_i $(1 \le i \le 3)$ for trees.

It is known that for any tree T, |Z(T)| = 1 if and only if d = 2r, and |Z(T)| = 2 if and only if d = 2r - 1. Since |Z(T)| = 1 or 2 for any tree, we observe that for any tree d = 2r - 1 or 2r.

Theorem 2.13 For any nontrivial tree T, $|Z_1(T)| = 1$ if and only if $d_1 = 2r_1 + 1$ and $|Z_1(T)| = 2$ if and only if $d_1 = 2r_1$.

Proof. By Theorem 1.5, $|Z_1(T)| = 1$ if and only if |Z(T)| = 1. Also we have |Z(T)| = 1 if and only if d = 2r. Now, it follows from Theorem 2.6 that $d_1 = d - 1$ and $r_1 = r - 1$. Hence it follows that $|Z_1(T)| = 1$ if and only if $d_1 = 2r_1 + 1$. The proof is similar for the case $|Z_1(T)| = 2$.

Theorem 2.14 For any tree T, $|Z_2(T)| = 1$ if and only if $d_2 = 2r_2$.

Proof. Let T be a tree such that $|Z_2(T)| = 1$. If $T = K_2$, then $d_2 = r_2 = 0$. If $T = K_{1,n}$ $(n \ge 2)$, then $|Z_2(T)| = n \ge 2$. Hence T is not a star and $|V(T)| \ge 4$.

Let $Z_2(T) = \{C\}$, where $C = v_0v_1$. Let v be a (ζ, V) -eccentric vertex of C so that $r_2 = e_2(C) = d(C, v) = d(v_1, v)$ (say). Clearly v is a pendant vertex of T. Let $P = (v_1, v_2, \ldots, v_t, v_{t+1} = v)$ be the unique path connecting C and v of length $t = r_2$.

Let $C'=v_1v_2$. As $T\neq K_2$ and $|Z_2(T)|=1$, $C'\notin Z_2(T)$ so that $e_2(C')>r_2$. Let v' be a (ζ,V) -eccentric vertex of C' so that $r_2< e_2(C')=d(C',v')$. Clearly v' does not lie on the path P. Let P' be the unique path connecting C' and v'. The first edge on P' must be v_1v_0 and so $P'=(v_1,v_0,u_1,u_2,\ldots,u_l=v')$, where $l\geq r_2$. Since $e_2(C)=r_2$, it follows that $l=r_2$. Since T is a tree, the paths P and P' do not have common vertices except v_0 and v_1 . Let $C''=v_tv_{t+1}$. Now the path $P''=(v'=u_l,u_{l-1},\ldots,u_1,v_0,v_1,v_2,\ldots,v_t)$ connecting v' and C'' is such that $d(C'',v')=2r_2$ and so $e_2(C'')\geq 2r_2$. Hence $d_2\geq 2r_2$. It follows from Theorem 2.11 that $d_2=2r_2$ or $2r_2+1$.

Now if $d_2 = 2r_2 + 1$, then there exists a (ζ, V) - diameteral path $Q = (w_0, w_1, w_2, \ldots, w_m)$ of length $m = 2r_2 + 1$ connecting an edge $E = xw_0$ and a vertex w_m so that $d(E, w_m) = 2r_2 + 1$. Hence it follows that for any edge C in T, $d(C, x) > r_2$ or $d(C, w_m) > r_2$ so that $e_2(C) > r_2$, which is a contradiction. Hence $d_2 = 2r_2$.

Conversely, let $d_2=2r_2$. Let $P=(v_1,v_2,\ldots,v_{n-1},v_n,v_{n+1},\ldots,v_{2n},v_{2n+1})$ be a (ζ,V) -diameteral path of length 2n, where $n=r_2$, connecting an edge $C=v_0v_1$ and a vertex v_{2n+1} . Thus for the edge $C'=v_nv_{n+1}$, we have $d(C',v_{2n+1})=r_2$ and so $e_2(C')\geq r_2$. If $e_2(C')>r_2$, then we can get an edge uv and a vertex u of u such that u so t

Now, let F be any edge in T such that $F \neq C'$. Then it is clear that

 $d(F, v_0) > r_2$ or $d(F, v_{2n+1}) > r_2$ and so $e_2(F) > r_2$. Hence $F \notin Z_2(T)$ and so $Z_2(T) = \{C'\}$. Thus $|Z_2(T)| = 1$.

Theorem 2.15 For any tree T, $|Z_2(T)| \ge 2$ if and only if $d_2 = 2r_2 - 1$.

Proof. Let T be a tree such that $|Z_2(T)| \ge 2$. Then obviously $T \ne K_2$. If $T = K_{1,n}$ $(n \ge 2)$, then $r_2 = d_2 = 1$ so that $d_2 = 2r_2 - 1$. Suppose $T \ne K_{1,n}$ $(n \ge 2)$ so that $|V(T)| \ge 4$.

Let C_0 , $E_0 \in Z_2(T)$. By Theorem 1.8, $Z_2(T)$ forms a star and hence let $C_0 = u_0v_0$ and $E_0 = w_0v_0$. Let v_t be a (ζ, V) -eccentric vertex of C_0 so that $r_2 = e_2(C_0) = d(C_0, v_t)$. Then the unique path P connecting C_0 and v_t has v_0 as its origin, for otherwise $d(E_0, v_t) > r_2$ so that $e_2(E_0) > r_2$, which is a contradiction. Let $P = (v_0, v_1, v_2, \ldots, v_t)$, where $t = r_2$.

Let $F_0 = v_0 v_1$. If $F_0 \notin Z_2(T)$, then $e_2(F_0) > r_2$. Let f_l be a (ζ, V) -eccentric vertex of F_0 so that $e_2(F_0) = d(F_0, f_l) > r_2$. The unique path Q of length $l > r_2$ connecting F_0 and f_l has v_0 as its origin, for otherwise both $e_2(C_0) > r_2$ and $e_2(E_0) > r_2$. But the minimum length path from v_0 to f_l shows that $d(C_0, f_l) > r_2$. This final contradiction demonstrates $F_0 \in Z_2(T)$.

Let w_m be a (ζ, V) -eccentric vertex of F_0 . Since $d(F_0, v_t) = r_2 - 1$, we have $w_m \neq v_t$. Let $P' = (v_0, w_1, w_2, \ldots, w_m)$ be the path of length $m = r_2$ connecting F_0 and w_m with the origin of P' necessarily v_0 . Let $F = w_{m-1}w_m$. Then $Q' = (w_{m-1}, w_{m-2}, \ldots, v_0, v_1, v_2, \ldots, v_t)$ is a path connecting F and v_t so that $d(F, v_t) = 2r_2 - 1$. Hence $e_2(F) \geq 2r_2 - 1$ and so $d_2 \geq 2r_2 - 1$. We claim that $d_2 = 2r_2 - 1$. Suppose $d_2 \neq 2r_2 - 1$. Then we have $d_2 = 2r_2$ or $2r_2 + 1$ since $d_2 \leq 2r_2 + 1$, by Theorem 2.11. Also by Theorem 2.14, $d_2 \neq 2r_2$ and as in the proof of first part of Theorem 2.14, we have $d_2 \neq 2r_2 + 1$. Hence $d_2 = 2r_2 - 1$. The converse follows from Theorem 2.14.

Corollary 2.16 For any tree $T \neq K_2$, $|Z_3(T)| = 1$ if and only if $d_3 = 2r_3+1$ and $|Z_3(T)| \geq 2$ if and only if $d_3 = 2r_3$. Also for $T = K_2$, $|Z_3(T)| = 1$ and $d_3 = 2r_3$.

Proof. For $T \neq K_2$, this follows from Theorem 1.7, Theorem 2.6, Theorem 2.14 and Theorem 2.15. For $T = K_2$, it is clear that $|Z_3(T)| = 1$ and $d_3 = r_3 = 0$ so that $d_3 = 2r_3$.

3 Girth and diameter with respect to cliques

It is known that for a connected graph G which is not a tree, $g(G) \leq 2d+1$, where g(G) denotes the girth of the graph.

We now investigate the relation between the girth g(G) of a connected graph G and the parameters d_i , i = 1, 2, 3.

Theorem 3.1 Let G be a non-complete connected graph which is not a tree. Then $g(G) \leq 2d_1 + 2$ if g(G) is even and $g(G) \leq 2d_1 + 1$ if g(G) is odd.

Proof. Since G is connected and non-complete, we have $d_1 \geq 1$. Hence the result is obvious if g(G) = 3. Suppose $g(G) \geq 4$. Then any clique in G is an edge in G. Let G be a cycle in G of least length. We consider two cases.

Case (i) $C = (v_1, v_2, \ldots, v_{2n}, v_1)$ is an even cycle of length a least 4.

Then g(G)=2n. Let $F=v_nv_{n+1}$. We claim that $d(v_1,F)=n-1$. Suppose that there exists a path P of length less than (n-1) connecting v_1 and F. Let $v_i \neq v_1$ be the first vertex of the path P that lies on the cycle C. Then at least one (v_i-v_1) section, say Q, of the cycle C has length at most n. Hence the cycle formed by the section of P connecting v_1 and v_i followed by Q has length less than (n-1)+n=2n-1<2n, which is a contradiction. Hence $d(v_1,F)=n-1$. Thus $g(G)=2n=2(d(v_1,F)+1)\leq 2d_1+2$. Case (ii) $C=(v_1,v_2,\ldots,v_{2n+1},v_1)$ is an odd cycle of length at least 5.

Then g(G)=2n+1. Let $F=v_{n+1}v_{n+2}$. Then proceeding as in case (i) we can prove that $d(v_1,F)=n$. Thus $g(G)=2n+1=2d(v_1,F)+1\leq 2d_1+1$.

Remark 3.2 The bounds in Theorem 3.1 are sharp. For any even cycle $G = C_{2n}$, $d_1 = n - 1$ and so $g(G) = 2d_1 + 2$. For any odd cycle $G = C_{2n+1}$ of length greater than 3, $d_1 = n$ and so $g(G) = 2d_1 + 1$.

Remark 3.3 If G is a non-complete connected graph which is not a tree, then since $d_1 = d_2$, it follows from Theorem 3.1 that $g(G) \le 2d_2 + 2$ if g(G) is even and $g(G) \le 2d_2 + 1$ if g(G) is odd.

Problem 3.4 Characterize the class of graphs for which $g(G) = 2d_1 + 2$.

Theorem 3.5 If G is a connected graph which is not a tree, then $g(G) \le 2d_3 + 3$.

Proof. Let g(G) = n and let $C = (v_1, v_2, ..., v_n, v_1)$ be a cycle of length n in G. Let $m = \lfloor n/2 \rfloor$. Let $E = v_1 v_2$ and $E' = v_{m+1} v_{m+2}$. Then d(E, E') = m-1. Hence $g(G) \le 2m+1 = 2(d(E, E')+1)+1 \le 2d_3+3$.

Remark 3.6 The bound in Theorem 3.5 is sharp. For any odd cycle $G = C_{2n+1}$ of length greater than 3, $d_3 = n-1$ and so $g(G) = 2d_3 + 3$.

For any even cycle $G = C_{2n}$, $d_3 = n - 1$ and so $g(G) = 2d_3 + 2$. If G is a connected graph which is not a tree with $d_3 = 0$, then g(G) = 3.

Theorem 3.7 Let G be a connected graph which is not a tree with $d_3 \neq 0$. Then $g(G) = 2d_3 + 3$ if and only if $G = C_{2d_3+3}$.

Proof. Since $d_3 \neq 0$, G is not complete. Let $g(G) = 2d_3 + 3$. Since $g(G) \geq 5$, any clique of G is an edge in G. Now let $C = (v_1, v_2, v_3, \ldots, v_{2d_3+3}, v_1)$ be a cycle of length $2d_3 + 3$ in G. If $G \neq C$, then there exists a vertex $v \notin C$ such that v is adjacent to a vertex say v_{d_3+3} in C. Let $E = v_1v_2$ and $E' = v_{d_3+3}v$. We claim that $d(E, E') = d_3 + 1$. Otherwise, there exists a path P of length at most d_3 connecting E and E'. Let $v_i \neq v_1, v_2$ be the first vertex of the path P that lies on C_{2d_3+3} . Then at least one $(v_i - E)$ section, say Q, of the cycle C_{2d_3+3} has length at most $d_3 + 1$. Hence the cycle formed by the section of P connecting E and E' followed by Q has length at most $d_3 + d_3 + 1 + 1$ (the last 1 being the length of the edge $v_{d_3+3}v$, possibly) = $2d_3 + 2 < 2d_3 + 3$, which is a contradiction. Hence $d(E, E') = d_3 + 1$ so that $e_3(E) \geq d_3 + 1$. It follows that $d_3 \geq d_3 + 1$, which is a contradiction. Thus $G = C_{2d_3+3}$. The converse is obvious.

Remark 3.8 Theorem 3.7 fails if $d_3 = 0$. For the graph G given in Figure 4, $d_3 = 0$ and g(G) = 3 so that $g(G) = 2d_3 + 3$.

Figure 4: G

Acknowledgments

The authors are thankful to the referee for his valuable suggestions.

References

- F. Buckley and F. Harary, Distance in Graphs, Addision- Wesley, Reading MA(1990).
- [2] L.C. Freeman, A set of measures of centrality based on betweenness, *Sociometry*, Vol. 40 (1977) 35-41.

- [3] L.C. Freeman, Centrality in Social networks: 1. Conceptual clarification, *Social Networks*, Vol.1, 40(1978/79) 215-239.
- [4] A.P. Santhakumaran and S. Arumugam, Centrality with respect to cliques, *International Journal of Management and Systems*, Vol. 18 No.3 (2002) 275-280.
- [5] P.J. Slater, Centrality of paths and vertices in a graph: Cores and Pits, in "Theory and applications of graphs", Ed. G. Chartrand, John Wiley (1981) 529-542.
- [6] P.J. Slater, Some definitions of Central Structures, Preprint.