On Local Metric Dimensions of Graphs

Futaba Okamoto

Mathematics Department
University of Wisconsin - La Crosse
La Crosse, WI 54601

Bryan Phinezy and Ping Zhang
Department of Mathematics

Western Michigan University
Kalamazoo, MI 48008

ABSTRACT

For an ordered set W = {wy,wa,...,w;} of k distinct vertices
in a nontrivial connected graph G, the metric code of a vertex
v of G with respect to W is the k-vector

code(v) = (d(v,w1), d(v, wz), -+ ,d(v, W;c))

where d(v,w;) is the distance between v and w; for 1 < i < k.
The set W is a local metric set of G if code(u) # code(v) for
every pair u, v of adjacent vertices of G. The minimum positive
integer k for which G has a local metric set of cardinality &
is the local metric dimension Imd(G) of G. We determine the
local metric dimensions of joins and compositions of some well-
known classes of graphs, namely complete graphs, cycles, and
paths. For a nontrivial connected graph G, a vertex v of G,
and an edge e of G, where v is not a cut-vertex and e is not
a bridge, it is shown that Imd(G — v) < Imd(G) + degv and
Imd(G - e) < Imd(G) + 2. The sharpness of these two bounds
are studied. We also present several open questions in this area
of research.
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1 Introduction

We refer to the book [2] for graph theory notation and terminology not
described in this paper. The distance d(u,v) between two vertices u and v
in a nontrivial connected graph G is the length of a shortest path between
these two vertices. For a vertex v of G, the eccentricity e(v) of v is the
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distance between v and a vertex farthest from v and the diameter diam(G)
of G is the largest eccentricity among all vertices of G. Suppose that W =
{wy, wa, ..., w} is an ordered set of vertices of a nontrivial connected graph
G. For each vertex v of G, there is associated a k-vector called the metric
code, or simply the code of v (with respect to W), which is denoted by
codew (v) and defined by .

codew (v) = (d(v, w1),d(v,wz), - ,d(v, wk))

(or simply code(v) if the set W under consideration is clear). If code(u) #
code(v) for every pair u, v of distinct vertices of G, then W is called a metric
set or a resolving set. The minimum k for which G has a metric k-set is
the global metric dimension, or simply the metric dimension of G, which
is denoted by dim(G). This concept has been considered in a number of
papers (see [1, 3, 5, 6, 7], for example). In [4] a local version of this concept
was considered based on the property mentioned above required of proper
vertex colorings. In this case, we consider those ordered sets W of vertices
of G for which two vertices of G may have the same code with respect to
W provided that each set of vertices having the same code is independent
in G. If code(u) # code(v) for every pair u,v of adjacent vertices of G,
then W is called a local metric set of G. The minimum k for which G has
a local metric k-set is the local metric dimension of G, which is denoted by
Imd(G). A local metric set of cardinality Imd(G) in G is a local metric basis
of G. While each metric set of a nontrivial connected graph G is vertez-
distinguishing (since every two vertices of G have distinct codes), each local
metric set is neighbor-distinguishing (since every two adjacent vertices of G
have distinct codes). Thus every metric set is also a local metric set and so
if G is a nontrivial connected graph of order n, then

1 < Imd(G) £ dim(G) < n—1. (1)

We define Imd(G) = 0 if G is the trivial graph K;. To illustrate these
concepts, consider the graph G of Figure 1. In this case, W; = {vi,v4} isa
local metric 2-set and W = {v;,vs, vs} is a metric 3-set. The corresponding
codes for the vertices of G with respect to the sets W, and W3, respectively,
are shown in Figure 1. In fact, Imd(G) = 2 and dim(G) = 3.

The following three results have been established in [4]. The clique
number w(G) of a graph G is the order of a largest complete subgraph
(clique) in G.

Theorem 1.1 [4] Let G be a nontrivial connected graph of order n. Then
(a) Imd(G) =n -1 if and only if G = K.
(b) Imd(G) =n -2 if and only if W(G) =n—1 andn > 3.
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Figure 1: A graph G with Imd(G) = 2 and dim(G) = 3

(¢) Imd(G) =1 if and only if G is bipartite.

Furthermore, for each pair k,n of positive integers with 1 < k < n -1,
there erists a connected graph G of order n with Imd(G) = k.

Theorem 1.2 [4] If G is a nontrivial connected graph of order n with
cliqgue number w, then

Imd(G) > max{[log, w],n — 2"~“}. 2)

Furthermore,

(a) for each integer w > 2, there ezists a connected graph G, with clique
number w such that Imd(G,) = [log, w].

(b) for each pair n,w of positive integers with 2"~% < w < n, there exists
a connected graph G of order n whose clique number is w such that
Imd(G) =n - 2%,

Theorem 1.3 [4] For each pair a,b of positive integers with a < b, there
is a nontrivial connected graph G with Imd(G) = a and dim(G) = b.

2 Joins of Graphs

In this section, we study the local metric dimension of the join G + H
of two connected graphs G and H. In order to do this, we first present
some additional definitions and preliminary information. Two vertices u
and v in a connected graph G are distance similer if d(u, z) = d(v, z) for all
z € V(G) - {u,v}. Therefore, if u and v are distance similar vertices, then
0 < d(u,v) < 2. In particular, two nonadjacent vertices v and v are distance
similar if and only if N(u) = N(v) (where N(z) denotes the neighborhood
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of the vertex z or the set of vertices adjacent to = in G), while two adjacent
vertices u and v are distance similar if and only if N (u) - {v} = N(v) —{u}.
A relation R is defined on V(G) by u R v if either (i) v = v or (ii) v and
v are adjacent and u and v are distance similar. Then R is an equivalence
relation on V(G). The equivalence classes resulted from the relation R are
called the distance equivalence classes of G. If G is a nontrivial connected
graph of order n having ¢ distance equivalence classes Uy, Uy, ..., Uy, then
every local metric set of G must contain at least |U;| — 1 vertices from U;
for each i with 1 < ¢ < £. The following three lemmas will be useful to us,
the first two of which appear in [4].

Lemma 2.1 [4] Let G be a nontrivial connected graph of order n and
having € distance equivalence classes. If p of these £ distance equivalence
classes consist of a single vertez, then

n—-0<Imd(G)<n—-£¢+p. 3)
In particular, if p =0, then Imd(G) =n - ¢.
Lemma 2.2 [4] For each complete k-partite graph G, where k 2 2,
Imd(G) =k - 1.
Lemma 2.8 For each integer n > 3,

_ [ 1 ifniseven
Imd(Cn) = { 2 ifn is odd.

Proof. By Theorem 1.1, Imd(C,) =1 if n is even and Imd(C;,) > 2 if n
is odd. On the other hand, any set consisting of two adjacent vertices of
C, is a local metric set and so Imd(C) =2 if n is odd. a

Theorem 2.4 For every two connected graphs G and H,
Imd(G + H) > Imd(G) + Imd(H).

Proof. If G = H = K, then the result is true trivially. Thus we may
assume that G is a nontrivial connected graph. Let W be a local metric
basis of G+ H and Wg = WNV(G) and Wy = WNV(H). We claim that
We # 0; for otherwise, let z and y be two adjacent vertices of G. Then
codew(z) = codew(y) = (1,1,---,1), which is impossible. Thus Wg # 0.
Similarly, if H is a nontrivial connected graph, then Wy # 0.

Next we show that Wy is a local metric set of G. If this is not the case,
then there are adjacent vertices z and y such that codew, (z) = codew, (y)
in G. Let Wg = {w1,wa,...,wx} C V(G). Thus de(z,w;) = de(y, w:)
for 1 <4 < k. If dg(z,w;) = de(y,w;) = 1, where 1 < ¢ < k, then
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dG+H($, w,') = dG-{-H(y, w,-) = 1, while if da(.’l:,'w,') = dc(y,w,-) > 2, then
de+H(z, w;) = dg+n(y, w;) = 2. This implies that codew (z) = codew (y)
in G + H, which is impossible. Similarly, if H is a nontrivial connected
graph, then Wy is a local metric set of H. Thus regardless of H being trivial
or nontrivial, Imd(G) + lmd(H) < |[Wg|+ |Wy|=|W|=lmd(G+ H). =

There are graphs G and H for which Imd(G + H) = Imd(G) + Imd(H).
For example, Imd(Cs + Cs) = 4 = 21md(Cs), which we will see later in
Theorem 2.8. Also, there are graphs G and H for which Imd(G + H) >
Imd(G)+1md(H). For example, Imd(Ky, +Kp,) = Imd(K,, )+lmd(K,, )+1
for all integers n1,n > 1. In fact, the difference between Imd(G + H) and
Imd(G) + Imd(H) can be arbitrarily large, as we will see soon. We now
determine Imd(G + H) for several well-known classes of graphs G and H,
namely complete graphs, cycles, and paths. In order to do this, we present
a useful lemma.

Lemma 2.5 Let G and H be graphs and let W be a local metric set of G.
(a) If G=Kn+ H wheren 21, then |WNV(K,)| >n-1.
(b) If G = Cp + H where n > 4, then |[WNV(C,)| = [n/4].
(c) If G= P, + H where n 2 3, then [WNV(PR,)| 2 [(n - 1)/4].

Proof. The result in (a) follows by the proof of Theorem 2.4. For (b), let
Cn : u1,up,..., Un,u; and construct G = C, + H. Consider an arbitrary
local metric set W of G and let X be a set of four consecutive vertices in C,,
say X = {u1,ua,us,uq¢}. If X "W = 0, then observe that codew (uz) =
codew (u3), which is a contradiction. This implies that |[W N V(C,)| >
[n/4].

For (c), let P, : uj,ug,...,un and construct G = P, + H. Let W be
an arbitrary local metric set of G. Observe that {u;,uiy1,Uit2,ui+s} N
W #@for 1 <i<n-—3and furthermore, {uj,u2,us} N W # @ and
{un-2,tn-1,un} N W # 0. Hence, [WNV(B,)| 2 [(n - 1)/4]. .

Theorem 2.6 For integersny >4 and ny > 1,
Imd(Cy, + Kn,) = max {2, [21]} +no—1.

Proof. Let Cp, : ui,ug,...,un,,u1 and V(Ky,) = {v1,v2,...,vn,} and
construct G = Cp, + an By Lemma 2.5, Imd(G) > [n1/4] + na — 1.
Consider the set U C V(Cy, ) defined by

U={ {ul,u4} ifn1 =4,6
{ul,'U,5, ces ,'RL4|',,1/4'|_3} ifny=50rnm >7

and let W = U U [V(K,,) — {v1}]- Then W is a local metric set of G and
so Imd(G) < |W| max{2, [n1/4]} + n2 — 1.
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If n; = 4, then Imd(G) € {n2,n2 + 1}. Assume, to the contrary, that
there exists a local metric set W’ of G containing np vertices. Then |W’' N
V(C4)| = 1 and [W'NV(Kp,)| = na— 1. Without loss of generality, assume
that u; € W’ and v; ¢ W’. However, this implies that codew:(uz) =
codew (v1), which is impossible since ugvy € E(G). Therefore, Imd(G) =
ng + 1 for ny = 4. This establishes the desired result.

Theorem 2.7 For integersny >3 andng 2 1,
Imd(P,, + Kn,) = max {2, [271]} +n2 — L.

Proof. Let P,, : uj,u,.-.,un, and V(Kp,) = {v1,v2,...,v5,} and con-
struct G = Py, + Ky,. By Lemma 2.5, Imd(G) > [(ny —1)/4] + n2 — 1.
Let U C V(P,,) be the set defined by

{ua,us} if3<n <5
U= {us,ur,...,u4n,/4)-1} ifny >6andn; =0,1 (mod 4)
{u3,u7,...,u4l"l/4j_1}U{u4ln1/4j+2} ifn; 26and n; =2,3 (mod 4)

and let W = U U [V (K»,) — {v1}]. Then W is a local metric set of G and
so Imd(G) £ |W| = max{2, [(n1 — 1)/4]} +n2 - L.

For n; < 5, observe that Imd(G) € {n2,nz + 1}. By a similar argument
used in the proof of Theorem 2.6, there is no local metric set containing n;
vertices. Therefore, Imd(G) =n2 +1ifn; < 5. "

Theorem 2.8 For integers ny,na 2> 4,
Imd(Chp, + Cn,) = max {3, [2] + [2]}.
Proof. Suppose that n; < ng. Let
Chy : U1,U2, . -y Uny, U1 80d Cpy 1 01,0200, Uny, V1

be disjoint cycles and construct G = Cp, + Cp,. By Lemma 2.5, Imd(G) >
[n1/4]+ [n2/4]. Consider the sets Wy C V(Cy,) and W2 C V(Cy,,) defined
by

W ={ {u1,u4} ifn;=6
! {u13u51-")u4[n1/4'|—3} if nq 7"'6

W = {v1,v4} ifng =4,6
271 {v1,vs,--- yUsfng/a1-3} ifmz=50rng 27

Then W = W, UW, is a local metric set of G and so
Imd(G) < |W| = max{3, [%] + [%]}.

If ny = 4, then Imd(G) = 2 or Imd(G) = 3. By a similar argument
used in the proof of Theorem 2.6, there is no local metric set containing
two vertices. Therefore, Imd(G) = 3 in this case. n
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Theorem 2.9 For integers ny,ns > 3,
Imd(Pp, + Pn,) = max {3, [271] + [2221]} .
Proof. Suppose that n; < ny. Let
Pa, tup,ug, ... tun, and Py, i v,v2,...,Un,
be disjoint paths and construct G = Py, 4+ P,,. By Lemma 2.5, Imd(G) >

[(ny —1)/4] + [(n2 — 1)/4]. Consider the sets W; C V(P,,) and W, C
V(P,,) defined by

{us} if3<n1 <5

Wl = { {ua,u7,.. . ’"4Ln1/4J—1} if n Z 6, n1 = 0,1 (mod 4)
{ua,uz,... yU4|ny /4] -1} U {ta1n  7a)42)} ifR126,71=2,3 (mod4)
{v2,v3} if3<n2<5

Wy = { {va,v7,.. ., V4 ny74) -1} ifng >6,n2=0,1 (mod 4)
{"3'”7""'”4lnz/4J-l}U{"’4l"2/4l+2} ifng >6,n2=2,3 (mod 4).

Then W = W; U W is a local metric set of G and so
Imd(G) < |W| = max{3, [24=1] + [2271]}.

If ng < 5, then Imd(G) = 2 or Imd(G) = 3. By a similar argument used
in the proof of Theorem 2.6, Imd(G) # 2 and so Imd(G) =3 if ny <5. =

Theorem 2.10 For integers n; > 4 and ng > 3,

lmd(Cnx + Pﬂz) = max {3’ [%L] + '-224——1]} *
Proof. LetCy, : uj,ug,...,un,,u; and Py, : vy, vs,...,0,, and construct
G = C,, + P,,. By Lemma 2.5, Imd(G) > [ni/4] + [(n2 —1)/4]. If

ny = 4 and ng < 5, then let W = {u;,v2,v3}. Otherwise, consider the sets
W1 C V(Py,) and W, C V(P,,) defined by

Wl“‘{ {uv1,u4} ifny=6

T {wrusy .. uqpny -3} ifn1 #6
{va} if3<n2 <5

Wz = { {1)3,117,.. "v4lﬂ2/4.f—1} if n226,n2=0,1 (mod 4)
{v3,v7,.. ., Y4(nasa) -1} U {va[ny/a 42} ifn2 > 6,n2=2,3 (mod4)

and let W = W; U W,. Then W is a local metric set of G and so
Imd(G) < |W| = max{3, [2] + [222]}.

If n; = 4 and ng < 5, then Imd(G) = 2 or Imd(G) = 3. Again by a
similar argument used in the proof of Theorem 2.6, Imd(G) # 2 and so
Imd(G) = 3 in this case. n
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3 Compositions of Graphs

For graphs G and H, the composition G[H] is the graph with vertex set
V(G) x V(H) such that (vy,u;) is adjacent to (ve,uz) if either (i) viv2 €
E(G) or (i) v; = vz and ujup € E(H). Let V(G) = {v1,v2,...,vn}. Then
G[H] is constructed by replacing each vertex v; by a copy H; of H and
joining each vertex in H; to every vertex in H; if and only if vv; € V(G)
with 1 <4, < n. Let us always assume that V(G[H]) = iUV U-. .UV,
where V; = {(v;,u) :u€ V(H)} for 1<i<n.

If G = K3, then of course G[H] = H. Otherwise, consider two distinct
vertices (v;,u) € V; and (vj,u’) € V; in G[H] where 1 < 4,j < n. Observe
that

min{dy(u,u’),2} ifi=j
deim((viu), (v, ¥)) = { dc(i,-,g,.() 2 if 4 ;é;'.

Theorem 3.1 IfG is a connected graph of order n and H is a graph, then
Imd(G[H]) > n-Imd(H).

Proof. The result is trivially true if G = K; or H = K,. Hence sup-
pose that both G and H are nontrivial graphs. Suppose that lmd(H) =
k and consider an arbitrary local metric set W of G[H]. Assume, to
the contrary, that [W| < nk—1. Let W; = WnV;forl <i<n
and without loss of generality, suppose that |Wi| < k — 1. Let W =
{(v1, w1), (v, w2), . .., (1, ww,|)}. Since Wy = {w1,wa, ..., ww,} is not
a local metric set of H, there exist adjacent vertices z,y € V(H) such that
dy(z,w) = du(y,w) for every w € Wy. Consider the two vertices (v1,7)
and (vy,y) in V; and observe that they are adjacent in G[H]. Then

daiay((v1, ), (v1,w)) = min{dx(z, w), 2} = min{dy(y,w), 2}
= dG[H]((vl’y)s (’UI,U)))
for every (v, w) € Wj, while
dG[H]((vla (D), (v,u)) = dG('Ul,'U) = dG[H]((vla y)v (v,u))

for every (v,u) € V(G[H]) — V1. Therefore, code((v1,z)) = code((v1,7)),
which is a contradiction. Therefore, |W| > nk and so Imd(G[H]) > nk. =

The following is a consequence of Theorem 3.1.

Corollary 3.2 IfG is a connected graph of order n each of whose distance
equivalence classes is a singleton set and H is a nontrivial connected graph
with diam(H) < 2, then lmd(G{H]) = n - Imd(H).
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Proof. Ifn =1, then G[H] = H and the result is obvious. Suppose that
n > 2. Let Imd(H) = k and suppose that Wy = {w;,wo,...,wx} is a
local metric basis of H. Let W; = {(v;, w1), (vi,w2),..., (vi,wr)} C V; for
1<i<nand W =W ,UuW,U---UW,. Hence |W| = nk. We show that
W is a local metric set of G[H].

Suppose that (v;, z), (v;,¥) € V(G[H])-W and (vi, z)(v;,y) € E(G[H]).
Hence, z,y ¢ Wg. We consider two cases.

Casel. i = j, sayi = j = 1. Since Wy is a local metric set of
H, there exists a vertex w € Wy such that dy(z,w) # dy(y,w). Since
diam(H) < 2, it follows that {dp(z,w),dn (y,w)} = {1,2}. Then observe
that (vy,w) € W and

dga)((v1,z), (v1,w)) = min{dy(z, w), 2} # min{dy(y, w),2}
= dG[H](('Ul:y)> (1)1,‘!0))-

Case 2. © # j, sayi = 1 and j = 2. Hence vyv; € E(G). Since v;
and v belong to different distance equivalence classes in G, there exists a
vertex v € V(G) — {v1, vz} such that dg(vi,v) # dg(vs,v). Observe then
that (v,w1) € W and

dG[H] (('Ul, Z), ('U, wl)) = dG(‘U], ‘U) # dG(”?t ’U)
= dgm((v2,9), (v, w1)).

Thus, codew ((vi, z)) # codew((v;,y)) in each case and so W is a local
metric set of G[H]. Consequently, Ind(G[H]) < nk and the result now
follows by Theorem 3.1. [

The converse of Corollary 3.2 is false. To see this, consider a 7-cycle
C7 : u,ug,...,uz, v and let H = C7 + uguz. Then diam(H) = 3 and
the set Wy = {us,us} is a local metric set and so Imd(H) = 2. Let
G = K3 with V(G) = {v1,v2,v3} and construct G[H]. Of course, G has
only one distance equivalence class, which is not a singleton set. Let W =
{(vi,ua),(vi,us) : 1 < i < 3} and observe that W is a local metric set
of G[H]. Therefore, Imd(G[H]) = 6 = 3 - Imd(H) in this case. In fact,
with this particular graph H, we have Imd(G[H]) = n - Imd(H) for every
connected graph G of order n.

The key to observe is the following: The graph H described above has
the property that there exists a local metric basis W such that

e for every vertex z € V(H) — W,
max{d(z,w): weW}>2,

that is, there is no vertex in V(H) — W that is adjacent to all vertices
in W, and
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o for every two adjacent vertices z,y € V(H) — W, there exists a vertex
w € W such that

{d(z,w),d(y,w)} = {1,2}.

Note that for every graph H, the join H + H equals K3[H]. By Theo-
rems 2.8 and 2.9 then,

3 ifn=4
Imd(K>[Cr]) = { 23] ifn>5

3 if3<n<5
Imd(K3[Py]) = { 2 |’.n_4—_1'| if n > 6.

We next generalize these to obtain the local metric dimension of G[H],
where one of G and H is a complete graph and the other is either a cycle
or a path. First, we present a useful lemma, whose proof is similar to the
proof of Lemma 2.5.

Lemma 3.3 Let G be a connected graph of order ny > 2. Let H be a
graph and W a local metric set of G[H|.

(a) If H = K,, whereng > 2, then [WNV;| 2nz—1 for1<i<m.

(b) If H = Cy, where ny > 4, then [WNV;| > [n2/4] for 1 <i < ny.

(c) If H = Py, whereny > 3, then |[WNV;| > [(n2 — 1)/4] for1 <i < my.
Theorem 3.4 - Suppose that ny = 2 is an integer.

(a) Forng >4,

Imd(Kn, [CM]) = { 2r-l ma=d

ni[R] fne>5
Imd(Ch, [Kn,]) = n2(n1 —1).
(b) Forng 23,

oy — 1 if3<ny <5
tmd (Ko, [Pra]) = { m 23] ifna 26

Imd(P,, [Ky,]) = na2(ni - 1).
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Proof. Let G = K, with V(G) = {v1,vs,...,vp, }. We first verify (a).

Let H = Ch, : u1,ug, .. .,Un,,u1 and construct G[H]. For ny > 5, consider
W C V(G[H]) such that
wnv, = {(vi,U1),(’Ui,U4)} ?f‘nz =6

{ {(vi,w1), (vi, us), . - (w3, u4[n2/4'|-3)} ifneo=50rny >7

for 1 <4 < ny. Then W is a local metric set with |W| = n;[n2/4]. By
Lemma 3.3, Imd(G[H]) = n1[n2/4].

If ny = 4, then let W C V(G[H]) such that W NV; = {(v1,u1)} and
WnV; = {(vi,u1), (vi,uq)} for 2 < i < ny. Then W is a local metric set
whose cardinality is 2n; — 1.

If W' C V(Kan,[C4)) is a set containing 2n; — 2 vertices, then we may
assume, without loss of generality, that |[W' nV;| = [W/ N V;| = 1. Sup-
pose that W' NV; = {(v;,u;)} for ¢ = 1,2. Then codew-((v1,u2)) =
codew-((v2,u2)) and so W’ is not a local metric set of Ky, [Cy4). Therefore,
Imd(Kp, [Cy)) = 2ny — 1.

For Cy,[Kn,] = H{G], consider the set W = V(H[G]) — {(ui,v1): 1 <
1 < na} and observe that W is a local metric set of H[G]. By Lemma 3.3,

n2(n; — 1) < Imd(H[G]) < |W| = na(ny — 1)

and the result now follows.
To verify (b), let H = P,, : u1,u2,...,un, and construct G[H]. For
ng 2> 6, consider W C V(G[H]) such that

WnV; = {(vi,us), (viyur), - ., (Vi) Usnp/a)-1)}
if ng =0,1 (mod 4); while
W NV = {(vi,us), (vi, u7), - -, (Vis Uang a)—1) } U {0, Uang/aj+2)}

if ng = 2,3 (mod 4) (where 1 < i < n;). Then W is a local metric set with
|W| = n1[(n2 — 1)/4]. By Lemma 3.3, Imd(G[H]) = n,[(n2 — 1)/4].

If 3 < ny <5, then let W C V(G[H]) such that WN 'V} = {(v1,u3)}
and WNV; = {(vi,u2), (vi,us)} for 2 <i < n;. Then W is a local metric
set containing 2n; — 1 vertices. By a similar argument used for verifying
(a), WnNV;| =1 for at most one ¢ for any local metric set W of G[H],
implying that [W| > 2n; — 1. Therefore, Ind(G[H]) = 2n; — 1.

To prove that Imd(H|[G]) = na(n; — 1) is straightforward. ]

Corollary 3.5 Let G be a connected graph of order ny > 2. Then
(a) ni(nz — 1) < Imd(G[Knp,]) < n1(n2 — 1) + Imd(G) for ny > 1;
(b) Imd(G[Cp,]) = ni[nz/4] for ng > 5;
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(¢) Imd(G[Pr,]) = n1[(ng —1)/4] for ng > 6.

Proof. We first verify (a). Since the result is trivial for ny = 1, suppose
that ng > 2. By Lemma 3.3, n3(n2 — 1) < Imd(G[Kh,,]) and so we only
show that Imd(G[K,,]) < ni(nz — 1) + Imd(G). Let Imd(G) = k and
V(G) = {v1,v2,...,vn, } such that Wg = {v1,v2,...,v¢} is a local metric
basis of G. Let W C V(G[Ky,]) such that

- _ ] Vi if1<i<k
an'_{ Vi — {(vi,w1)} ifk+1<i<m.

Then W is a local metric set of G[Ky,] whose cardinality is n;(nz — 1) + k.
For (b), we need only show that lImd(G[Cr,]) < n1[n2/4] by Lemma 3.3.
Let Cp, : U1,U2, - -, Un,, U1 and consider the set W C V(G[Cy,]) such that

{('Ui, ul)s(vi;uti)} ifng=6

wnvy;, = .
* { {(vi,u1), (vi,us), ..., (Vi, Ugny/a1-3)} ifn2a=50rng>7

for 1 < i < ny. Consider two adjacent vertices (v;,z) and (v;,y) belong-
ing to V(G[Cy,])) — W. If i = j, then there exists w € W NV, such that
{d((vi, ), w), d((vj, ¥),w)} = {1,2}, that is, d((vi,2),w) # d((vj,y),w).
On the other hand, if i # j, then v;v; € E(G) and so |[N((v;,z)) N W;| <
|Wi| = |N((v,¥)) N W;], where W; = W N V;. Therefore, codew ((v;, 7)) #
codew ((v;,y)). Hence, W is a local metric set of G[Cn,| containing n; [n2/4]
vertices and we obtain the desired result.

For (c), we again only show that Imd(G[Cy,]) < n1[(n2 —1)/4]. Let
P, : u1,u,...,un, and consider the set W C V(G|P,,]) such that

WNnV; = {(vi,ua), (vi,ur),. . ., (Vi) Ua(nasa)-1)}
if ng = 0,1 (mod 4); while
W N V; = {(vi, us), (vi,47), - - -, (Vis Uapng/a)-1)} Y {(Vi Uana/a)+2)}

if ng = 2,3 (mod 4) (where 1 < i < n1). The result now follows since W is
a local metric set of G[Cp,] containing n, [(ns — 1)/4] vertices. .

Note that the upper and lower bounds in (a) are both sharp. For ex-
ample, Imd(Cr, [Kn,]) = ni(nz — 1) for ny > 4, while Imd(Kp, [Ky,]) =
nng — 1= nl(ng - 1) + lmd(K,.,) for ny,no > 1.

4 Vertex or Edge Deletions

A common question in graph theory concerns how the value of a parameter
is affected by making a small change in the graph. In this section, we
study how the local metric dimension of a connected graph is affected by
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deleting a vertex or an edge from the graph, beginning with deleting a
vertex. Observe that for the wheel W, = C,, + K; of order n 4+ 1 > 4 and
a vertex v € V(W,,),

Wp —v e {Cn, Pr-1 + K, }.

For n > 3 we have seen that

3 ifn=3
Imd(W,)=¢{ 2 ifn=4
[2] ifn>5.

1 ifniseven
Imd(Cy) = { 2 if nis odd.

2 if3<n<6

[”—'2-] ifn>"7.

Imd(Pn-; + K1) = {
)

Thus for a connected graph G and a vertex v of G, it is possible that
Imd(G — v) = Imd(G) or Imd(G — v) < Imd(G). In general, we have the
following. For a vertex v in a nontrivial graph G, let N[v] = N(v)U {v} be
the closed neighborhood of v.

Theorem 4.1 If v is a non-cut-vertez of a nontrivial connected graph G,

then
Imd(G — v) £ Imd(G) + degv.

Proof. Let W be a local metric basis of a connected graph G and let
W' = [WUN[]] - {v}. Thus |W’'| < |W|+ degv = Imd(G) + degv. We
show that W’ is a local metric set of G — v, for otherwise, there exists a pair
z,y € V(G —v) — W’ of adjacent vertices such that codew: () = codew(y)
in G—v. Since W is a local metric set of G, there exists a vertex w € W such
that dg(z,w) # dg(y,w), say @ = dg(z,w) < dg(y,w). Then since w €
W' and codew:(z) = codew-(y), it follows that dg_,(z,w) = dg—u(y, w).
Hence
a = dg(z,w) < dg(y,w) < do—v(¥,w) = de_o(z,w),

implying that every £ — w geodesic in G contains the vertex v. Let P:z =
UQy ULy« vy Uby Upgl = VU, Up42, ..., Ua = W be an £ —w geodesic in G. Thus,
dg-v(z,us) = dg(z,us) = b. Furthermore, since dg(y,w) > a+1, the path
@ :y,z followed by P is a y — w geodesic in G. This implies that

de—v(y,up) = de(y,us) = b+ 1> do_o(z, us),

which is a contradiction since u, € N(v) € W’ and codew(z) = codew (y).
Therefore, W’ is a local metric set of G — v and so Imd(G - v) < [W'| <
Imd(G) + degv. ]
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By the proof of Theorem 4.1, if there exists a local metric basis W of a
connected graph G such that W N N[v] # @, then W' = [W U N[v]] — {v}
is a local metric set of G — v and |W’| < Imd(G) + degv — 1. Thus

Imd(G - v) < [W'| £ 1md(G) +degv — 1.
In fact, for every local metric basis W of G,
Imd(G — v) < lmd(G) + degv — |[W N N[v]|.

Although it is not known whether there exists a connected graph H con-
taining a non-cut-vertex v for which Imd(H — v) = Imd(H) + deg v, there
are infinitely many connected graphs G containing a non-cut-vertex v for
which Imd(G — v) = Imd(G) + degv — 1.

Theorem 4.2 For every positive integer k, there ezists a connected graph
G containing a non-cut-vertex v such that G has local metric dimension k

and
Imd(G — v) = Imd(G) + degv — 1.

Proof. For k =1, let G be a tree of order at least 3 and v an end-vertex.
Hence, assume that & > 2 and consider the set A = {1,2,...,k — 2} for
k > 3 while A = 0 if k = 2, and let P(A) = {51,52,...,S2¢-2} be the
power set of A. Define the sets Spk-241, Sgk-242,...,52% by

Sipor—2 = S;U{k—1}, Sijor-1 = S;U{k}, Sipor-149k-2 = S;U{k—1,k}

for 1 < i < 2¥=2 and observe that {S1,S5,...,S5%} is the power set of
Au{k-1,k} ={1,2,...,k}. Let H = Ky be a complete graph of order
2% with V(H) = {u1,us,...,ux}. We construct G from H by adding k
new vertices in the set W = {w;,ws,...,wx} and joining u; to w; if and
only if 7 € S;. Hence W is a local metric basis and Imd(G) = k (see [4]).
Furthermore, degw; = 2%~ for 1 <i < k.

We show that Imd(G —w;) = k+2%"1 -1 for 1 < i < k. By symmetry,
it suffices to show that Imd(G — wi) = k + 25! — 1. Since the set

W' = (W U N[wg)) — {wi} = (W — {wi}) U {uge-141, Ugk-149, ..., Ugk }
is a local metric set of G — wy containing k + 2*~! — 1 vertices,
Imd(G — wi) < k+2F1-1.

Observe that each set U; = {u;,u;49x-1} is a distance equivalence class
in G — wg for 1 < i < 281, Thus, if there exists a local metric set W*
containing at most k 4+ 2¥~! — 2 vertices, then we may assume that

{u1,u,... ,ugs-1} CW* and wip—, € W™,
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On the other hand,
dG—w, (Uiyok-1,V) # dg—u, (Yipor-149x-2,v) if and only if v = wi_,

for 1 < i < 2%-2, Since wi—, ¢ W*, we further assume that

{ugk-141,Ugk-142, ..., Ugk-14ok-2} C W™,

However then, 25! 4 2%=2 < |W*| < 2¥~! 4 k — 1, which is impossible.
Therefore, Imd(G — w;) = k + 2%¥~! — 1 as claimed. [

The following result provides a sufficient condition for a connected graph
G containing a vertex v to have Imd(G - v) < Imd(G) + degv — 1.

Theorem 4.3 Let v be a vertex with degv > 2 that is not a cut-vertex
in a connected graph G. If there exists a vertez vi € N(v) such that
de_v(2,v1) < 2 for every z € N(v) — {v1}, then Imd(G — v) < Imd(G) +
degv - 1.

Proof. Let W be a local metric basis of G. We may assume that W N
N[v] =0. Let W' = WU N(v) and W] = W’ — {v;}. We show that W] is
a local metric set of G — v.

Suppose that this is not the case. Since W’ is a local metric set of G —v,
it follows that there exists a pair z,y € V(G — v) — W{ of adjacent vertices
such that

de_v(z,w) # de—,(y,w) if and only if w=1,

for each vertex w € W’. Also, since W is a local metric set of G, there
exists a vertex w* € W C W' such that dg(z,w*) # dg(y,w*), say
a = dg(zr,w*) < dg(y,w*). Observe that dg_,(z,w*) = dg—.(y,w*) by
assumption since w* # v;. Then

dg(z,w") < de(y, w*) < dg—_v(y,w*) = dg_u(z,w*),

implying that every z — w* geodesic in G contains v. Let P : z =
UQ, Ulyorey Uby Uppl = U,Up42,...,Ug = W* be an z — w* geodesic in G.
Observe that us,up42 € N(v) € W'. Since dg(z,w*) < dg(y,w*), it
follows that dg_.(z,us) # de—v(y,us) and so up = v;. However then,
dg_v(up, Ubs2) = dg—y(V1, Ups2) < 2, implying that there exists an z — w*
path in G — v having length at most a. This is a contradiction.

Therefore, no such pair z, y exists and W] is a local metric set of G —v.
Consequently, Imd(G — v) < |W{| = Imd(G) + degv — 1. n

It is not known whether there is a connected graph G containing a
non-cut-vertex v of G such that Imd(G — v) = Imd(G) + degv. On the
other hand, there are many connected graphs G with a vertex v such that
Imd(G — v) = Imd(G). The following observation will be useful to us.
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Observation 4.4 If G is a nontrivial connected graph and v is an end-
vertez of G, then G contains a local metric basis not containing v.

Proposition 4.5 If v is an end-vertez in a connected graph G, then
Imd(G — v) = Imd(G).

Proof. We first show that Imd(G — v) < Imd(G). By Observation 4.4
there is a local metric basis W of G such that v ¢ W. Since dg_y(z,y) =
dg(z,y) for every two vertices z,y € V(G — v), it follows that W is a local
metric set of G — v.

Next we verify that Imd(G) < Imd(G—v). Let v; be the vertex adjacent
to v in G and suppose that W’ is a local metric basis of G — v. Consider
a pair x,y of adjacent vertices in V(G) — W’. If v € {z,y}, then {z,y} =
{v,v1}. Since dg(v,u) = dg(v1,u) + 1 for every u € V(G) — {v}, it follows
that codew(v) # codew(v;). Hence, assume that v ¢ {z,y}. Since W' is
a local metric set of G — v, it follows that there exists a vertex w € W’ such
that dg_o(, w) # dg—v(y,w). On the other hand, dg(z,w) = dg-v(z,w)
as well as dg(y,w) = de—v(y, w) and so

dg(z,w) = dg-v(z, w) # do-v(y, w) = da(y, w),

that is, dg(z, w) # de(y,w). Hence, W’ is a local metric set of G. .

Next, we investigate how the local metric dimension of a connected
graph is affected by deleting an edge from the graph.

Theorem 4.6 If e is an edge that is not a bridge of a connected graph G,

then
lmd(G - e) < Imd(G) + 2.

Proof. Let W be a local metric basis of G, e = vjv2, and W/ = W U
{v1,v2}. Then |W'| < |W|+ 2 = Imd(G) + 2. We show that W' is a
local metric set of G — e. If this is not the case, then there exists a pair
z,y € V(G —e)— W’ of adjacent vertices such that codew(z) = codew(y)
in G—e. Since W is a local metric set of G, there exists a vertex w € W such
that dg(z,w) # dg(y,w), say a = dg(z,w) < de(y,w). Also, since w €
W' and codew:(z) = codew:(y), it follows that dg—.(z,w) = dg-.(y, w).
Hence
a= dG(IB, 'tD) < dG(y! w) < dG..e(.’E,‘w) = dG—e(y,w)v

implying that every z — w geodesic in G contains the edge e. We may
assummne, therefore, that P : z = wg,u1,...,Up = V1, Ub41 = V2,...,Ug = W
is an z — w geodesic in G. Observe that dg_.(z,v1) = dg(z,v1) = b.
Furthermore, since dg(y,w) > a + 1, the path @ : y,z followed by P is
a y — w geodesic in G. Therefore, dg—e(y,v1) = dg(y,n1) = b+ 1 >
dg—e(z,v1), which contradicts the fact that codew:(z) = codew-(y) and
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vy € W', Therefore, W’ is a local metric set of G — e and Imd(G — e) <
|W'| < Imd(G) + 1. .

By the proof of Theorem 4.6 if e = v1v2 is not a bridge of G and there
exists a local metric basis W of G such that W N {v;,v2} # 0, then

Imd(G - e) < Imd(G) + 1.
In fact, for every local metric basis W of G,
Imd(G — e) < Imd(G) + 2 - |W N {v1,v2}|.
We conclude this paper with the following two conjectures.

Conjecture 4.7 If v is a verter that is not a cut-vertez of a connected
graph G, then Imd(G — v) > Imd(G) — degwv.

Conjecture 4.8 If e is an edge that is not a bridge of a connected graph
G, then Imd(G - e) > Imd(G) — 2.
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