On the basis number and the minimum cycle bases of the wreath product of some graphs II.

M.K. Al-Qeyyam¹ and M.M.M. Jaradat^{1,2}

¹Department of Mathematics

Yarmouk University

Irbid-Jordan

mkalqeyyam@yahoo.com; mmjst4@yu.edu.jo

²Department of Mathematics and Physics

Qatar University

Doha-Qatar

mmjst4@qu.edu.qa

Abstract

A construction of a minimum cycle bases for the wreath product of a star by a path, two stars and a star by a wheel is given. Moreover, the basis numbers of these products are determined.

Keywords: Cycle space; Basis number; Cycle basis; Wreath product. 2000 Mathematics Subject Classification: 05C38, 05C75.

1 Introduction.

The basis number of a graph is one of the numbers which give rise to a better understanding and interpretations of geometric properties of a graph (see [20]). Minimum cycle bases (MCBs) of a cycle spaces have a variety of applications in sciences and engineering, for example, in structural flexibility analysis, electrical networks, and in chemical structure storage and retrieval systems (see [9], [10] and [18]).

In general, required cycle bases, and minimum cycle bases are not very well behaved under graph operations. Neither the basis number b(G) of a graph G is monotonic (see [3] and [22]), nor the total length l(G) and the length of the longest cycle in a minimum cycle basis $\lambda(G)$ are minor monotone (see[12]). Hence, there does not seem to be a general way of extending required cycle bases and minimum cycle bases of a certain collection of partial graphs of G to a required cycle basis and to a minimum

cycle basis of G, respectively. Global upper bounds $b(G) \leq 2\gamma(G) + 2$ and $l(G) \leq \dim C(G) + \kappa(T(G))$ where $\gamma(G)$ is the genus of G and $\kappa(T(G))$ is the connectivity of the tree graph of G are proven in [22] and [19], respectively.

In this paper, we continue what we started in [17] by investigating the basis number for some classes of graphs and we construct minimum cycle bases for same, also, we give their total lengths and the length of longest cycles.

2 Definitions and preliminaries.

The graphs considered in this paper are finite, undirected, simple and connected. Most of the notations that follow can be found in [6]. For a given graph G, we denote the vertex set of G by V(G) and the edge set by E(G).

2.1 Cycle bases.

Given a graph G, let $e_1, e_2, \ldots, e_{|E(G)|}$ be an ordering of its edges. Then a subset S of E(G) corresponds to a (0,1)-vector $(b_1,b_2,\ldots,b_{|E(G)|})$ in the usual way with $b_i=1$ if $e_i \in S$, and $b_i=0$ if $e_i \notin S$. These vectors form an |E(G)|-dimensional vector space, denoted by $(Z_2)^{|E(G)|}$, over the field of integers modulo 2. The vectors in $(Z_2)^{|E(G)|}$ which correspond to the cycles in G generate a subspace called the cycle space of G and denoted by C(G). We shall say that the cycles themselves, rather than the vectors corresponding to them, generate C(G). It is known that for a connected graph G dim C(G) = |E(G)| - |V(G)| + 1 (see [7]).

A basis \mathcal{B} for $\mathcal{C}(G)$ is called a cycle basis of G. A cycle basis \mathcal{B} of G is called a d-fold if each edge of G occurs in at most d of the cycles in \mathcal{B} . The basis number, b(G), of G is the least non-negative integer d such that $\mathcal{C}(G)$ has a d-fold basis. A required basis of $\mathcal{C}(G)$ is a basis with b(G)-fold. The length, |C|, of the element G of the cycle space $\mathcal{C}(G)$ is the number of its edges. The length l(B) of a cycles basis G is the sum of the lengths of its elements: $l(B) = \sum_{C \in \mathcal{B}} |C|$. l(G) is defined to be the minimum length of the longest element in an arbitrary cycle basis of G. A minimum cycle basis (MCB) is a cycle basis with minimum length. Since the cycle space $\mathcal{C}(G)$ is a matroid in which an element G has weight |G|, the greedy algorithm can be used to extract a MCB (see [24]). The following results will be used frequently in the sequel.

Theorem 2.1.1. (MacLane). The Graph G is planar if and only if $b(G) \leq 2$.

A cycle is relevant if it is contained in some MCB (see [23]).

Proposition 2.1.2.(Plotkin). A cycle C is relevant if and only if it cannot be written as a linear combinations modulo 2 of shorter cycles.

Chickering, Geiger and Heckerman [8], showed that $\lambda(G)$ is the length of the longest element in a MCB.

2.2 Products.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two graphs. (1) The cartesian product $G \square H$ has the vertex set $V(G \square H) = V(G) \times V(H)$ and the edge set $E(G \square H) = \{(u_1, v_1)(u_2, v_2) | u_1 u_2 \in E(G) \text{ and } v_1 = v_2, \text{ or } v_1 v_2 \}$ $\in E(H)$ and $u_1 = u_2$. (2) The direct product $G \times H$ is the graph with the vertex set $V(G \times H) = V(G) \times V(H)$ and the edge set $E(G \times H) =$ $\{(u_1, u_2)(v_1, v_2)|u_1v_1 \in E(G) \text{ and } u_2v_2 \in E(H)\}.$ (3) The strong product $G \boxtimes H$ is the graph with the vertex set $V(G \boxtimes H) = V(G) \times V(H)$ and the edge set $E(G \boxtimes H) = \{(u_1, u_2)(v_1, v_2) | u_1v_1 \in E(G) \text{ and } u_2v_2 \in A(G) \}$ E(H) or $u_1 = v_1$ and $u_2v_2 \in E(H)$ or $u_1v_1 \in E(G)$ and $u_2 = v_2$. (4) The semi-strong product $G_1 \bullet G_2$ is the graph with the vertex set $V(G \bullet G_2)$ $H) = V(G) \times V(H)$ and the edge set $E(G \bullet H) = \{(u_1, u_2)(v_1, v_2) | u_1v_1 \in$ E(G) and $u_2v_2 \in E(H)$ or $u_1 = v_1$ and $u_2v_2 \in E(H)$ }. (5) The Lexicographic product $G_1[G_2]$ is the graph with vertex set $V(G[H]) = V(G) \times$ V(H) and the edge set $E(G[H]) = \{(u_1, u_2)(v_1, v_2) | u_1 = v_1 \text{ and } u_2v_2 \in$ E(H) or $u_1v_1 \in E(G)$. (6) The wreath product $G\rho H$ has the vertex set $V(G\rho H) = V(G) \times V(H)$ and the edge set $E(G\rho H) = \{(u_1, v_1)(u_2, v_2) | u_1 = (u_1, v_1)(u_2, v_2) \}$ u_2 and $v_1v_2 \in H$, or $u_1u_2 \in G$ and there is $\alpha \in Aut(H)$ such that $\alpha(v_1) =$ v_2 (See [1] and [11]).

Many authors studied the basis number and the minimum cycle bases of graph products. The cartesian product of any two graphs was studied by Ali and Marougi [4] and Imrich and Stadler [12].

Theorem 2.2.1. (Ali and Marougi) If G and H are two connected disjoint graphs, then $b(G \square H) \leq \max\{b(G) + \Delta(T_H), b(H) + \Delta(T_G)\}$ where T_H and T_G are spanning trees of H and G, respectively, such that the maximum degrees $\Delta(T_H)$ and $\Delta(T_G)$ are minimum with respect to all spanning trees of H and G.

Theorem 2.2.2. (Imrich and Stadler) If G and H are triangle free, then $l(G \square H) = l(G) + l(H) + 4[|E(G)|(|V(H)| - 1) + |E(H)|(|V(G)| - 1) - (|V(H)| - 1)(|V(G)| - 1)]$ and $\lambda(G \square H) = \max\{4, \lambda(G), \lambda(H)\}.$

Schmeichel [22], Ali [2], [3] and Jaradat [13] gave an upper bound for the basis number of the semi-strong and the direct products of some special graphs. They proved the following results:

Theorem 2.2.3. (Schmeichel) For each $n \geq 7$, $b(K_n \bullet P_2) = 4$.

Theorem 2.2.4. (Ali) For each integers $n, m, b(K_m \bullet K_n) \leq 9$.

Theorem 2.2.5. (Ali) For any two cycles C_n and C_m with $n, m \geq 3$, $b(C_n \times C_m) = 3$.

Theorem 2.2.6. (Jaradat) For each bipartite graphs G and H, $b(G \times H) \le 5 + b(G) + b(H)$.

Theorem 2.2.7. (Jaradat) For each bipartite graph G and cycle C, $b(G \times C) \leq 3 + b(G)$.

The strong product was studied by Imrich and Stadler [12] and Jaradat [15]. They gave the following results:

Theorem 2.2.8. (Imrich and Stadler) For any two graphs G and H, $l(G \boxtimes H) = l(G) + l(H) + 3[\dim C(G \boxtimes H) - \dim C(G) - \dim C(H)]$ and $\lambda(G \boxtimes H) = \max\{3, \lambda(G), \lambda(H)\}.$

Theorem 2.2.9. (Jaradat) Let G be a bipartite graph and H be a graph. Then $b(G \boxtimes H) \leq \max\{b(H)+1, 2\Delta(H)+b(G)-1, \left\lfloor \frac{3\Delta(T_G)+1}{2} \right\rfloor, b(G)+2\}$.

Jaradat [17] investigate the basis number and the minimal cycle bases of the wreath product of two paths, a cycle with a path, a path with a star, a cycle with a star, a path with a wheel and a cycle with a wheel.

In this paper, we continue the study initiated in [17] by constructed a minimum cycle basis for the wreath products of a star by a path, two stars and a star by a wheel. Additionally, we determine the basis number of the above products.

In the rest of this paper, $f_B(e)$ stand for the number of elements of B containing the edge e where $B \subseteq C(G)$.

3 The basis number of the wreath product of graphs.

In this chapter we study the required bases and investigate the basis number of the wreath product of a star with a path, two stars, a star with a wheel.

3.1 The basis number of $S_n \rho P_m$

Let $\{v_1, v_2, \ldots, v_m\}$ be a set of vertices and ab be an edge. Throughout this work we use the notations \mathcal{K}_{ab} and \mathcal{R}_{ab} which were introduced by Jaradat [30] and a new notation \mathcal{Z}_{ab} as follows:

$$\mathcal{K}_{ab} = \left\{ \mathcal{K}_{ab}^{(j)} = (a, v_j)(b, v_j)(b, v_{j+1})(a, v_{j+1})(a, v_j) \mid j = 1, 2, \dots, m-1 \right\},\,$$

$$\mathcal{R}_{ab} = \left\{ \mathcal{R}_{ab}^{(j)} = (a, v_j)(b, v_{m-j+1})(b, v_{m-j})(a, v_{j+1})(a, v_j) \mid j = 1, 2, \\ \dots, \lfloor \frac{m}{2} \rfloor \right\},\,$$

$$\mathcal{Z}_{ab} = \left\{ \begin{array}{l} \mathcal{Z}_{ab}^{(1)} = (a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor + 2})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor}), \\ \mathcal{Z}_{ab}^{(2)} = (a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 2})(a, v_{\lfloor \frac{m}{2} \rfloor + 2})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor}), \\ \mathcal{Z}_{ab}^{(3)} = (a, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor}), \\ \mathcal{Z}_{ab}^{(4)} = (a, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor}). \end{array} \right\}$$

Lemma 3.1.1. For any odd integer m, every linear combination of cycles of \mathcal{R}_{ab} contains at least one edge of the form $(a,v_j)(b,v_{m-j+1}), 1 \leq j < \lfloor \frac{m}{2} \rfloor$ or $(b,v_{\lfloor \frac{m}{2} \rfloor+1})(b,v_{\lfloor \frac{m}{2} \rfloor+2})$. Moreover, every linear combination of cycles of \mathcal{R}_{ba} contains at least one edge of the form $(b,v_j)(a,v_{m-j+1}), 1 \leq j < \lfloor \frac{m}{2} \rfloor$ or $(b,v_{\lfloor \frac{m}{2} \rfloor})(b,v_{\lfloor \frac{m}{2} \rfloor+1})$.

Proof. Let \mathcal{R} be a linear combination of the cycles of $S = \left\{\mathcal{R}_{ab}^{(j_1)}, \mathcal{R}_{ab}^{(j_2)}, \ldots, \mathcal{R}_{ab}^{(j_k)}\right\} \subseteq \mathcal{R}_{ab}$ where $j_1 < j_2 < \cdots < j_k$. Then by the definition of \mathcal{R}_{ab} , $\mathcal{R}_{ab}^{(j_1)}$ contains the edge $(a, v_{j_1})(b, v_{m-j_1+1})$. Since $j_1 < j_2 < \cdots < j_k$, as a result \mathcal{R} contains $(a, v_{j_1})(b, v_{m-j_1+1})$ if $j_1 \neq \lfloor \frac{m}{2} \rfloor$ otherwise $S = \left\{\mathcal{R}_{ab}^{(\lfloor \frac{m}{2} \rfloor)}\right\}$ and so $\mathcal{R} = \mathcal{R}_{ab}^{(\lfloor \frac{m}{2} \rfloor)}$ which contains the edge $(b, v_{\lfloor \frac{m}{2} \rfloor+1})(b, v_{\lfloor \frac{m}{2} \rfloor+2})$. Similarly for \mathcal{R}_{ba} . \square

By the same argument as in the above lemma, we have the following results:

Lemma 3.1.2. For any even integer m, every linear combination of cycles of \mathcal{R}_{ab} contains at least one edge of the form $(a, v_j)(b, v_{m-j+1}), 1 \leq j < \lfloor \frac{m}{2} \rfloor$ or $(a, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})$.

Lemma 3.1.3. Every linear combination of cycles of $\mathcal{K}_{ab} - \{\mathcal{K}_{ab}^{(k)}, \mathcal{K}_{ab}^{(k+1)}, \ldots, \mathcal{K}_{ab}^{(k+s)}\}$ contains at least one edge of the form $(a, v_j)(b, v_j), j \leq k-1$ or $j \geq k+s+2$.

Let $P_m = v_1 v_2 \dots v_m$. Then the automorphism group of the path P_m consists of two elements the identity, I, and the automorphism α which is defined as follows:

$$\alpha(v_j)=v_{m-j+1}, j=1,2,\ldots,m.$$

Therefore, $ab\rho P_m$ is decomposable into $ab\Box P_m \cup M_{ab}$ where M_{ab} is the graph with edge set

$$E(M_{ab}) = \{(a, v_j)(b, v_{m-j+1}), (a, v_{m-j+1})(b, v_j) | j = 1, 2, \dots, \lfloor \frac{m}{2} \rfloor \}.$$
 (1)

Lemma 3.1.4. Let m be an odd integer. Then $\mathcal{A}_{ab} = \mathcal{K}_{ab} \cup \mathcal{R}_{ab} \cup \mathcal{R}_{ba} \cup \{\mathcal{Z}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\} - \{\mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor + 1}\}$ is linearly independent subset of $\mathcal{C}(ab\rho P_m)$. Proof. By Lemma 3.1 of [17] each of \mathcal{K}_{ab} , \mathcal{R}_{ab} and \mathcal{R}_{ba} is linearly independent. Since $\mathcal{Z}_{ab}^{(1)} \neq \mathcal{Z}_{ab}^{(2)}$, $\{\mathcal{Z}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\}$ is linearly independent. By Lemma 3.1.1, any linear combination of cycles of \mathcal{R}_{ab} contains an edge of the form $(a, v_j)(b, v_{m-j+1}), j < \lfloor \frac{m}{2} \rfloor$ or $(b, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor + 2})$ which is not in any cycle of $\{\mathcal{Z}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\}$. Thus $\mathcal{R}_{ab} \cup \{\mathcal{Z}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\}$ is linearly independent. Similarly, each linear combination of cycles of \mathcal{R}_{ba} contains an edge of the form $(b, v_j)(a, v_{m-j+1}), j < \lfloor \frac{m}{2} \rfloor$ or $(b, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})$ which is not in any cycle of $\mathcal{R}_{ab} \cup \{\mathcal{Z}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\}$. Thus, $\mathcal{R}_{ab} \cup \mathcal{R}_{ba} \cup \{\mathcal{Z}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\}$ is linearly independent. Since \mathcal{K}_{ab} is linearly independent, $\mathcal{K}_{ab} - \{\mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor + 1}\}$ is linearly independent. Now, By Lemma 3.1.3, any linear combination of cycles of $\mathcal{K}_{ab} - \{\mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor + 1}\}$ contains an edge of the form $(a, v_j)(b, v_j), j < \lfloor \frac{m}{2} \rfloor$ or $(a, v_{j+1})(b, v_{j+1}), j > \lfloor \frac{m}{2} \rfloor + 1$, which is not in any cycle of $\mathcal{R}_{ab} \cup \mathcal{R}_{ba} \cup \{\mathcal{R}_{ab}^{(1)}, \mathcal{Z}_{ab}^{(2)}\}$. Thus \mathcal{A}_{ab} is linearly independent. \square

Figure 1: Cycles of A_{ab} for m=7

Remark 3.1.5. Let m be an odd integer and $e \in E(ab\rho P_m)$. Then by the aid of Figure 1, we have

(1) If $e = (a, v_j)(b, v_{m-j+1})$ or $(b, v_j)(a, v_{m-j+1})$ such that $j \neq \lfloor \frac{m}{2} \rfloor$, then $f_{\mathcal{A}_{ab}}(e) \leq 2$. (2) If $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 2})$ or $(a, v_{\lfloor \frac{m}{2} \rfloor + 2})(b, v_{\lfloor \frac{m}{2} \rfloor})$, then $f_{\mathcal{A}_{ab}}(e) = 3$. (3) If $e = (a, v_1)(b, v_m)$ or $(b, v_1)(a, v_m)$, then $f_{\mathcal{A}_{ab}}(e) = 1$. (4) If $e = (a, v_j)(b, v_j)$ such that $j \notin \{1, m\}$, then $f_{\mathcal{A}_{ab}}(e) = 2$. (5) If $e = (a, v_j)(b, v_j)$ such that $j \in \{1, m\}$, then $f_{\mathcal{A}_{ab}}(e) = 1$. (6) If $e = (b, v_j)(b, v_{j+1})$ or $(a, v_j)(a, v_{j+1})$ such that $j \notin \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{A}_{ab}}(e) = 2$. (7) If $e = (a, v_j)(a, v_{j+1})$ such that $j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{A}_{ab}}(e) = 3$. (8) If $e = (b, v_j)(b, v_{j+1})$ such that $j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{A}_{ab}}(e) = 1$.

By a similar argument as in Lemma 3.1.4 after replacing $\left\{\mathcal{Z}_{ab}^{(1)},\mathcal{Z}_{ab}^{(2)}\right\}$ by $\left\{\mathcal{Z}_{ab}^{(3)},\mathcal{Z}_{ab}^{(4)}\right\}$, $\mathcal{K}_{ab}-\left\{\mathcal{K}_{ab}^{\lfloor\frac{m}{2}\rfloor},\mathcal{K}_{ab}^{\lfloor\frac{m}{2}\rfloor+1}\right\}$ by $\mathcal{K}_{ab}-\left\{\mathcal{K}_{ab}^{\lfloor\frac{m}{2}\rfloor}\right\}$ and \mathcal{R}_{ab} by $\mathcal{R}_{ab}-\left\{\mathcal{R}_{ab}^{\lfloor\frac{m}{2}\rfloor}\right\}$ and by the aid of Lemmas 3.1.2 and 3.1.3, we have the following result:

Lemma 3.1.6. Let m be an even integer. Then $\mathcal{T}_{ab} = \mathcal{K}_{ab} \cup \mathcal{R}_{ab} \cup \mathcal{R}_{ba} \cup \left\{ \mathcal{Z}_{ab}^{(3)}, \mathcal{Z}_{ab}^{(4)} \right\} - \left\{ \mathcal{R}_{ab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor} \right\}$ is linearly independent subset of $\mathcal{C}\left(ab\rho P_{m}\right)$.

Figure 2: Cycles of T_{ab} for m=6

Remark 3.1.7. Let m be an even integer and $e \in E(ab\rho P_m)$. Then by the aid of Figure 2, we have

(1) If $e = (a, v_j)(b, v_{m-j+1})$ such that $j \notin \{1, \lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1, m\}$, then $f_{\mathcal{T}_{ab}}(e) = 2$. (2) If $e = (a, v_1)(b, v_m)$ or $(b, v_1)(a, v_m)$, then $f_{\mathcal{T}_{ab}}(e) = 1$. (3) If $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})$ or $(b, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})$, then $f_{\mathcal{T}_{ab}}(e) = 3$. (4) If $e = (a, v_j)(a, v_{j+1})$ or $(b, v_j)(b, v_{j+1})$ such that $j \neq \lfloor \frac{m}{2} \rfloor$, then $f_{\mathcal{T}_{ab}}(e) = 2$. (5) If $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})$, then $f_{\mathcal{T}_{ab}}(e) = 3$. (6) If $e = (b, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})$, then $f_{\mathcal{T}_{ab}}(e) = 1$. (7) If $e = (a, v_j)(b, v_j)$ such that $j \notin \{1, m\}$, then $f_{\mathcal{T}_{ab}}(e) = 2$. (8) If $e = (a, v_j)(b, v_j)$ such that $j \in \{1, m\}$, then $f_{\mathcal{T}_{ab}}(e) = 1$.

Let cab be any path of order 3. We define the following sets of cycles:

$$\mathcal{N}_{cab} = \{ \mathcal{N}_{cab}^{(j)} = (c, v_j)(a, v_j)(b, v_j)(b, v_{j+1})(a, v_{j+1})(c, v_{j+1})(c, v_j) \mid j = 1, 2, 3, \dots, m-1 \},$$

$$\begin{array}{lcl} \mathcal{Q}_{cab} & = & \{\mathcal{Q}_{cab}^{(j)} = (c,v_j)(c,v_{j+1})(a,v_{m-j})(b,v_{j+1})(b,v_j)(a,v_{m-j+1})\\ (c,v_j)|j & = & 1,2,3,\ldots,m-1\}, \end{array}$$

$$\mathcal{M}_{cab} = \left\{ \begin{array}{c} \mathcal{M}_{cab}^{(1)} = (c, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor}) \\ (b, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(c, v_{\lfloor \frac{m}{2} \rfloor}), \\ \mathcal{M}_{cab}^{(2)} = (c, v_{\lfloor \frac{m}{2} \rfloor + 2})(c, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor + 1}) \\ (b, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 2}), \\ \mathcal{M}_{cab}^{(3)} = (c, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor + 1}) \\ (b, v_{\lfloor \frac{m}{2} \rfloor + 2})(a, v_{\lfloor \frac{m}{2} \rfloor + 2})(c, v_{\lfloor \frac{m}{2} \rfloor}). \end{array} \right\}.$$

Lemma 3.1.8. Every linear combination of cycles of $Q_{cab} - \{Q_{cab}^{(j)}|i \leq$ $j \leq k$ contains at least one edge of the form $(c, v_j)(a, v_{m-j+1})$ such that (1) $j \leq m$ and $j \notin \{i, i+1, \ldots, k+1\}$ if m is even, (2) $j \leq m$ and $j \notin \{i, i+1, \ldots, k+1, \lfloor \frac{m}{2} \rfloor + 1\}$ if m is odd.

Proof. Let \mathcal{Q} be a linear combination of the cycles $\mathcal{Q}_{cab}^{(j_1)}, \mathcal{Q}_{cab}^{(j_2)}, \ldots, \mathcal{Q}_{cab}^{(j_k)}$ of $\mathcal{Q}_{cab} - \{\mathcal{Q}_{cab}^{(j)} | i \leq j \leq k\}$. Let $j_1 < j_2 < \ldots < j_k$. Then we split our work into two subcases:

Case 1: m is odd. Then we split this case into two cases:

Subcase 1: $j_1 \leq \lfloor \frac{m}{2} \rfloor$. Then, by the definition of Q_{cab} , $Q_{cab}^{(j_1)}$ contains the edge $(c, v_{j_1})(a, v_{m-j_1+1})$. Since $j_1 < j_2 < \cdots < j_k$, as a result non of $Q_{cab}^{(j_2)}, Q_{cab}^{(j_3)}, \ldots, Q_{cab}^{(j_k)}$ contains this edge. Thus, Q contains $(c, v_{j_1})(a, v_{m-j_1+1})$. $(c, v_i,)(a, v_{m-i,+1}).$

Subcase 2: $j_1 \geq \lfloor \frac{m}{2} \rfloor + 1$. Then by the definition of Q_{cab} , $Q_{cab}^{(j_k)}$ contains the edge $(c, v_{j_k+1})(a, v_{m-(j_k+1)+1})$. Since $j_1 < j_2 < \cdots < j_k$, it implies that no cycle of $Q_{cab}^{(j_1)}, Q_{cab}^{(j_2)}, \ldots, Q_{cab}^{(j_{k-1})}$ contains such edge. Hence, Q contains $(c, v_{j_k+1})(a, v_{m-(j_k+1)+1}).$

Case 2: m is even. Then we argue as in Case 1 taking into account only Subcase 1 and for each j_1 . \square

By using the same idea as in the first subcase of the first case of Lemma 3.1.6, we have the following result:

Lemma 3.1.9. Every linear combination of cycles of $\mathcal{N}_{cab} - \{\mathcal{N}_{cab}^{(j)} | i \leq j \leq k\}$ contains at least one edge of the form $(c, v_j)(a, v_j), j \leq i-1$ or $j \geq k+2$.

Note that $cab\rho P_m$ is decomposable into $cab\Box P_m \cup M_{ab} \cup M_{ac}$ where M_{ab}, M_{ac} are as defined in (1).

Lemma 3.1.10. Let m be an odd integer. Then $\mathcal{X}_{cab} = \mathcal{N}_{cab} \cup \mathcal{Q}_{cab} \cup \{\mathcal{M}^{(2)}_{cab}, \mathcal{M}^{(3)}_{cab}, \mathcal{Z}^{(1)}_{ca}, \mathcal{Z}^{(2)}_{ca}\} - \{\mathcal{N}^{(k)}_{cab}, \mathcal{Q}^{(k)}_{cab} \mid k = \lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$ is linearly independent subset of $\mathcal{C}(cab\rho P_m)$.

Proof. We prove that \mathcal{N}_{cab} is linearly independent using the mathematical induction on m for any m. If m = 2, then \mathcal{N}_{cab} consists only of one cycle $\mathcal{N}_{cab}^{(1)}$, thus \mathcal{N}_{cab} is linearly independent. Note that $\mathcal{N}_{cab} = \left(\bigcup_{j=1}^{m-2} \mathcal{N}_{cab}^{(j)}\right) \cup \mathcal{N}_{cab}^{(m-1)}$. Assume that m is grater than 2 and it is true for less than m. Since $\mathcal{N}_{cab}^{(m-1)}$ contains the edge $(c, v_m)(a, v_m)$ which is not in any cycle of $\bigcup_{j=1}^{m-2} \mathcal{N}_{cab}^{(j)}$, as a result \mathcal{N}_{cab} is linearly independent. By a similar way, we can show that \mathcal{Q}_{cab} is linearly independent. Then we have $Q_{cab} - \left\{Q_{cab}^{\left\lfloor \frac{m}{2} \right\rfloor}, Q_{cab}^{\left\lfloor \frac{m}{2} \right\rfloor+1}\right\}$ and $\mathcal{N}_{cab} - \left\{\mathcal{N}_{cab}^{\left\lfloor \frac{m}{2} \right\rfloor}, \mathcal{N}_{cab}^{\left\lfloor \frac{m}{2} \right\rfloor+1}\right\}$ are linearly independent. Now, the cycle $\mathcal{Z}_{ca}^{(1)}$ contains the edge $(a, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 2})$ which is not in the cycle $\mathcal{Z}_{ca}^{(2)}$, thus $\left\{\mathcal{Z}_{ca}^{(1)},\mathcal{Z}_{ca}^{(2)}\right\}$ is linearly independent. The cycle $\mathcal{M}^{(2)}_{cab}$ contains the edge $(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})$ which is not in any cycle of $\{\mathcal{Z}^{(1)}_{ca}, \mathcal{Z}^{(2)}_{ca}\}$, thus $\{\mathcal{Z}^{(1)}_{ca}, \mathcal{Z}^{(2)}_{ca}, \mathcal{M}^{(2)}_{cab}\}$ is linearly independent. Also the cycle $\mathcal{M}^{(3)}_{cab}$ contains the edge $(b, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor + 2})$ which is not in any of the cycles $\mathcal{Z}^{(1)}_{ca}, \mathcal{Z}^{(2)}_{ca}, \mathcal{M}^{(2)}_{cab}$. Hence $\left\{\mathcal{Z}^{(1)}_{ca}, \mathcal{Z}^{(2)}_{ca}, \mathcal{M}^{(2)}_{cab}, \mathcal{M}^{(3)}_{cab}\right\}$ is linearly independent. By Lemma 3.1.6, any linear combination of cycles of $\mathcal{Q}_{cab} - \left\{\mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1}\right\} \text{ contains an edge of the form } (c, v_j)(a, v_{m-j+1}), j \notin$ $\left\{\left\lfloor \frac{m}{2}\right\rfloor, \left\lfloor \frac{m}{2}\right\rfloor + 1, \left\lfloor \frac{m}{2}\right\rfloor + 2\right\} \text{ which is not in any cycle of } \left\{\mathcal{Z}_{ca}^{(1)}, \mathcal{Z}_{ca}^{(2)}, \mathcal{M}_{cab}^{(2)}, \mathcal{M}_{cab}^{(3)}\right\}.$ Thus $\mathcal{Q}_{cab} \cup \left\{\mathcal{M}_{cab}^{(2)}, \mathcal{M}_{cab}^{(3)}, \mathcal{Z}_{ca}^{(1)}, \mathcal{Z}_{ca}^{(2)}\right\} - \left\{\mathcal{Q}_{cab}^{\lfloor \frac{m}{2}\rfloor}, \mathcal{Q}_{cab}^{\lfloor \frac{m}{2}\rfloor + 1}\right\} \text{ is linearly independent. By Lemma 3.1.9, any linear combination of cycles of } \mathcal{N}_{cab} - \left\{\mathcal{A}_{cab}^{\lfloor \frac{m}{2}\rfloor + 1}\right\}$ $\left\{\mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1}\right\}$ contains an edge of the form $(c, v_j)(a, v_j), j \leq \lfloor \frac{m}{2} \rfloor - 1$ or $j \ge \lfloor \frac{m}{2} \rfloor + 3$, which is not in any cycle of $\mathcal{Q}_{cab} \cup \left\{ \mathcal{M}_{cab}^{(2)}, \mathcal{M}_{cab}^{(3)}, \mathcal{Z}_{ca}^{(1)}, \mathcal{Z}_{ca}^{(2)} \right\} - 1$ $\left\{\mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1}\right\}$. Thus \mathcal{X}_{cab} is linearly independent. \square Remark 3.1.11. Let m be an odd integer and $e \in E(cab\rho P_m)$. Then by

the aid of Figure 3, we have that

(1) If $e = (a, v_j)(c, v_{m-j+1})$ or $(a, v_j)(b, v_{m-j+1})$ such that $j \neq \lfloor \frac{m}{2} \rfloor$, then $f_{\mathcal{X}_{cab}}(e) \leq 2$. (2) If $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 2})$ or $(a, v_{\lfloor \frac{m}{2} \rfloor + 2})(b, v_{\lfloor \frac{m}{2} \rfloor})$, then $f_{\mathcal{X}_{cab}}(e) = 1$. (3) If $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 2})$ or $(a, v_{\lfloor \frac{m}{2} \rfloor + 2})(c, v_{\lfloor \frac{m}{2} \rfloor})$, then $f_{\mathcal{X}_{cab}}(e) = 3$. (4) If $e = (a, v_j)(b, v_j)$ or $(a, v_j)(c, v_j)$ such that $j \notin \{1, m\}$, then $f_{\mathcal{X}_{cab}}(e) = 2$. (5) If $e = (b, v_j)(b, v_{j+1})$ or $(c, v_j)(c, v_{j+1})$ such that

Figure 3: Cycles of \mathcal{X}_{cab} for m=7

$$\begin{split} j \notin \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}, \text{ then } f_{\mathcal{X}_{cab}}(e) &= 2. \text{ (6) If } e = (c, v_j)(c, v_{j+1}) \text{ such that } \\ j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}, \text{ then } f_{\mathcal{X}_{cab}}(e) &\leq 3. \text{ (7) If } e = (b, v_j)(b, v_{j+1}) \text{ such that } \\ j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}, \text{ then } f_{\mathcal{X}_{cab}}(e) &\leq 1. \text{ (8) If } e = (a, v_j)(a, v_{j+1}), \text{ then } \\ f_{\mathcal{X}_{cab}}(e) &= 0. \end{split}$$

Lemma 3.1.12. Let m be an even integer. Then $\mathcal{J}_{cab} = \mathcal{N}_{cab} \cup \mathcal{Q}_{cab} \cup \{\mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)}, \mathcal{Z}_{ca}^{(4)}\} - \{\mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor}\}$ is linearly independent subset of $\mathcal{C}(cab \ \rho P_m)$.

Proof. Using the same argument as in Lemma 3.1.10, we have that $\mathcal{N}_{cab} - \left\{ \mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor} \right\}$ and $\mathcal{Q}_{cab} - \left\{ \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor} \right\}$ are linearly independent. The cycle $\mathcal{Z}_{ca}^{(3)}$ contains the edge $(c, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor + 1})$ which is not in the cycle $\mathcal{M}_{cab}^{(1)}$, thus $\left\{ \mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)} \right\}$ is linearly independent. Also the cycle $\mathcal{Z}_{ca}^{(4)}$ contains the edge of the form $(c, v_{\lfloor \frac{m}{2} \rfloor})(a, v_{\lfloor \frac{m}{2} \rfloor})$ which is not in the cycles $\mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)}$. Hence, $\left\{ \mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)}, \mathcal{Z}_{ca}^{(4)} \right\}$ is linearly independent. Any linear combination of cycles of $\mathcal{Q}_{cab} - \left\{ \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor} \right\}$ contains an edge of the form $(c, v_j)(a, v_{m-j+1})$, $j \neq \lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1$, which is not in any cycle of $\left\{ \mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)}, \mathcal{Z}_{ca}^{(4)} \right\}$. Thus $\mathcal{Q}_{cab} \cup \left\{ \mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)}, \mathcal{Z}_{ca}^{(4)} \right\} - \left\{ \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor} \right\}$ is linearly independent. Similarly, any linear combination of cycles of $\mathcal{N}_{cab} - \left\{ \mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor} \right\}$ contains an edge of the form $(c, v_j)(a, v_j)$, $j \leq \lfloor \frac{m}{2} \rfloor - 1$ or $j \geq \lfloor \frac{m}{2} \rfloor + 2$, which is not in any cycle of $\mathcal{Q}_{cab} \cup \left\{ \mathcal{M}_{cab}^{(1)}, \mathcal{Z}_{ca}^{(3)}, \mathcal{Z}_{ca}^{(4)} \right\} - \left\{ \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor} \right\}$. Thus \mathcal{J}_{cab} is linearly independent.

Remark 3.1.13. Let m be an even integer and $e \in E(cab\rho P_m)$. Then by the aid of Figure 4, we have

Figure 4: Cycles of \mathcal{J}_{cab} for m=6

(1) If $e = (a, v_j)(c, v_{m-j+1})$ or $(a, v_j)(b, v_{m-j+1})$ such that $j \notin \{1, \lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1, m\}$, then $f_{\mathcal{J}_{cab}}(e) = 2$. (2) If $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 1})$ or $(a, v_{\lfloor \frac{m}{2} \rfloor + 1})(c, v_{\lfloor \frac{m}{2} \rfloor})$, then $f_{\mathcal{J}_{cab}}(e) = 3$. (3) If $e = (a, v_j)(c, v_{m-j+1})$ or $(a, v_j)(b, v_{m-j+1})$ such that $j \in \{1, m\}$, then $f_{\mathcal{J}_{cab}}(e) = 1$. (4) If $e = (a, v_j)(b, v_j)$ or $(a, v_j)(c, v_j)$ such that $j \notin \{1, m\}$, then $f_{\mathcal{J}_{cab}}(e) = 2$. (5) If $e = (a, v_j)(b, v_j)$ or $(a, v_j)(c, v_j)$ such that $j \in \{1, m\}$, then $f_{\mathcal{J}_{cab}}(e) = 1$. (6) If $e = (a, v_j)(b, v_{m-j+1})$ such that $j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{J}_{cab}}(e) = 1$. (7) If $e = (b, v_j)(b, v_{j+1})$ or $(c, v_j)(c, v_{j+1})$ such that $j \neq \lfloor \frac{m}{2} \rfloor$, then $f_{\mathcal{J}_{cab}}(e) = 2$. (8) If $e = (c, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 1})$, then $f_{\mathcal{J}_{cab}}(e) = 3$. (1) If $e = (b, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})$, then $f_{\mathcal{J}_{cab}}(e) = 2$. If $e = (a, v_j)(a, v_{j+1})$, then $f_{\mathcal{J}_{cab}}(e) = 0$.

Lemma 3.1.14. Any linear combination of cycles of \mathcal{X}_{cab} or of \mathcal{J}_{cab} contains an edge of the form $(c, v_j)(c, v_{j+1})$ or $(c, v_j)(a, v_l)$.

Proof. We will prove the case for \mathcal{X}_{cab} and similarly we can prove it for \mathcal{J}_{cab} . Let \mathcal{X} be the linear combination of cycles of $\mathcal{X}^* = \{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_k\} \subseteq \mathcal{X}_{cab}$. Then \mathcal{X}^* can be partitioned into three pairwise disjoint subsets $\mathcal{X}_1^* = \{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_{n_1}\}, \mathcal{X}_2^* = \{\mathcal{X}_{n_1+1}, \mathcal{X}_{n_1+2}, \dots, \mathcal{X}_{n_2}\}, \text{ and } \mathcal{X}_3^* = \{\mathcal{X}_{n_2+1}, \mathcal{X}_{n_2+2}, \dots, \mathcal{X}_k\}$ such that $\mathcal{X}_1^* \subseteq \mathcal{N}_{cab} - \{\mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1}\}, \mathcal{X}_2^* \subseteq \mathcal{Q}_{cab} - \{\mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1}\}$, and $\mathcal{X}_3^* \subseteq \{\mathcal{M}_{cab}^{(1)}, \mathcal{M}_{cab}^{(2)}, \mathcal{Z}_{ca}^{(1)}, \mathcal{Z}_{ca}^{(2)}\}.$

Case 1: $n_1 \ge 1$. Then by Lemma 3.1.9, and since \mathcal{X}_{cab} does not contain any of $\left\{\mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{N}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1}\right\}$, as a result

$$\mathcal{X}_1 \oplus \mathcal{X}_2 \oplus \cdots \oplus \mathcal{X}_{n_1}$$

contains an edge of the form $e = (a, v_j)(c, v_j), j \leq \lfloor \frac{m}{2} \rfloor - 2$ or $j \geq \lfloor \frac{m}{2} \rfloor + 3$ which does not occur in any cycle of $\mathcal{X}_{cab} - \mathcal{N}_{cab}$. Thus, $e \in \mathcal{X}$.

Case 2: $n_1 = 0$ and $\mathcal{X}_3^* \neq \emptyset$. Then we split our work into two subcases:

Subcase 1: One of $\mathcal{Z}_{ca}^{(1)}$ and $\mathcal{Z}_{ca}^{(2)} \in \mathcal{X}_3^*$, say $\mathcal{Z}_{ca}^{(1)} \in \mathcal{X}_3^*$. Then the edge $e = (a, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor}) \in \mathcal{Z}_{ca}^{(1)}$ which belongs to no cycle of \mathcal{Q}_{cab} –

 $\left\{ \mathcal{Q}_{cab}^{\left\lfloor \frac{m}{2} \right\rfloor}, \mathcal{Q}_{cab}^{\left\lfloor \frac{m}{2} \right\rfloor+1} \right\} \cup \left\{ \mathcal{M}_{cab}^{(1)}, \mathcal{M}_{cab}^{(2)} \right\}. \text{ Hence, } e \text{ does not belong to any cycle}$ of $\mathcal{X}_2^* \cup \mathcal{X}_3^* - \left\{ \mathcal{Z}_{ca}^{(1)} \right\}. \text{ Thus, } e \in \mathcal{X}.$

Subcase 2: Non of $\mathcal{Z}_{ca}^{(1)}$ and $\mathcal{Z}_{ca}^{(2)} \in \mathcal{X}_{3}^{*}$. Then at least one of $\mathcal{M}_{cab}^{(1)}$ and $\mathcal{M}_{cab}^{(2)}$ belongs to \mathcal{X}_{3}^{*} , say $\mathcal{M}_{cab}^{(1)}$. By the definition of $\mathcal{M}_{cab}^{(1)}$, $e = (c, v_{\lfloor \frac{m}{2} \rfloor})(c, v_{\lfloor \frac{m}{2} \rfloor + 1}) \in \mathcal{M}_{cab}^{(1)}$ which belongs to no other cycle of $\mathcal{Q}_{cab} - \left\{ \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{Q}_{cab}^{\lfloor \frac{m}{2} \rfloor + 1} \right\} \cup \left\{ \mathcal{M}_{cab}^{(2)} \right\}$. Hence, e does not belong to any other cycle of $\mathcal{X}_{2}^{*} \cup \mathcal{X}_{3}^{*}$. Thus, $e \in \mathcal{X}$.

Case 3: $n_1 = 0$ and $\mathcal{X}_3^* = \emptyset$. Then \mathcal{X} is the linear combination of cycles of $\{\mathcal{X}_{n_1+1}, \mathcal{X}_{n_1+2}, \dots, \mathcal{X}_{n_2}\}$. By Lemma 3.1.8, \mathcal{X} contains at least one edge of the form $(c, v_j)(a, v_{m-j+1})$. \square

Lemma 3.1.15. Let m be an odd integer. Then $\mathcal{A}_{ab} \cup \mathcal{X}_{cab}$ is a linearly independent subset of $\mathcal{C}(cab\rho P_m)$.

Proof. We know that each of \mathcal{A}_{ab} and \mathcal{X}_{cab} is linearly independent. By Lemma 3.1.14, any linear combination of cycles of \mathcal{X}_{cab} contains an edge of the form $(c, v_j)(c, v_{j+1})$ or $(c, v_j)(a, v_l)$ which is not in any cycle of \mathcal{A}_{ab} . Thus $\mathcal{A}_{ab} \cup \mathcal{X}_{cab}$ is linearly independent. \square

By using the same argument as in Lemma 3.1.15 after replacing \mathcal{A}_{ab} by \mathcal{T}_{ab} and \mathcal{X}_{cab} by \mathcal{J}_{cab} , we have the following result.

Lemma 3.1.16. Let m be an even integer. Then $T_{ab} \cup \mathcal{J}_{cab}$ is linearly independent subset of $C(cab\rho P_m)$.

Throughout the rest of this work, consider

$$\mathcal{B}_{ab} = \begin{cases} \mathcal{A}_{ab}, & \text{if } m \text{ is odd} \\ \mathcal{T}_{ab}, & \text{if } m \text{ is even} \end{cases}$$
 (2)

and

$$\mathcal{B}_{cab} = \begin{cases} \mathcal{X}_{cab}, & \text{if } m \text{ is odd} \\ \mathcal{J}_{cab}, & \text{if } m \text{ is even} \end{cases}$$
 (3)

Let $V(S_n) = \{u_1, u_2, \dots, u_n\}$ with $d_{S_n}(u_1) = n-1$ and $P_m = v_1 v_2 \dots v_m$. Then the graph $S_n \rho P_m$ is decomposable into $S_n \square P_m \cup (\bigcup_{i=2}^n M_{u_1 u_i})$ where $M_{u_1 u_i}$ is the graph defined as in (1). Hence, $|E(S_n \rho P_m)| = n(m-1) + m(n-1) + 2(n-1) \lfloor m/2 \rfloor$. Therefore,

$$\dim \mathcal{C}(S_n \rho P_m) = mn - n - m + 2(n-1) \lfloor m/2 \rfloor + 1. \tag{4}$$

Theorem 3.1.17. For any star S_n of order $n \geq 4$ and path P_m of order $m \geq 3$, $b(S_n \rho P_m) \leq 4$.

Proof. Define $\mathcal{B}(S_n\rho P_m)=\mathcal{B}_{u_1u_2}\cup(\cup_{j=2}^{n-1}\mathcal{B}_{u_{j+1}u_1u_j}).$ We now show that $\mathcal{B}(S_n\rho P_m)$ is linearly independent using the mathematical induction on n. If n=2, then $\mathcal{B}(S_n\rho P_m)=\mathcal{B}_{u_1u_2}$ and is linearly independent by Lemmas 3.1.4 and 3.1.6. If n=3, then $\mathcal{B}(S_n\rho P_m)=\mathcal{B}_{u_1u_2}\cup\mathcal{B}_{u_3u_1u_2}$ and it is linearly independent by Lemmas 3.1.15 and 3.1.16. Assume $n\geq 4$, and it is true for less than or equal to n-2. Note that $\mathcal{B}(S_n\rho P_m)=(\mathcal{B}_{u_1u_2}\cup(\cup_{j=2}^{n-2}\mathcal{B}_{u_{j+1}u_1u_j}))\cup\mathcal{B}_{u_nu_1u_{n-1}}$. By induction steps and Lemmas 3.1.10 and 3.1.12, each of $\mathcal{B}_{u_1u_2}\cup(\cup_{j=2}^{n-2}\mathcal{B}_{u_{j+1}u_1u_j})$ and $\mathcal{B}_{u_nu_1u_{n-1}}$ is linearly independent. By Lemma 3.1.14 and (2), any linear combination of cycles of $\mathcal{B}_{u_nu_1u_{n-1}}$ contains an edge of the form $(u_n,v_j)(u_n,v_{j+1})$ or $(u_n,v_j)(u_1,v_l)$ which are not in any cycle of $\mathcal{B}_{u_1u_2}\cup(\cup_{j=2}^{n-2}\mathcal{B}_{u_{j+1}u_1u_j})$. Thus $\mathcal{B}(S_n\rho P_m)$ is linearly independent. Now, from (2)

$$|\mathcal{B}_{u_iu_{i+1}}| = |\mathcal{A}_{ab}| = (m-1) + 2\lfloor m/2 \rfloor$$

if m is odd, and

$$|\mathcal{B}_{u_i u_{i+1}}| = |\mathcal{T}_{ab}| = (m-1) + 2|m/2|$$

if m is even. Also, from (3)

$$|\mathcal{B}_{u_{j+1}u_1u_j}| = |\mathcal{X}_{cab}| = 2(m-1) = (m-1) + 2\lfloor m/2 \rfloor$$

if m is odd, and

$$|\mathcal{B}_{u_{j+1}u_1u_j}| = |\mathcal{J}_{cab}| = (m-1) + (m-1) + 1$$

= $2(m-1) + 1$
= $(m-1) + 2|m/2|$

if m is even. Thus

$$|\mathcal{B}(S_n \rho P_m)| = |\mathcal{B}_{u_1 u_2}| + \sum_{i=2}^{n-1} |\mathcal{B}_{u_{j+1} u_1 u_j}|$$

$$= (m-1) + 2 \lfloor m/2 \rfloor + (n-2) ((m-1) + 2 \lfloor m/2 \rfloor)$$

$$= mn - m - n + 2(n-1) \lfloor m/2 \rfloor + 1$$

$$= \dim \mathcal{C}(S_n \rho P_m)$$

where the last equality follows from (4). Therefore, $\mathcal{B}(S_n\rho P_m)$ is a basis for $\mathcal{C}(S_n\rho P_m)$. To complete the proof, we have to show that $\mathcal{B}(S_n\rho P_m)$ is of fold 4. Note that

$$E(\mathcal{B}_{u_{j+1}u_{1}u_{j}}) \cap E(\mathcal{B}_{u_{k+1}u_{1}u_{k}}) = \emptyset \text{ if } |k-j| > 1 \text{ and}$$

$$E(\mathcal{B}_{u_{1}u_{2}}) \cap E(\mathcal{B}_{u_{k+1}u_{1}u_{k}}) = \emptyset \text{ if } k > 2.$$

Now we consider two cases.

Case 1. m is odd. Then by Remarks 3.1.5 and 3.1.11, we have the following: (1) If $e = (u_1, v_j)(u_1, v_{j+1})$ such that $j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{B}(S_n \rho P_m)} = f_{\mathcal{B}_{u_1 u_2}} + f_{\mathcal{B}_{u_3 u_1 u_2}} \leq 3 + 0$. (2) If $e = (u_1, v_{\lfloor \frac{m}{2} \rfloor})(u_2, v_{\lfloor \frac{m}{2} \rfloor + 2})$ or $(u_1, v_{\lfloor \frac{m}{2} \rfloor + 2})(u_2, v_{\lfloor \frac{m}{2} \rfloor})$, then $f_{\mathcal{B}(S_n \rho P_m)} = f_{\mathcal{B}_{u_1 u_2}} + f_{\mathcal{B}_{u_3 u_1 u_2}} \leq 3 + 1$. (3) If $e \in u_1 u_2 \rho P_m$ which is not as in (1)or (2), then $f_{\mathcal{B}(S_n \rho P_m)} = f_{\mathcal{B}_{u_1 u_2}} + f_{\mathcal{B}_{u_3 u_1 u_2}} \leq 2 + 2 = 4$. (4) If $e = (u_i, v_j)(u_i, v_{j+1})$ for $i \geq 3$ such that $j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{B}(S_n \rho P_m)}(e) = f_{\mathcal{B}_{u_{i+1} u_1 u_i}}(e) + f_{\mathcal{B}_{u_i u_1 u_{i-1}}}(e) \leq 1 + 3$. (5) If $e = (u_1, v_{\lfloor \frac{m}{2} \rfloor})(u_i, v_{\lfloor \frac{m}{2} \rfloor + 2})$ or $(u_1, v_{\lfloor \frac{m}{2} \rfloor + 2})(u_i, v_{\lfloor \frac{m}{2} \rfloor})$ for $i \geq 3$, then $f_{\mathcal{B}(S_n \rho P_m)} = f_{\mathcal{B}_{u_{i+1} u_1 u_i}}(e) + f_{\mathcal{B}_{u_i u_1 u_{i-1}}}(e) \leq 1 + 3$. (6) If $e \in u_1 u_i \rho P_m - u_1 u_2 \rho P_m$ for $i \geq 3$ and not as in (3), then $f_{\mathcal{B}(S_n \rho P_m)} = f_{u_{i+1} u_1 u_i} + f_{u_i u_1 u_{i-1}} \leq 2 + 2$.

Case 2. m is even. Then by Remarks 3.1.7, 3.1.13, and as in Case 1, we have the following: (1) If $e = (u_1, v_j)(u_2, v_{j+1})$ or $(u_1, v_{j+1})(u_2, v_j)$ or $(u_1, v_j)(u_1, v_{j+1})$ such that $j = \lfloor \frac{m}{2} \rfloor$, then $f_{\mathcal{B}(S_n \rho P_m)} = f_{\mathcal{B}_{u_1 u_2}} + f_{\mathcal{B}_{u_3 u_1 u_2}} \le 3 + 1$. (2) If $e \in u_1 u_2 \rho P_m$ which is not as in (1), then $f_{\mathcal{B}(S_n \rho P_m)} = f_{\mathcal{B}_{u_1 u_2}} + f_{\mathcal{B}_{u_3 u_1 u_2}} \le 2 + 2 = 4$. (3) If $e = (u_i, v_j)(u_i, v_{j+1})$ or $(u_1, v_j)(u_i, v_{j+1})$ or $(u_1, v_{j+1})(u_i, v_j)$ for $i \ge 3$ such that $j \in \{\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor + 1\}$, then $f_{\mathcal{B}(S_n \rho P_m)}(e) = f_{\mathcal{B}_{u_{i+1} u_1 u_i}}(e) + f_{\mathcal{B}_{u_i u_1 u_{i-1}}}(e) \le 1 + 3$. (4) If $e \in u_1 u_i \rho P_m - u_1 u_2 \rho P_m$ for $i \ge 3$ and not as in (3), then $f_{\mathcal{B}(S_n \rho P_m)} = f_{u_{i+1} u_1 u_i} + f_{u_i u_1 u_{i-1}} \le 2 + 2$. \square

Lemma 3.1.18 ([17]). If $m \geq 3$, then $b(ab\rho P_m) \geq 3$.

The following result follows immediately from Lemma 3.1.18, MacLan's Theorem and Kuratowiski's Theorem and Theorem 3.1.17.

Corollary 3.1.19. $3 \le b(S_n \rho P_m) \le 4$, for all $n \ge 2$, $m \ge 3$.

3.2 The basis number of $S_n \rho S_m$

Consider S_m to be a star with vertex set $\{v_1, v_2, \ldots, v_m\}$ and $d_{S_m}(v_1) = m-1$. Note that the automorphism group of S_m is isomorphic to the symmetric group on the set $\{v_2, v_3, \ldots, v_m\}$. Therefore, for any $\gamma \in \operatorname{Aut}(G), \gamma(v_1) = v_1$. Moreover, for any two vertices v_i, v_j such that $2 \leq i, j \leq m$ there is an automorphism α such that $\alpha(v_i) = v_j$. Hence, the graph $ab\rho S_m$ is decomposable into $(a \square S_m) \cup (b \square S_m) \cup \{(a, v_1)(b, v_1)\} \cup ab[N_{m-1}]$ where N_{m-1} is the null graph with vertex set $\{v_2, v_3, \ldots, v_m\}$ and $ab[N_{m-1}]$ is the lexicographic product of ab and N_{m-1} . Now, we use the following sets of cycles which where introduced by Jaradat in [30].

$$\mathcal{H}_{ab} = \{(a, v_j)(b, v_i)(a, v_{j+1})(b, v_{i+1})(a, v_j) \mid 2 \le i, j \le m-1\},\,$$

$$\mathcal{G}_{ab} = \left\{ \mathcal{G}_{ab}^{(j)} = (a, v_1)(a, v_j)(b, v_2)(a, v_{j+1})(a, v_1) \mid 2 \le j \le m-1 \right\},\,$$

$$S_{ab} = \{(a, v_1)(a, v_2)(b, v_2)(b, v_1)(a, v_1)\}.$$

Note that \mathcal{H}_{ab} is the Schemeichel's 4-fold basis of $\mathcal{C}(ab[N_{m-1}])$ (see Theorem 2.4 in [22]). Moreover, (1) if $e=(a,v_2)(b,v_m)$ or $e=(a,v_m)(b,v_2)$ or $e=(a,v_2)(b,v_2)$ or $e=(a,v_m)(b,v_m)$, then $f_{\mathcal{H}_{ab}}(e)=1$. (2) If $e=(a,v_2)(b,v_l)$ or $(a,v_j)(b,v_2)$ or $(a,v_m)(b,v_l)$ or $(a,v_j)(b,v_m)$, then $f_{\mathcal{H}_{ab}}(e)\leq 2$. (3) If $e\in E(ab[N_{m-1}])$ and is not of the above form, then $f_{\mathcal{H}_{ab}}(e)\leq 4$.

The following result of Jaradat [17], and Jaradat et al. [16] will be used in the coming results of this section.

Lemma 3.2.1 (Jaradat). $\mathcal{L}_{ab} = \mathcal{H}_{ab} \cup \mathcal{G}_{ab} \cup \mathcal{G}_{ba} \cup \mathcal{S}_{ab}$ is linearly independent subset of cycles of $\mathcal{C}(ab\rho S_m)$.

Figure 5: Cycles of \mathcal{L}_{ab} for m=6

Proposition 3.2.2 (Jaradat et al.) Let A and B be two linearly independent sets of cycles such that $E(A) \cap E(B)$ is an edge set of a forest. Then $A \cup B$ is linearly independent.

Let cab be any star of order 3, then we define the following sets of cycles:

$$\mathcal{W}_{cab} = \{(c, v_1)(c, v_2)(a, v_2)(b, v_m)(b, v_1)(a, v_1)(c, v_1)\}\$$

and

$$\mathcal{E}_{cab} = \left\{ \mathcal{E}_{cab}^{(j)} = (c, v_2)(a, v_j)(b, v_m)(a, v_{j+1})(c, v_2) \mid 2 \le j \le m - 1 \right\}.$$

Lemma 3.2.3. $\mathcal{Y}_{cab} = \mathcal{E}_{cab} \cup \mathcal{H}_{ca} \cup \mathcal{G}_{ca} \cup \mathcal{W}_{cab}$ is linearly independent. **Proof.** We use mathematical induction on m to show that \mathcal{E}_{cab} is linearly independent. If m = 3, then \mathcal{E}_{cab} consists only of one cycle $\mathcal{E}_{cab}^{(1)}$. Thus \mathcal{E}_{cab}

is linearly independent. Note that $\mathcal{E}_{cab} = (\bigcup_{j=2}^{m-2} \mathcal{E}_{cab}^{(j)}) \cup \mathcal{E}_{cab}^{(m-1)}$. Assume that m is grater than 3 and it is true for less than m. Since $\mathcal{E}_{cab}^{(m-1)}$ contains the edge $(c, v_2)(a, v_m)$ which is not in any cycle of $\bigcup_{j=2}^{m-2} \mathcal{E}_{cab}^{(j)}$, \mathcal{E}_{cab} is linearly independent. By Lemma 3.2.1, we have \mathcal{H}_{ca} and \mathcal{G}_{ca} are linearly independent. Note that $E(\mathcal{H}_{ca}) \cap E(\mathcal{E}_{cab}) = \{(c, v_2)(a, v_j) \mid 2 \leq j \leq m\}$ which is an edge set of a star. Then, by Proposition 3.2.2, $\mathcal{E}_{cab} \cup \mathcal{H}_{ca}$ is linearly independent. Now, any linear combination of cycles of \mathcal{G}_{ca} contains an edge of the form $(c, v_1)(c, v_j), j \geq 2$ which is not in any cycle of $\mathcal{E}_{cab} \cup \mathcal{H}_{ca}$. Thus $\mathcal{E}_{cab} \cup \mathcal{H}_{ca} \cup \mathcal{G}_{ca}$ is linearly independent. Finally, \mathcal{W}_{cab} contains the edge $(c, v_1)(a, v_1)$ which is not in any cycle of $\mathcal{E}_{cab} \cup \mathcal{H}_{ca} \cup \mathcal{G}_{ca}$. Thus \mathcal{Y}_{cab} is linearly independent. \square

Figure 6: Cycles of \mathcal{Y}_{cab} for m=6

Remark 3.2.4. Let $e \in E(abc\rho S_m)$, then by the aid of Figures 5 and 6, we have: (1) If $e = (a, v_1)(b, v_1)$, then $f_{\mathcal{L}_{ab}}(e) = 1$ and $f_{\mathcal{Y}_{cab}}(e) = 1$. (2) If $e = (a, v_2)(b, v_2)$, then $f_{\mathcal{L}_{ab}}(e) = 4$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (3) If e = $(a, v_1)(a, v_2)$, then $f_{\mathcal{L}_{ab}}(e) = 2$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (4) If $e = (a, v_1)(a, v_j)$, $2 \le j \le m$, then $f_{\mathcal{L}_{ab}}(e) \le 2$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (5) If $e = (b, v_1)(b, v_2)$, then $f_{\mathcal{L}_{ab}}(e) = 2$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (6) If $e = (b, v_1)(b, v_j)$, $2 \le j < m$, then $f_{\mathcal{L}_{ab}}(e) \leq 2$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (7) If $e = (b, v_1)(b, v_m)$, then $f_{\mathcal{L}_{ab}}(e) = 1$ and $f_{\mathcal{Y}_{cab}}(e) \leq 1$. (8) If $e = (a, v_2)(b, v_j)$, 2 < j < m, then $f_{\mathcal{L}_{ab}}(e) \leq 4$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (9) If $e = (a, v_2)(b, v_m)$, then $f_{\mathcal{L}_{ab}}(e) \le 2$ and $f_{\mathcal{Y}_{cab}}(e) \le 2$. (10) If $e = (a, v_j)(b, v_2)$, $2 < j \le m$, then $f_{\mathcal{L}_{ab}}(e) \le 4$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (11) If $e = (a, v_j)(b, v_m)$, $2 < j \le m$, then $f_{\mathcal{L}_{ab}}(e) \le 2$ and $f_{\mathcal{Y}_{cab}}(e) \le 2$. (12) If $e=(a,v_j)(b,v_k), 2\leq j,k\leq m$, and not as in (1)-(11), then $f_{\mathcal{L}_{ab}}(e)\leq 4$ and $f_{\mathcal{Y}_{cab}}(e) = 0$. (13) If $e = (a, v_1)(c, v_1)$, then $f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) = 1$. (14) If $e = (c, v_1)(c, v_j)$, $2 \le j \le m$, then $f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) \le 2$. (15) If $e = (a, v_2)(c, v_j)$, $2 \le j \le m$, then $f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) \le 4$. (16) If $e = (c, v_2)(a, v_j), \ 2 \le j \le m$, then $f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) \le 4$. (17) If $e=(a,v_m)(c,v_j),\ 2\leq j\leq m,\ \mathrm{then}\ f_{\mathcal{L}_{ab}}(e)=0\ \mathrm{and}\ f_{\mathcal{Y}_{cab}}(e)\leq 2.$ (18) If $e = (c, v_m)(a, v_j), \ 2 \le j \le m$, then $f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) \le 2$. (19) If $e = (a, v_j)(c, v_k), \ 2 \le j, k \le m, \ \text{and not as in (13)-(18), then } f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) \leq 4$.

Throughout the rest of this work, we consider

$$\mathcal{F}_{ab} = \mathcal{L}_{ab}$$
 and $\mathcal{F}_{cab} = \mathcal{Y}_{cab}$.

Let $V(S_n) = \{u_1, u_2, \dots, u_n\}$ with $d_{S_n}(u_1) = n - 1$. Then the graph $S_n \rho S_m$ is decomposable into

$$\cup_{i=1}^{n} u_{i} \square S_{m} \cup (\cup_{i=2}^{n} (\{(u_{1}, v_{1})(u_{i}, v_{1})\} \cup u_{1} u_{i}[N_{m-1}])$$

where N_{m-1} is the graph defined as above. Hence, $|E(S_n \rho S_m)| = n(m-1) + (n-1)(1+(m-1)^2)$. Therefore,

$$\dim \mathcal{C}(S_n \rho P_m) = nm^2 - m^2 - 2nm + 2m + n - 1.$$
 (5)

Theorem 3.2.5. For any two stars S_n and S_m of order $n, m \geq 2$, we have that $b(S_n \rho S_m) \leq 4$. Moreover the equality holds if $n \geq 4$ and $m \geq 6$. **Proof.** Define $\mathcal{B}(S_n \rho S_m) = (\bigcup_{i=2}^{n-1} \mathcal{F}_{u_{i+1}u_1u_i}) \cup \mathcal{F}_{u_1u_2}$. We now show that $\mathcal{B}(S_n \rho S_m)$ is linearly independent by using the mathematical induction on n. If n=2, then $\mathcal{B}(S_n \rho S_m) = \mathcal{F}_{u_1u_2}$ and it is linearly independent by Lemma 3.2.1. If n=3, then $\mathcal{B}(S_n \rho S_m) = \mathcal{F}_{u_1u_2} \cup \mathcal{F}_{u_3u_1u_2}$. Note that

$$E(\mathcal{F}_{u_1u_2}) \cap E(\mathcal{F}_{u_3u_1u_2}) = \{(u_1, v_i)(u_2, v_m) \mid 2 \le i \le m\} \cup \{(u_2, v_m)(u_2, v_1), (u_1, v_1)(u_2, v_1)\}$$

which is an edge set of tree. Hence, $\mathcal{B}(S_n\rho S_m)$ is linearly independent by Proposition 3.2.2. Assume that $n\geq 4$ and it is true for less than n-1. Note that $\mathcal{B}(S_n\rho S_m)=(\mathcal{F}_{u_1u_2}\cup(\cup_{i=2}^{n-2}\mathcal{F}_{u_{i+1}u_1u_i}))\cup\mathcal{F}_{u_nu_1u_{n-1}}$. By induction steps we have $\mathcal{F}_{u_1u_2}\cup(\cup_{i=2}^{n-2}\mathcal{F}_{u_{i+1}u_1u_i})$ is linearly independent. Since

$$E(\mathcal{F}_{u_{1}u_{2}} \cup (\cup_{i=2}^{n-2} \mathcal{F}_{u_{i+1}u_{1}u_{i}})) \cap E(\mathcal{F}_{u_{n}u_{1}u_{n-1}})$$

$$= \{(u_{n-1}, v_{m})(u_{1}, v_{i}) \mid 2 \leq i \leq m\} \cup \{(u_{n-1}, v_{1}) \mid (u_{n-1}, v_{n}), (u_{n-1}, v_{1})(u_{1}, v_{1})\}$$

which is an edges set of a tree, as a result, by Proposition 3.2.2, $\mathcal{B}(S_n \rho S_m)$ is linearly independent. Now,

$$|\mathcal{F}_{u_1u_2}| = |\mathcal{L}_{ab}|$$

= $(m-2)^2 + 2(m-2) + 1$,

and

$$|\mathcal{F}_{cab}| = |\mathcal{Y}_{cab}|$$

= $(m-2) + (m-2)^2 + (m-2) + 1$
= $(m-2)^2 + 2(m-2) + 1$.

Thus,

$$|\mathcal{B}(S_n \rho S_m)| = |\mathcal{F}_{u_1 u_2}| + \sum_{i=2}^{n-1} |\mathcal{F}_{u_{i+1} u_1 u_i}|$$

$$= \sum_{i=1}^{n-1} ((m-2)^2 + 2(m-2) + 1)$$

$$= (n-1)((m-2)^2 + 2(m-2) + 1)$$

$$= nm^2 - m^2 - 2mn + 2m + n - 1$$

$$= \dim \mathcal{C}(S_n \rho S_m).$$

where the last equality follows from (5). Therefore, $\mathcal{B}(S_n \rho S_m)$ form a basis for $\mathcal{C}(S_n \rho S_m)$. Now, we prove that $\mathcal{B}(S_n \rho S_m)$ is a 4-fold basis. Note that

$$\begin{split} E(\mathcal{F}_{u_1u_2}) \cap E(\mathcal{F}_{u_{i+1}u_1u_i}) &= \emptyset \text{ if } i > 3 \text{ and} \\ E(\mathcal{F}_{u_{i+1}u_1u_i}) \cap E(\mathcal{F}_{u_{k+1}u_1u_k}) &= \emptyset \text{ whenever } |k-i| > 1. \end{split}$$

Thus, (i) if $e \in E(u_1u_2\rho S_m)$, then $f_{\mathcal{B}(S_n\rho S_m)}(e) = f_{\mathcal{F}_{u_1u_2}}(e) + f_{\mathcal{F}_{u_3u_1u_2}}(e)$, which is by (1)-(12) of Remark 3.2.4, less than or equal to 4. (ii) If $e = (u_1, v_2)(u_i, v_j)$ or $(u_i, v_2)(u_1, v_j)$, $2 \le j \le m$ and $i \ge 3$ or $(u_1, v_j)(u_i, v_k)$, $2 \le j \le m$, 2 < k < m, then $f_{\mathcal{B}(S_n\rho S_m)}(e) = f_{\mathcal{F}_{u_ju_1u_{j-1}}}(e) \le 4$, then by (16), (17) and (19) of Remark 3.2.4 $f_{\mathcal{B}(S_n\rho S_m)}(e) = f_{\mathcal{F}_{u_ju_1u_{j-1}}}(e) \le 4$. (iii) If $e = (u_1, v_j)(u_i, v_k)$, $2 \le j \le m$ and 2 < j < m, then by (19) of Remark 3.2.4 $f_{\mathcal{L}_{ab}}(e) = 0$ and $f_{\mathcal{Y}_{cab}}(e) \le 4$. (iv) If $e \in E(u_1u_j\rho S_m) - E(u_1u_2\rho S_m)$ and not as in (2), then $f_{\mathcal{B}(S_n\rho S_m)}(e) = f_{\mathcal{F}_{u_ju_1u_{j-1}}}(e) + f_{\mathcal{F}_{u_{j+1}u_1u_j}}(e) \le 2 + 2 = 4$ by (12)-(17) of Remark 3.2.1. We next show that $b(S_n\rho S_m) = 4$ for all $n \ge 4$ and $m \ge 6$. Suppose that \mathcal{B} is a 3-fold basis of $\mathcal{C}(S_n\rho S_m)$, for $n \ge 4$ and $m \ge 6$. Since the girth of $S_n\rho S_m$ is 4, as a result

$$4\dim \mathcal{C}(S_n\rho S_m) \leq 3 \mid E(S_n\rho S_m) \mid$$

and so

$$4(nm^2 - 2nm - m^2 + 2m + n - 1) \le 3(nm^2 - nm - m^2 + 2m + n - 2),$$
 which implies that,

$$(m^2+1)(n-1)-m(5n-2)+3\leq 0.$$

Thus,

$$(m^2+1)(n-1) \le 5m(n-1) + 3(m-1),$$

which implies that

$$m \le 5 + 3(m-1)/m(n-1) - 1/m$$
.

But for $n \geq 4$, we have

$$3(m-1)/m(n-1) - 1/m < 1.$$

Thus, $m \leq 5$. This is a contradiction. Thus $b(S_n \rho S_m) \geq 4$, for all $n \geq 4$ and $m \geq 6$. Therefore, $b(S_n \rho S_m) = 4$, for all $n \geq 4$, $m \geq 6$. \square

Theorem 3.2.6. $\mathcal{B}(S_n \rho S_m)$ is a required basis of $S_n \rho S_m$ for each $n \geq 4$ and $m \geq 6$.

3.3 The basis number of $S_n \rho W_m$

Now, consider W_m to be the wheel graph with vertex set $\{v_1, v_2, \ldots, v_m\}$ and $d_{W_m}(v_1) = m-1$. Note that for $m \geq 5$ and for each $2 \leq i, j \leq m$, there exist $\alpha \in \operatorname{Aut}(W_m)$ such that $\alpha(v_i) = v_j$. Let a be a vertex. Then we recall the following sets of cycles of Jaradat [17]:

$$\mathcal{P}_a = \left\{ \mathcal{P}_a^{(j)} = (a, v_1)(a, v_j)(a, v_{j+1})(a, v_1) \mid j = 2, 3, \dots, m - 1 \right\},$$

$$\mathcal{I}_a = \left\{ (a, v_2)(a, v_3) \dots (a, v_m)(a, v_2) \right\}.$$

Lemma 3.3.1. $(\bigcup_{i=1}^n \mathcal{P}_{u_i}) \cup (\bigcup_{i=1}^n \mathcal{I}_{u_i}) \cup \mathcal{B}(S_n \rho S_m)$ is linearly independent. Proof. By Theorem 3.2.1, $\mathcal{B}(S_n \rho S_m)$ is linearly independent. It is easy to verify that $(\bigcup_{i=1}^n \mathcal{I}_{u_i})$ is a set of union of edge disjoint cycles, thus $(\bigcup_{i=1}^n \mathcal{I}_{u_i})$ is linearly independent. Note that, for each $i=1,2,\ldots,n$, $\mathcal{P}_{u_i}^{(j)}$ contains the edge $(u_i,v_j)(u_i,v_{j+1})$ which does not appear in any other cycle of \mathcal{P}_{u_i} . Thus, \mathcal{P}_{u_i} is linearly independent for each i. Since $E(\mathcal{P}_{u_i}) \cap E(\mathcal{P}_{u_j}) = \emptyset$ whenever $i \neq j$, we have that $\bigcup_{i=1}^n \mathcal{P}_{u_i}$ is linearly independent. Since $E(\bigcup_{i=1}^n \mathcal{P}_{u_i}) - (\bigcup_{i=1}^n E(u_i \square P_{m-1})$ is a forest, any linear combination of cycles of $(\bigcup_{i=1}^n \mathcal{P}_{u_i})$ contains at least one edge of $(\bigcup_{i=1}^n E(u_i \square P_{m-1}),$ which is not in any cycle of $\mathcal{B}(S_n \rho S_m)$ where $P_{m-1} = v_2 v_3 \ldots v_m$. Thus $\mathcal{B}(S_n \rho S_m) \cup (\bigcup_{i=1}^n \mathcal{P}_{u_i})$ is linearly independent. Similarly, any linear combination of cycles of $(\bigcup_{i=1}^n \mathcal{I}_{u_i})$ contains an edge of the form $(u_i, v_2)(u_i, v_m)$, $1 \leq i \leq n$ which is not in any cycle of $\mathcal{B}(S_n \rho S_m) \cup (\bigcup_{i=1}^n \mathcal{P}_{u_i})$. Thus $\mathcal{B}(S_n \rho S_m) \cup (\bigcup_{i=1}^n \mathcal{P}_{u_i}) \cup (\bigcup_{i=1}^n \mathcal{P}_{u_i})$ is linearly independent. \square

Note that $S_n \rho W_m$ is decomposable into $S_n \rho S_m \cup (\bigcup_{i=1}^n (a_i \square C))$ where $C = v_2 v_3 \dots v_m v_2$. Thus, $|E(S_n \rho W_m)| = |E(S_n \rho S_m)| + (m-1)n$. Hence,

$$\dim \mathcal{C}(P_n \rho W_m) = (n-1)m^2 + 2m - mn - 1. \tag{6}$$

Theorem 3.3.2. For any star S_n with $n \geq 2$ and wheel W_m with $m \geq 5$, we have that $b(S_n \rho W_m) \leq 4$. Moreover, the equality holds if $n \geq 2$ and $m \geq 12$.

Proof. Define $\mathcal{B}(S_n \rho W_m) = \mathcal{B}(S_n \rho S_m) \cup (\bigcup_{i=1}^n \mathcal{P}_{u_i}) \cup (\bigcup_{i=1}^n \mathcal{I}_{u_i})$. By Lemma 3.3.1, $\mathcal{B}(S_n \rho W_m)$ is linearly independent. Now,

$$|\mathcal{P}_{u_i}| = (m-2),$$

and

$$|\mathcal{I}_{u_i}| = 1.$$

Hence,

$$|\mathcal{B}(S_n \rho W_m)| = |\mathcal{B}(S_n \rho S_m)| + \sum_{i=1}^n \mathcal{P}_{u_i} + \sum_{i=1}^n \mathcal{I}_{u_i}$$

$$= nm^2 - m^2 - 2mn + 2m + n - 1 + n(m - 2) + n$$

$$= m^2(n - 1) - nm + 2m - 1$$

$$= \dim \mathcal{C}(S_n \rho W_m).$$

where the last equality follows from (6). Thus, $\mathcal{B}(S_n\rho W_m)$ form a basis for $\mathcal{C}(S_n\rho W_m)$. Now, we prove that $\mathcal{B}(S_n\rho W_m)$ is a 4-fold basis for all $n\geq 2$ and $m\geq 5$. By Remark 3.2.4 and Theorem 3.2.5 we have the following: (1) If $e=(u_i,v_1)(u_i,v_j)$ such that $2\leq j\leq m$, then $f_{\mathcal{B}(S_n\rho W_m)}(e)=f_{\mathcal{B}(S_n\rho S_m)}(e)+f_{\mathcal{P}_{u_i}}(e)\leq 2+2$. (2) If $e=(u_i,v_j)(u_i,v_{j+1})$ such that $1\leq j\leq m-1$, then $f_{\mathcal{B}(S_n\rho W_m)}(e)=f_{\mathcal{I}_{u_i}}(e)+f_{\mathcal{P}_{u_i}}(e)\leq 1+1$. (3) If $e=(u_i,v_2)(u_i,v_m)$, then $f_{\mathcal{B}(S_n\rho W_m)}(e)=f_{\mathcal{I}_{u_i}}(e)=1$. (4) If $e\in \mathcal{E}(S_n\rho W_m)$ and is not as in (1)-(3), then $f_{\mathcal{B}(S_n\rho W_m)}(e)=f_{\mathcal{B}(S_n\rho S_m)}(e)\leq 4$. To show that $b(S_n\rho W_m)\geq 4$, for any $n\geq 2$ and $m\geq 12$, we have to exclude any possibility for the cycle space $\mathcal{C}(S_n\rho W_m)$ to have a 3-fold basis for any $n\geq 2$ and $m\geq 12$. To that we use the same argument as in Theorem 3.18 of [17]. For the completeness we give the proof. Suppose that \mathcal{B} is a 3-fold basis of cycle space $\mathcal{C}(S_n\rho W_m)$ for any $n\geq 2$ and $m\geq 12$. Since the girth of $S_n\rho S_m$ is 4, then we have the following three cases:

Case1: Suppose that \mathcal{B} consists only of 3-cycles. Then $|\mathcal{B}| \leq 3(m-1)n$ because any 3-cycle must contain an edge of $E(a_i\square(v_2v_3\ldots v_mv_2))$, for

 $i=1,2,\ldots,n$ and each edge is of fold at most 3. This is equivalent to the inequality $m^2(n-1)-mn+2m-1\leq 3(m-1)n$ which implies that $m^2(n-1)-4m(n-1)-2m+3n-1\leq 0$ and so $m\leq 4+3/(n-1)-3n/m(n-1)+1/m(n-1)$, which implies that $m\leq 4+2-2/m(n-1)$. Thus, m<6. This is a contradiction.

Case 2: Suppose that \mathcal{B} consists only of cycles of length grater than or equal 4. Then $4 \mid \mathcal{B} \mid \leq 3 \mid E(S_n \rho W_m) \mid$ because the length of each cycle of \mathcal{B} is grater than or equal to 4 and each edge is of fold at most 3. Thus $4(m^2(n-1)-nm+2m-1) \leq 3(m^2(n-1)+2m-2)$ which is equivalent to $m^2(n-1)-4m(n-1)-2m+2 \leq 0$ and so $m \leq 4+2-2/m(n-1) < 6$. This is a contradiction.

Case 3: Suppose that \mathcal{B} consists of s 3-cycles and t cycles of length grater than or equal to 4. Then $t \leq \lfloor (3(m^2(n-1)+2m-2)-3s)/4 \rfloor$ because the length of each cycle of s is 3 and each cycle of t is at least 4, and the fold of each edge at most 3. Hence $|\mathcal{B}| = s+t \leq s+\lfloor (3(m^2(n-1)+2m-2)-3s)/4 \rfloor$ which implies that $4(m^2(n-1)-mn+2m-1) \leq s+3(m^2(n-1)+2m-2)$. Thus $4(m^2(n-1)-nm+2m-1) \leq 3(m-1)n+3(m^2(n-1)+2m-2)$. By simplifying the inequality we have that $m^2(n-1)-7m(n-1)-5m+3n+2 \leq 0$. Hence, $m \leq 7+5/(n-1)-3n/m(n-1) < 12$. This is a contradiction. \square

Theorem 3.3.2. For each $n \geq 2, m \geq 12$. $\mathcal{B}(S_n \rho W_m)$ is a required basis for $\mathcal{C}(S_n \rho W_m)$.

4 The minimum cycle bases of wreath product of graphs.

In this section, we construct minimum cycle bases for the wreath products of a star by a path, two stars and a star by a path. Also, we give their total lengths and the length of longest cycles

4.1 The minimum cycle basis of $S_n \rho P_m$

Lemma 4.1.1. Let m be an odd integer. Then $\mathcal{A}_{ab}^* = \mathcal{K}_{ab} \cup \mathcal{R}_{ab} \cup \mathcal{R}_{ba}$ is linearly independent.

Proof. By using the proof of Lemma 3.1.4, we have that \mathcal{K}_{ab} and $\mathcal{R}_{ab} \cup \mathcal{R}_{ba}$ are linearly independent sets. Clearly, any linear combination of cycles of \mathcal{K}_{ab} contains an edge of the form $(a,v_j)(b,v_j)$, $1 \leq j \leq m$ which is not in any cycle of $\mathcal{R}_{ab} \cup \mathcal{R}_{ba}$. Thus, \mathcal{A}_{ab}^* is linearly independent. \square

Lemma 4.1.2. $A^* = \bigcup_{i=2}^n A_{u_1u_i}^*$ is linearly independent.

Proof. The proof of this lemma follows immediately from using the mathematical induction, Proposition 3.2.2 and Lemmas 4.1.1 and from noting that $E(\bigcup_{i=2}^{n-1} \mathcal{A}_{u_1u_i}^*) \cap E(\mathcal{A}_{u_1u_n}^*) = E(u_1 \square P_m)$. \square

Now, we define the following cycles:

$$\mathcal{Z}_{ab}^{(5)} = (a, v_{\lfloor \frac{m}{2} \rfloor + 1})(b, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor + 1}),$$

and

$$\mathcal{Z}^{(6)}_{ab} = (a, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})(a, v_{\lfloor \frac{m}{2} \rfloor}).$$

Lemma 4.1.3. Let m be an even integer. Then $T_{ab}^* = \mathcal{K}_{ab} \cup \mathcal{R}_{ab} \cup \mathcal{R}_{ba} \cup \mathcal{R}_{ba}$

linearly independent. Thus $\mathcal{K}_{ab} \cup \mathcal{R}_{ab} \cup \mathcal{R}_{ba} \cup \left\{ \mathcal{Z}_{ab}^{(3)}, \mathcal{Z}_{ab}^{(4)} \right\} - \left\{ \mathcal{R}_{ab}^{\lfloor \frac{m}{2} \rfloor}, \mathcal{R}_{ba}^{\lfloor \frac{m}{2} \rfloor}, \right\}$ $\mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor}$ is linearly independent. Now the cycle $\mathcal{Z}_{ab}^{(5)}$ contains the edge $(b, v_{\lfloor \frac{m}{2} \rfloor})(b, v_{\lfloor \frac{m}{2} \rfloor + 1})$ which is not in any cycle of $\mathcal{K}_{ab} \cup \mathcal{R}_{ab} \cup \mathcal{R}_{ab} \cup \left\{ \mathcal{Z}_{ab}^{(3)}, \mathcal{Z}_{ab}^{(4)} \right\}$ $-\left\{\mathcal{R}_{ab}^{\lfloor\frac{m}{2}\rfloor},\mathcal{R}_{ba}^{\lfloor\frac{m}{2}\rfloor},\mathcal{K}_{ab}^{\lfloor\frac{m}{2}\rfloor}\right\}. \text{ Thus } \mathcal{T}_{ab}^* \text{ is linearly independent. } \square$

Lemma 4.1.4. $T^* = \bigcup_{i=2}^n T_{u_1u_i}^*$ is linearly independent. **Proof.** Following, word by word, the same arguments as in the proof of Lemma 4.1.2, we have the result. \square

Theorem 4.1.5. $\mathcal{B}^*(S_n \rho P_m) = \begin{cases} \mathcal{A}^*, & \text{if } m \text{ is odd,} \\ \mathcal{T}^*, & \text{if } m \text{ is even.} \end{cases}$ is a minimal cycle basis of $S_n \rho P_m$.

Proof. By Lemma 4.1.2 and 4.1.4, $\mathcal{B}^*(S_n \rho P_m)$ is linearly independent. Now,

$$\begin{aligned} |\mathcal{A}_{u_1u_i}^*| &= |\mathcal{A}_{ab}^*| \\ &= |\mathcal{K}_{ab}| + |\mathcal{R}_{ab}| + |\mathcal{R}_{ba}| \\ &= (m-1) + \lfloor \frac{m}{2} \rfloor + \lfloor \frac{m}{2} \rfloor \\ &= (m-1) + 2\lfloor \frac{m}{2} \rfloor \end{aligned}$$

if m is odd, and

$$\begin{aligned} |T_{u_1u_i}^*| &= |T_{ab}^*| \\ &= |\mathcal{K}_{ab} - \{\mathcal{K}_{ab}^{\lfloor \frac{m}{2} \rfloor}\}| + |\mathcal{R}_{ab} - \{\mathcal{R}_{ab}^{\lfloor \frac{m}{2} \rfloor}\}| + |\mathcal{R}_{ba} - \{\mathcal{R}_{ba}^{\lfloor \frac{m}{2} \rfloor}\}| \end{aligned}$$

$$+|\{\mathcal{Z}_{ab}^{(3)}, \mathcal{Z}_{ab}^{(4)}, \mathcal{Z}_{ab}^{(5)}\}|$$

$$= (m-2) + (\lfloor \frac{m}{2} \rfloor - 1) + (\lfloor \frac{m}{2} \rfloor - 1) + 3$$

$$= (m-1) + 2\lfloor \frac{m}{2} \rfloor$$

if m is even. Thus,

$$\begin{aligned} |\mathcal{A}^*| &= \sum_{i=2}^n |\mathcal{A}_{u_1 u_i}^*| \\ &= (n-1)((m-1) + 2\lfloor \frac{m}{2} \rfloor), \\ &= \dim \mathcal{C}(S_n \rho P_m) \end{aligned}$$

if m is odd, and

$$|\mathcal{T}^*| = \sum_{i=2}^n |\mathcal{T}^*_{u_1 u_i}|$$

$$= (n-1)((m-1) + 2\lfloor \frac{m}{2} \rfloor)$$

$$= \dim \mathcal{C}(S_n \rho P_m)$$

if m is even. Thus $\mathcal{B}^*(S_n\rho P_m)$ is a cycle basis of $\mathcal{C}(S_n\rho P_m)$. Recall that a minimal cycle basis is obtained by a greedy algorithm, that is an algorithm that selects independent cycles starting with the shortest ones from the set of all cycles. We consider two cases:

Case 1: m is odd. Then the girth of $S_n\rho P_m$ is 4. Since each cycle of $\mathcal{B}^*(S_n\rho P_m)$ is of length 4, as a result $\mathcal{B}^*(S_n\rho P_m)$ is a minimum cycle basis. Case 2: m is even. Note that the only 3-cycles of $S_n\rho P_m$ are $\bigcup_{i=2}^n \Delta_{u_1u_i}$ where $\Delta_{u_1u_i} = \{\mathcal{Z}_{u_1u_i}^{(3)}, \mathcal{Z}_{u_1u_i}^{(4)}, \mathcal{Z}_{u_1u_i}^{(5)}, \mathcal{Z}_{u_1u_i}^{(6)}\}$ and only three cycles of the four cycles of $\Delta_{u_1u_i}$ are linearly independent for each $i=2,3,\ldots n$. Thus $(\bigcup_{i=2}^n \mathcal{Z}_{u_1u_i}^{(3)}) \cup (\bigcup_{i=2}^n \mathcal{Z}_{u_1u_i}^{(4)}) \cup (\bigcup_{i=2}^n \mathcal{Z}_{u_1u_i}^{(5)})$ is a set consisting of the largest number of 3-cycles linearly independent of $C(S_n\rho P_m)$. Since $(\bigcup_{i=2}^n \mathcal{Z}_{u_1u_i}^{(3)}) \cup (\bigcup_{i=2}^n \mathcal{Z}_{u_1u_i}^{(5)}) \cup (\bigcup_{i=2}^n \mathcal{Z}_{u_1u_i}^{(5)})$ are 4-cycles, $\mathcal{B}^*(S_n\rho P_m)$ is a minimum cycle basis. \square

Corollary 4.1.6. $l(S_n \rho P_m) = \begin{cases} 8mn - 8m - 8n + 8, & \text{if } m \text{ is odd} \\ 8mn - 8m - 7n + 7, & \text{if } m \text{ is even,} \end{cases}$ and $\lambda(S_n \rho P_m) = 4.$

4.2 The minimum cycle basis of $S_n \rho S_m$

Lemma 4.2.1. $\mathcal{B}^*(S_n \rho S_m) = (\mathcal{B}(S_n \rho S_m) - (\bigcup_{i=2}^{n-1} \mathcal{W}_{u_{i+1}u_1u_i})) \cup (\bigcup_{i=3}^n \mathcal{S}_{u_1u_i})$ is linearly independent.

Proof. By Theorem 3.2.5, $\mathcal{B}(S_n\rho S_m)$ is linearly independent. Thus $\mathcal{B}(S_n\rho S_m) - (\bigcup_{i=2}^{n-1} \mathcal{W}_{u_{i+1}u_1u_i})$ is linearly independent. Now, $\bigcup_{i=3}^n \mathcal{S}_{u_1u_i}$ is a cycle basis of the planar graph $S_n\rho v_1v_2$ which obtained by pasting all the cycles of $\bigcup_{i=3}^n \mathcal{S}_{u_1u_i}$ at the common edge of the successive cycles. Thus, $\bigcup_{i=3}^n \mathcal{S}_{u_1u_i}$ is linearly independent. Note that

$$E(\mathcal{B}(S_n \rho S_m) - (\bigcup_{i=2}^{n-1} \mathcal{W}_{u_{i+1}u_1u_i})) \cap E(\bigcup_{i=3}^n \mathcal{S}_{u_1u_i})$$

$$= \{(u_1, v_1)(u_1, v_2)\} \cup \{(u_1, v_2)(u_i, v_2), (u_i, v_1)(u_i, v_2) \mid 3 \le i \le n\}$$

which is an edge set of a forest. Then, by Proposition 3.2.2, $\mathcal{B}^*(S_n \rho S_m)$ is linearly independent. \square

Theorem 4.2.2. $\mathcal{B}^*(S_n \rho S_m)$ is a minimal cycle basis of $S_n \rho S_m$. Proof. By Lemma 4.2.1 and since

$$|\mathcal{B}^*(S_n \rho S_m)| = |\mathcal{B}(S_n \rho S_m)| - \sum_{i=2}^{n-1} |\mathcal{W}_{u_{i+1}u_1u_i}| + \sum_{i=3}^{n} |\mathcal{S}_{u_1u_i}|$$

$$= (nm^2 - m^2 - 2nm + 2m + n - 1) - (n - 2) + (n - 2)$$

$$= (nm^2 - m^2 - 2nm + 2m + n - 1)$$

$$= \dim \mathcal{C}(S_n \rho S_m),$$

 $\mathcal{B}^*(S_n\rho S_m)$ is a cycle basis for $\mathcal{C}(S_n\rho S_m)$. Since the girth of $S_n\rho S_m$ is 4, and each cycle of $\mathcal{B}^*(S_n\rho S_m)$ is of length 4, as a result $\mathcal{B}^*(S_n\rho S_m)$ is a minimum cycle basis. \square

Corollary 4.2.3. $l(S_n \rho S_m) = 4(nm^2 - m^2 - 2nm + 2m + n - 1)$ and $\lambda(S_n \rho S_m) = 4$.

4.3 The minimum cycle basis of $S_n \rho W_m$

In the following result $B_{u_i \square W_m}$ denotes to the cycle basis of the wheel $u_i \square W_m$ consisting of 3-cycles.

Lemma 4.3.1 (Jaradat). $(\bigcup_{k=2}^{m} \mathcal{V}_{ab}^{(k)}) \cup (\mathcal{V}_{ba}^{(l)})$ is linearly independent for any $2 \leq l \leq m$.

Lemma 4.3.2. $\mathcal{B}^*(S_n \rho W_m) = (\bigcup_{i=2}^n \bigcup_{j=2}^m \mathcal{V}_{u_1 u_i}^{(j)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_i u_1}^{(m)}) \cup (\bigcup_{i=1}^n \mathcal{S}_{u_1 u_i}) \cup (\bigcup_{i=1}^n \mathcal{S}_{u_1 u_i})$ is linearly independent.

Proof. By Lemma 4.3.1, $(\bigcup_{j=2}^{m} \mathcal{V}_{u_1 u_i}^{(j)}) \cup \mathcal{V}_{u_i u_1}^{(m)}$ is linearly independent for each i. Note that

$$E((\cup_{j=2}^{m}\mathcal{V}_{u_{1}u_{k+1}}^{(j)})\cup\mathcal{V}_{u_{k+1}u_{1}}^{(m)})\cap E(\cup_{i=2}^{k-1}((\cup_{j=2}^{m}\mathcal{V}_{u_{1}u_{i+1}}^{(j)})\cup\mathcal{V}_{u_{i+1}u_{1}}^{(m)}))$$

$$= E(u_{1}\square v_{2}v_{3}\dots v_{m})$$

which is an edge set of a path for each $1 \leq k \leq n-1$. Thus, $(\bigcup_{i=2}^n \bigcup_{j=2}^m \mathcal{V}_{u_1u_i}^{(j)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_iu_1}^{(m)})$ is linearly independent. Now, for each $i=1,2,\ldots,n$, $\mathcal{B}_{u_i \square W_m}$ is cycle basis of $a_i \square W_m$. Since $E(\mathcal{B}_{u_i \square W_m}) \cap E(\mathcal{B}_{u_j \square W_m}) = \emptyset$ whenever $i \neq j, \bigcup_{i=1}^n \mathcal{B}_{u_i \square W_m}$ is linearly independent. Since, $\bigcup_{i=1}^n (u_i \square P_{m-1})$ is a forest of $\bigcup_{i=1}^n \mathcal{B}_{u_i \square W_m}$ where $P_{m-1} = v_2 v_3 \ldots v_m$, as a result any linear combination of $\bigcup_{i=1}^n \mathcal{B}_{u_i \square W_m}$ must contain at least one edge of $\bigcup_{i=1}^n E(u_i \square (W_m - P_{m-1}))$ which is not in any cycle of $(\bigcup_{i=2}^n \bigcup_{j=2}^m \mathcal{V}_{u_1u_i}^{(j)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_iu_1}^{(m)})$, as a result $(\bigcup_{i=2}^n \bigcup_{j=2}^m \mathcal{V}_{u_1u_i}^{(j)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_iu_1}^{(m)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_iu_1}^{(m)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_iu_1}^{(m)})$ is linearly independent. By Lemma 4.2.1, $\bigcup_{i=2}^n \mathcal{S}_{u_1u_i}$ is linearly independent. Note that, any linear combination of cycles of $\bigcup_{i=2}^n \mathcal{S}_{u_1u_i}$ contains an edge of $E(S_n \square v_1)$ which is not in any cycle of $(\bigcup_{i=2}^n \bigcup_{j=2}^n \mathcal{V}_{u_1u_i}^{(j)}) \cup (\bigcup_{i=2}^n \mathcal{V}_{u_iu_1}^{(m)})$. Therefore, $\mathcal{B}^*(S_n \rho W_m)$ is linearly independent. \square

Theorem 4.3.3. $\mathcal{B}^*(S_n \rho W_m)$ is a minimal cycle basis of $S_n \rho W_m$. **Proof.** Note that

$$|\mathcal{B}_{u_i\square W_m}| = \dim \mathcal{C}(W_m) = m-1,$$

and

$$|\mathcal{V}_{ab}^{(k)}| = (m-2).$$

Thus,

$$\begin{split} |\mathcal{B}^*(S_n \rho W_m)| &= \sum_{i=2}^n \sum_{j=2}^m |\mathcal{V}_{u_1 u_i}^{(j)}| + \sum_{i=2}^n |\mathcal{V}_{u_i u_1}^{(m)}| + \sum_{i=1}^n |\mathcal{B}_{u_i \square W_m}| \\ &+ \sum_{i=2}^n |\mathcal{S}_{u_1 u_i}| \\ &= \sum_{i=2}^n \sum_{j=2}^m (m-2) + \sum_{i=2}^n (m-2) + \sum_{i=1}^n (m-1) + \sum_{i=2}^n 1 \\ &= (n-1)(m-1)(m-2) + (n-1)(m-2) + n(m-1) \\ &+ (n-1) \\ &= m^2(n-1) - mn + 2m - 1 \\ &= \dim \mathcal{C}(S_n \rho W_m). \end{split}$$

Hence, by Lemma 4.3.2, $\mathcal{B}^*(S_n\rho W_m)$ form a cycle basis for $S_n\rho W_m$. We now show that $\mathcal{B}^*(S_n\rho W_m)$ is minimal cycle basis. Since the girth of $S_n\rho W_m$ is 3 and each cycle of $\mathcal{B}^*(S_n\rho W_m)-(\bigcup_{i=2}^n S_{u_1u_i})$ is of length three, also, since any cycle contains an edge of $S_n\square v_1$ is of length at least 4 and since the length of any cycle of $\bigcup_{i=2}^n S_{u_1u_i}$ is 4, as a result, by the greedy algorithm, $\mathcal{B}^*(S_n\rho W_m)$ is a minimal cycle bases of $S_n\rho W_m$. \square Corollary 4.3.4. $l(S_n\rho W_m)=3(m^2(n-1)-nm+2m-n)+4(n-1)$ and $\lambda(S_n\rho W_m)=4$.

Acknowledgments. The author wish to thank the referee whose comments have significantly helped to improve the presentation of this article.

References

- [1] Anderson, M. and Lipman, M., The wreath product of graphs, Graphs and Applications (Boulder, Colo., 1982), 23-39, Wiley-Intersci. Publ., Wiley, New York, 1985.
- [2] Ali, A.A., The basis number of complete multipartite graphs, Ars Combin. 28, 41-49 (1989).
- [3] Ali, A.A., The basis number of the direct product of paths and cycles, Ars Combin. 27, 155-163 (1989).
- [4] Ali, A.A. and Marougi, G.T., The basis number of cartesian product of some graphs, The J. of the Indian Math. Soc. 58, 123-134 (1992).
- [5] Alsardary, A.S. and Wojciechowski, J., The basis number of the powers of the complete graph, Discrete Math. 188, no. 1-3, 13-25 (1998).
- [6] Bondy, J.A. and Murty, U.S.R., "Graph Theory with Applications", America Elsevier Publishing Co. Inc., New York, 1976.
- [7] Chen, W.-K., On vector spaces associated with a graph, SIAM J. Appl. Math., 20, 525-529, (1971).
- [8] Chickering, D.M., Geiger, D. and HecKerman, D., On finding a cycle basis with a shortest maximal cycle, Inform. Processing Let., 54, 55-58, (1994).
- [9] Chua, L. O. and Chen, L., On optimally sparse cycles and coboundary basis for a linear graph, IEEE Trans. Circuit Theory, 20, 54-76 (1973).
- [10] Downs, G. M., Gillet, V. J., Holliday, J. D. and Lynch, M. F., Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci., 29, 172-187 (1989).

- [11] Imrich, W. and Klavžar, S., Product Graphs: Structure and Recognition, Wiley, New York, 2000.
- [12] Imrich, W. and Stadler, P., Minimum cycle bases of product graphs, Australas. J. Combin. 26, 233-244 (2002).
- [13] Jaradat, M.M.M., On the basis number of the direct product of graphs, Australas. J. Combin. 27, 293-306 (2003).
- [14] Jaradat, M.M.M., The basis number of the direct product of a theta graph and a path, Ars Combin. 75 105-111 (2005).
- [15] Jaradat, M.M.M., An upper bound of the basis number of the strong product of graphs, Discussion Mathematicea Graph Theory 25, no. 3, 391-406 (2005).
- [16] Jaradat, M.M.M., M.Y. Alzoubi and E.A. Rawashdeh, The basis number of the Lexicographic product of different ladders, SUT Journal of Mathematics 40, no. 2, 91-101 (2004).
- [17] Jaradat, M.M.M., On the basis number and the minimum cycle bases of the wreath product of some graphs I, Discussiones Mathematicae Graph Theory 26, 113-134 (2006).
- [18] Kaveh, A., Structural Mechanics, Graph and Matrix Methods. Research Studies Press, Exeter, UK, 1992
- [19] Liu, G., On connectivities of tree graphs, J. Graph Theory, 12, 435-459 (1988).
- [20] MacLane, S., A combinatorial condition for planar graphs, Fundamenta Math. 28, 22-32 (1937).
- [21] Plotkin, M., Mathematical basis of ring-finding algorithms in CIDS, J. Chem. Doc., 11, 60-63 (1971).
- [22] Schmeichel, E.F., The basis number of a graph, J. Combin. Theory Ser. B 30, no. 2, 123-129 (1981).
- [23] Vismara, P., Union of all the minimum cycle bases of a graph, Electr. J. Comb., 4, 73-87 (1997).
- [24] Welsh, D.J.A., Kruskal's theorem for matroids, Proc. Cambridge Phil, Soc., 64, 3-4 (1968).