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1 Introduction.

The basis number of a graph is one of the numbers which give rise to a bet-
ter understanding and interpretations of geometric properties of a graph
(see [20]). Minimum cycle bases (MCBs) of a cycle spaces have a variety
of applications in sciences and engineering, for example, in structural flex-
ibility analysis, electrical networks, and in chemical structure storage and
retrieval systems (see [9], [10] and [18]).

In general, required cycle bases, and minimum cycle bases are not very
well behaved under graph operations. Neither the basis number b(G) of
a graph G is monotonic (see [3] and [22]), nor the total length {(G) and
the length of the longest cycle in a minimum cycle basis A(G) are minor
monotone (see(12]). Hence, there does not seem to be a general way of
extending required cycle bases and minimum cycle bases of a certain col-
lection of partial graphs of G to a required cycle basis and to a minimum
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cycle basis of G, respectively. Global upper bounds b(G) < 2v(G) + 2 and
(@) < dimC(G)+«(T(G)) where v(G) is the genus of G and x(T'(G)) is the
connectivity of the tree graph of G are proven in [22] and {19], respectively.

In this paper, we continue what we started in [17] by investigating the
basis number for some classes of graphs and we construct minimum cycle
bases for same, also, we give their total lengths and the length of longest
cycles.

2 Definitions and preliminaries.

The graphs considered in this paper are finite, undirected, simple and con-
nected. Most of the notations that follow can be found in [6]. For a given
graph G, we denote the vertex set of G by V(G) and the edge set by E(G).

2.1 Cycle bases.

Given a graph G, let ey, e3,...,€g(c) be an ordering of its edges. Then a
subset S of E(G) corresponds to a (0, 1)-vector (b1,b2,...,bg(c))) in the
usual way with b; = 1if e; € S, and b; = 0 if e; ¢ S. These vectors form
an |E(G)|-dimensional vector space, denoted by (Z2)!E(®)l, over the field
of integers modulo 2. The vectors in (Z9)!E(C)l which correspond to the
cycles in G generate a subspace called the cycle space of G and denoted
by C(G). We shall say that the cycles themselves, rather than the vectors
corresponding to them, generate C(G). It is known that for a connected
graph G dim C(G) = |E(G)| - |V(G)| + 1 (see [7]).

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G is
called a d-fold if each edge of G occurs in at most d of the cycles in B. The
basis number, b(G), of G is the least non-negative integer d such that C(G)
has a d-fold basis. A required basis of C(G) is a basis with b(G)-fold. The
length, |C|, of the element C of the cycle space C(G) is the number of its
edges. The length I(B) of a cycles basis B is the sum of the lengths of its
elements: {(B) = ¥ cep|C|- M(G) is defined to be the minimum length of
the longest element in an arbitrary cycle basis of G. A minimum cycle basis
(MCB) is a cycle basis with minimum length. Since the cycle space C(G)
is a matroid in which an element C has weight |C|, the greedy algorithm
can be used to extract a MCB (see [24]). The following results will be used
frequently in the sequel.

Theorem 2.1.1.(MacLane). The Graph G is planar if and only if b(G) <
2.

A cycle is relevant if it is contained in some MCB (see [23]).
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Proposition 2.1.2.(Plotkin). A cycle C is relevant if and only if it cannot
be written as a linear combinations modulo 2 of shorter cycles.

Chickering, Geiger and Heckerman (8], showed that A(G) is the length
of the longest element in a MCB.

2.2 Products.

Let G = (V(G),E(G)) and H = (V(H), E(H)) be two graphs. (1) The
cartesian product GOH has the vertex set V(GOH) = V(G) x V(H) and
the edge set E(GOH) = {(u1,v1)(u2,v2)[u1u2 € E(G) and v; = va, or vyvs
€ E(H) and u; = u2}. (2) The direct product G x H is the graph with
the vertex set V(G x H) = V(G) x V(H) and the edge set E(G x H) =
{(u1,u2)(v1,v2)|urvy € E(G) and ugva € E(H)}. (3) The strong prod-
uct G® H is the graph with the vertex set V(GR H) = V(G) x V(H)
and the edge set E(G ® H) = {(u1,u2)(v1,v2)|u1v1 € E(G) and ugvp €
E(H) or u; = v) and uguy € E(H) or uyv; € E(G) and up = v}. (4)
The semi-strong product G; e G is the graph with the vertex set V(G o
H) = V(G) x V(H) and the edge set E(G e H) = {(u1,uz)(v1,v2)|uyv; €
E(G) and ugup € E(H) or uy = v, and upv; € E(H) }. (5) The Lexico-
graphic product G,[G3] is the graph with vertex set V(G[H]) = V(G) x
V(H) and the edge set E(G[H]) = {(u1,u2)(v1,v2)lu1 = v; and ugv; €
E(H) or ujv; € E(G)}. (6) The wreath product GpH has the vertex set
V(GpH) = V(G)xV(H) and the edge set E(GpH) = {(u1,v1)(uz,v2)|u; =
ug and vyvp € H, or ujus € G and there is a €Aut(H) such that a(v;) =
va} (See {1] and [11]).

Many authors studied the basis number and the minimum cycle bases
of graph products. The cartesian product of any two graphs was studied
by Ali and Marougi [4] and Imrich and Stadler [12].

Theorem 2.2.1. (Ali and Marougi) If G and H are two connected dis-
joint graphs, then b(GUH) < max{b(G)+ A (Tx), b(H)+ A (Ts)}
where Ty and Tg are spanning trees of H and G, respectively, such that
the mazimum degrees A (Ty) and A(Tg) are minimum with respect to all
spanning trees of H and G.

Theorem 2.2.2. (Imrich and Stadler) If G and H are triangle free, then
YGOH) = U(G) + I(H) + 4[IEG)|(IV(H)] - 1) + |EH)|(IV(G)| - 1) -
(IV(H) - D(IV(G) - 1)] and A(GOH) = max{4, \(G), \(H)}.

Schmeichel [22], Ali [2], 3] and Jaradat [13] gave an upper bound for
the basis number of the semi-strong and the direct products of some special
graphs. They proved the following results:

Theorem 2.2.3. (Schmeichel) For each n > 7, b(K, ® P;) = 4.
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Theorem 2.2.4. (Ali) For each integers n,m, b(Km ¢ K,) < 9.

Theorem 2.2.5. (Ali) For any two cycles C, and Cp, with n,m 2> 3,
b(Cp x Cr) = 3.
Theorem 2.2.6. (Jaradat) For each bipartite graphs G and H, bJ(Gx H) <
5+ b(G) + b(H).
Theorem 2.2.7. (Jaradat) For each bipartite graph G and cycle C, b(G x
C) <3+ b(G).

The strong product was studied by Imrich and Stadler [12] and Jaradat
(15]. They gave the following results:

Theorem 2.2.8. (Imrich and Stadler) For any two graphs G and H,
(G R H) = I(G) + [(H) + 3[dim C(G R H) — dimC(G) — dim C(H)] and
MG R H) = mex{3, A\(G), A\(H)}.

Theorem 2.2.9. (Jaradat) Let G be a bipartite graph and H be a graph.
Then 6(GR H) < max{b(H) +1,2A(H) +b(G) -1, [%ﬂ;e)‘f—‘J ,b(G) +2}.

Jaradat [17) investigate the basis number and the minimal cycle bases
of the wreath product of two paths, a cycle with a path, a path with a star,
a cycle with a star, a path with a wheel and a cycle with a wheel.

In this paper, we continue the study initiated in [17] by constructed a
minimum cycle basis for the wreath products of a star by a path, two stars
and a star by a wheel. Additionally, we determine the basis number of the

above products.
In the rest of this paper, fg(e) stand for the number of elements of B

containing the edge e where B C C(G).

3 The basis number of the wreath product of
graphs.

In this chapter we study the required bases and investigate the basis number
of the wreath product of a star with a path, two stars, a star with a wheel.

3.1 The basis number of S,pPn

Let {v1,v2,...,vm} be a set of vertices and ab be an edge. Throughout this
work we use the notations K, and R, which were introduced by Jaradat
[30] and a new notation Z,; as follows:

Kas = {K8) = (a,09)(b,95)(b,v34) (@ vj1)(@,05) | § = 1,2, ym = i},
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Rap = {R,(;'};) = (ay vj)(b’ vm—j-f—l)(ba vm—j)(a, vj+1)(aa 'Uj) |.7 =12,
m
NEJ)P

28 = (a,0 5, vz 0@, v )42)(a, v 2)41)(a, v 7)),
Z.Sb) = (a,v,2])(b, v 2 )+2)(a, v 3 +2)(a, v 2 ) 41) (@ v 2 ),
28 = (a,0,3))(@ v 3141) (6,02 )41) (@, v 5)),
z§) = (@, v )@ v g +1) (b v ) (e, v 2)).

Zop =

Lemma 3.1.1. For any odd integer m, every linear combination of cycles

of Rap contains at least one edge of the form (a, v;)(b, ¥m—j+1),1 < j < | 2]
or (b, vz +1)(b,v| 3 +2). Moreover, every linear combination of cycles of

Rsa contains at least one edge of the form (b, v;)(a, vm-j41),1 < j < 3]
or (b,v 3 )(bv 2 41)

Proof. Let R be a linear combination of the cycles of S = {'RE",,‘), ’R.fl’b’), ey
RG:} € Ry where j1 < jz < -+ < jk. Then by the definition of R,

Rfl’;,‘) contains the edge (a,v;,)(b,Vm—j,+1). Since j; < jo <--- < jr,asa
result R contains (a, vj, (b, Um—j,+1) if 51 # | 3] otherwise S = {RS;?J)

and so R = Rgt’?n which contains the edge (b, vz )41)(b, v 2 )+2). Simi-
larly for Ry,. O

By the same argument as in the above lemma, we have the following
results:

Lemma 3.1.2. For any even integer m, every linear combination of cycles
of Rap contains at least one edge of the form (a, v;)(b,vm—j4+1),1 < j < | 2]

or (a,v 2 ){(a,v 5 41)-

Lemma 3.1.3. Every linear combination of cycles of K, — {Ki’;), IC(k'H),
.,IC(k"")} contains at least one edge of the form (a,v;)(b,v;), j < k-1
orj>k+s+2.

Let P, = v1v2...v,. Then the automorphism group of the path P,

consists of two elements the identity, 7, and the automorphism o which is
defined as follows:

a(v;) = Vm_j41,5 = 1,2,...,m.
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Therefore, abpP,, is decomposable into abPy, U M, where M,y is the
graph with edge set

E(Mab) = {(aa vj)(b’ vm—j+1)’ (a, ‘Um-j+1)(b, vj)lj =12,..., L%J} (1)

Lemma 3.1.4. Let m be an odd integer. Then Agp = Kap U Rap U Rpg U
{Z‘S,l,) , Zg) } —{IC&?J , ICCL‘?J‘H } is linearly independent subset of C(abpPy,).
Proof. By Lemma 3.1 of [17] each of K45, Rap and Ry, is linearly indepen-
dent. Since Zi,l,) # Z‘Elz,), {zg}),zﬁ)} is linearly independent. By Lemma
3.1.1, any linear combination of cycles of R,y contains an edge of the form
(0, 9;)(b, vm—j+1),J < | ] or (b,v 3 )+1)(b, v| 5 +2) Which is not in any cy-
cle of Z((lll,), Zg)}. Thus Rep U {th), g)} is linearly independent. Simi-
larly, each linear combination of cycles of Ry, contains an edge of the form

(5,v)(@ Vm-j+1),J < | ] or (b,v p)(b,v 3 +1) which is not in any cycle
of Rap U {Z‘E,l,), Z‘(li)}. Thus, Raep URbe U {Zc(dl,), Zﬁ)} is linearly indepen-
dent. Since K, is linearly independent, Kap — {IC(&?J,ICE?J“} is linearly
independent. Now, By Lemma 3.1.3, any linear combination of cycles of
Kep — {IC&?J,IC‘E?JH contains an edge of the form (a,v;)(b,v;), j <
2] or (a,v41)(b,vj4+1), 7 > (%] + 1, which is not in any cycle of
Rab URsa U { 23, 28 }. Thus Ag is linearly independent. O

NS

Figure 1: Cycles of Agp form =7

Remark 3.1.5. Let m be an odd integer and e € E(abpPy). Then by
the aid of Figure 1, we have
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(1) If e = (a,v;)(b,¥m—j+1) or (b,v;)(a,Vm—j+1) such that j # 3], then
fai(e) £ 2. (2) If e = (a,v 2)(b,v 3 +2) OF (2,9 2)42)(b,v 3 )), then
fawn(e) =3 (3)Ife= (a,v1)(b,vm) or (b,v1)(a, Um), then fau(e) =
1. (4) If e = (a,v;)(b,v;) such that j ¢ {1,m}, then fa,(e) = 2.
(5) If e = (a,v;)(b,v;) such that j € {1,m}, then fq,(e) = 1. (6) If
e = (b,v;)(b,v;+1) or (a,v;)(a,vj4+1) such that j ¢ {{Z],| 2] + 1}, then
faa(e) = 2. (7) If e = (a,v;)(a,v;+1) such that j € {{ 2], 3] + 1}, then
fau(e) =3. (8) If e = (b,v;)(b,v)41) such that j € {|Z],| 2] + 1}, then
faun(e) =1

. . : 1) (2

By a similar argument as in Lemma 3.1.4 after replacing {Z‘(‘b),Z‘Eb)
by {zﬁﬁ’,zj‘;’} Ko = { KL KLEY by Ky - {ki#} and Rap by
Rap — {R‘E?J} and by the aid of Lemmas 3.1.2 and 3.1.3, we have the

following result:
Lemma 3.1.6. Let m be an even integer. Then Top = Koy U Rap U Rpe U

{Z o Zx)} - {‘Rl""'J IC&;’"' 11 is linearly independent subset of C (abpPr).

ab ab

TRV

Figure 2: Cycles of T,p for m =6

Remark 3.1.7. Let m be an even integer and e € E(abpP,,). Then by
the aid of Figure 2, we have

(1) If e = (a,v;)(b,vm—j41) such that j ¢ {1, (2], %] + 1,m}, then
fr.(e) = 2. (2) If e = (a,v1)(b,vm) or (b,v1)(a,v), then fr,,(e) = 1.
() If e = (a,v13))(b, viz+1) or (by gz )(a, vz 41), then fr,(e) =
3. (4) If e = (a,v;)(a,vj3+1) or (b,v;)(b,v;4+1) such that j # %], then
fr,(e) =2 (B)Ife = (ayv m)(a,v 2 41), then fr,,(e) = 3. (6) If
e = (b,vyz))(b,v 3 41), then f1,,(e) = 1. (7) If e = (a,v;)(b,v;) such that
j ¢ {1,m}, then fr,,(e) = 2. (8) If e = (a,v;)(b,v;) such that j € {1,m},
then fr,, (e) = 1.
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Let cab be any path of order 3. We define the following sets of cycles:

Naw = {NY) = (c,9;)(a,v;)(b,v;)(b, vi41)(a, vi41) (€, 1) (c, v5) | 5 =
1,2,3,...,m—1},

Qcab = {Qg;)b = (C7Uj)(c$ vj+1)(a7 'Um_j)(b, vj+1)(b’ vj)(a" ‘Um_.j+1)
(C,’Uj)lj = 1’2,3a---1m_1})

(M, = (e vz (e v 0@ 5)) (0,0 3))
o (0, v g +1)(@, v 4+1)(E Y 3))
Moy = 4 Méab = (©012142)(0 v 14)(@ 015 141) (b vy 141)
\ (b, v 1)@, v ))(e, v 3 p42)s
M, = (e, )0, v 3)41)(@, v 3 )+1) (Biv 3 )41)
{ (0, v 2 42) (@, v 3 42) (6 v ) )

v

Lemma 3.1.8. Every linear combination of cycles of Qeqp — {Qg)bli <
7 < k} contains at least one edge of the form (¢, v;)(a,Um—j+1) such that
(1) j <mand j ¢ {i,i+1,...,k+ 1} if m is even, (2) § £ m and
j¢ {ii+1,....,k+1,| %] +1} if m is odd.
Proof. Let Q be a linear combination of the cycles leb), Qg’b), ey Qg’;,)
of me—{Qg‘)bh' < j <k}. Let j1 < j2 < ... < jk. Then we split our work
into two subcases:
Case 1: m is odd. Then we split this case into two cases:

Subcase 1: j; < |Z|. Then, by the definition of Qb Qgﬂ‘b) con-

tains the edge (¢, v;,)(@, Um—j,+1). Since ji < j2 < - < jk, as a re-
sult non of QZ‘L), ngb),..., Qg‘;} contains this edge. Thus, Q contains

(C, Vi )(a'a Um—j1+1 ) . .
Subcase 2: j; > |7 |+1. Then by the definition of Qcap, Qg,';,) contains
the edge (¢, vj,+1)(a, 'Um—(jk+1)+1)- Since j1 < j2 <+ - < Ji, it implies that

no cycle of Qg‘,,), Q,(_.f:"b), cieh QS;’;,") contains such edge. Hence, @ contains

(¢, vje+1)(ay vm—(jk+l)+l)‘
Case 2: m is even. Then we argue as in Case 1 taking into account only

Subcase 1 and for each j;. O

By using the same idea as in the first subcase of the first case of Lemma
3.1.6, we have the following result:

Lemma 3.1.9. Every linear combination of cycles of Ncap — {Nc(i,),lz <j<
k} contains at least one edge of the form (c,v;)(a,v;),j Si—lorj 2 k+2.
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Note that cabpP,, is decomposable into cabOP,, U My, U M,. where
Mgy, M, are as defined in (1).
Lemma 3.1.10. Let m be an odd integer. Then X.op = NegpUQeap U

(ME MOz ZDy { NE oW |k = (2] 18]+ 1} is linearly in-

cab’ cab?
dependent subset of C(cabpPy,).
Proof. We prove that N, is linearly independent using the mathe-
matical induction on m for any m. If m = 2, then N, consists only

of one cycle N} () , thus Mg is linearly independent. Note that N.. =
(U;."=_12Ng)) UN, (m D, Assume that m is grater than 2 and it is true for

less than m. Since N, (m=1) contains the edge (¢, vm)(a,vr) which is not
in any cycle of U7 Nc(;’,),, as a result M is linearly independent. By
a similar way, we can show that Qcab is linearly independent. Then we
have Q.qp — {Q,Eab ,ka,Hl} and Neap — {J\fcla-fj, l"H'l} are linearly

independent. Now, the cycle 280 contains the edge (a,v)2))(c,v 2 +2)
which is not in the cycle 2,53), thus {zéi’,zéa’} is linearly independent.

The cycle Mmb contains the edge (a,v|z)+1)(b,v 2 41) Which is not in
any cycle of {Zé,i) , zéZ)}, thus {Zc(l) zéi’,mﬁf,},} is linearly independent.

Also the cycle .M contams the edge (b,v|z41)(b, v| | +2) Which is not

in any of the cycles 2z, 2(2) M®P " Hence {Zc(é) Z,S?,Mg},,MS{

cab*
linearly independent. By Lemma 3.1.6, any linear combination of cycles of

Qcab— {QLTJ QL?JH} contains an edge of the form (c, v;)(@, vm—j+1),J €

cab ' “cab

{L%3]; [2]+1, | Z]+2} which is not in any cycle of {Z,(;;), zéZ’,Mﬁﬁ),,,MS,},}.
Thus Qcap U {M(z) MB 20 2, (2)} {Q};,;J, &;’;J“} is linearly in-

cab? cab?
dependent. By Lemma 3.1.9, any linear combination of cycles of Noqp —

{NLTJ NCLTJH} contains an edge of the form (c,v;)(a,v;),j < | %] -1or

cab

7 2 | %] +3, which is not in any cycle of QcopU {Mﬁl, Mgﬁ, z,S.P, zé&’} -

{Ql%),QL%!*!}. Thus X, is linearly independent. O
Remark 3.1.11. Let m be an odd integer and e € E(cabpP,,). Then by

the aid of Figure 3, we have that

(1) If e = (a, v,)(c,vm_._,.,.l) or (a,v;)(b,Um—j+1) such that j # | 2], then
Txa(e) 2. (2) If e = (a,v)2))(b, v 3 )+2) or (a, v )42)(b, U[ﬂ), then
fws(€) = 1. (8) If e = (o, 013))(c, v 3 12) or (@, vz 42)(c,v| ), then
fx.(€) =3. (4) If e = (a,v;) -fb v;) or (a,v;)(c,v;) such that i é{1,m},
then fx,,(e) = 2. (5) If e = (b,v;)(b,vj+1) or (¢,v;)(c,v;+1) such that
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ANV

Figure 3: Cycles of X qp for m =7

i ¢ {12],|2]+1}, then fx.,(e) =2. (6) If e = (c,v;)(c,vj41) such that
j€{|2], 3] +1}, then fx,,(e) < 8. (7) If e = (b,v;) (5, v;+1) such that
i€ {l2], %] +1}, then fx,(e) <1 (8)Ife= (a,v;)(a,vj41), then

Lemma 3.1.12. Let m be an even integer. Then Jeap = Neab U Qeap U
(MO 2D,z - {/\fcl;{;J ,0l%! } is linearly independent subset of C(cab
PPr).

Proof. Using the same argument as in Lemma 3.1.10, we have that Neap —

{Ncl:fj } and Qeop — {Qiﬁj} are linearly independent. The cycle FASY
(1)

contains the edge (c,v(z)+1)(a,v 2 |+1) Which is not in the cycle M,
thus {M‘(_,‘ll)b, 23 is linearly independent. Also the cycle 2% contains the
edge of the form (c,v|g){a,v ) Which is not in the cycles M,ﬁ},’,,,zé,‘:).

Hence, {Mﬁ},’,,,zéi’,zéi)} is linearly independent. Any linear combination

of cycles of Qcap — {Q&:’:J contains an edge of the form (c, v;)(@, Vm—j+1),

i # %), 3] + 1, which is not in any cycle of {Mg{,,ZS’, Zg)}- Thus

Qeap U {M(l) zéi’,zéi’} - {Qiﬁj } is linearly independent. Similarly,

cab?
any linear combination of cycles of Ncap — {NCL‘,%J } contains an edge of the

form (c,v;)(a,v;), j < 3] —1or j > [F]+2, which is not in any cycle of
Qeap U {Mg’,,,zé,‘?,zéi)} - {Q,E;T;J } Thus Jegs is linearly independent.
a

Remark 3.1.18. Let m be an even integer and e € E(cabpPr,). Then by
the aid of Figure 4, we have
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Figure 4: Cycles of Jeqp for m =6

(1) Ife= (a,vj)(c, vm—j+l) or (a, ’Uj)(b, 'Um—j+l) such that j ¢ {19 I."2"‘J1 I.%J
+1,m}, then f7,,, () = 2. (2) Ife = (a,v 3 )(c, v 41) or (a,v 2 41)(c,
viz)), then fg., (€) = 3. (3) If e = (a,v;)(c, ¥m—j+1) or (@, v;)(b, Um—j41)
such that j € {1,m}, then fz,, (e) = 1. (4) If e = (a,v;)(b,v;) or
(a,v;)(c,v;) such that j ¢ {1,m}, then f7,_, () =2. (5)Ife = (a, v;)(b,v;)
or (a,vj)(e,v;) such that j € {1,m}, then f7 , (e) = 1. (6) Ife =
(a1vj)(b,vm—j+l) such that j € {I.%Ji I.L;'J + 1}1 then chnb (e) =L (7)
If e = (b,v;)(b,vj+1) or (c,v5)(c,vj+1) such that j # [Z], then fg,,
() =2 (8 Ife= (va[%j)(cav[-’é"-_]+l)r then fg.,, (¢) = 3. (1) If
e = (bv 2 ))(bvz 41), then f7, (€) = 2. If e = (a,v;)(a,vj41), then
fear (€)=0.

Lemma 3.1.14. Any linear combination of cycles of X, or of .45 con-
tains an edge of the form (¢, v;)(c,vj41) or (¢,v;)(a,v1).

Proof. We will prove the case for A,q5 and similarly we can prove it for
Jcab- Let X' be the linear combination of cycles of X* = {X, As, ..., Xk} C
Acap. Then X* can be partitioned into three pairwise disjoint subsets Al =
{Xl, Xg, e ,an }, XZ* = {Xn1+1,Xﬂl+2, ey an}, and X;; = {Xn,.f.l, X:z.;.g

v+, Xg} such that X} C Negp — {.Ncl;ffj,/\/cla?Hl}, A3 C Qeap — {Qizj,

QLE!*, and 27 ¢ (MU, MP, 20, 22},

cab?
Case 1: n; > 1. Then by Lemma 3.1.9, and since X.,;, does not contain

any of {J\/CE,?J,NE:’:J“}, as a result

c
XD ® Ay,

contains an edge of the form e = (a,v;)(c,v;), 5 < | 3] ~20rj > 2] +3
which does not occur in any cycle of Xeap — Meap. Thus, e € X.
Case 2: n) =0 and X3 # 0. Then we split our work into two subcases:

Subcase 1: One of 2 and 22 € Xy, say 2§ € X;. Then the
edge e = (a,v2))(c,v ) € 28 which belongs to no cycle of Qg.p —
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{Q&ﬁj, QHH'H} U {M(l) M3 } Hence, e does not belong to any cycle

cab cab? cabd
of X5 U Xy — {282}, Thus, e € X.
Subcase 2: Non of Z8) and 22 € X3. Then at least one of .Mg,)b
and M® belongs to X3, say MY By the definition of M,(:B,, e =

cab cab*

(v g e vzi41) € Mg{ which belongs to no other cycle of Qcqp —
ol%! Ql%JH}U{M(z)} Hence, e does not belong t
cab ! cab [* ) g to any other cycle

cab

of X3 UXy. Thus,ec X.
Case 3: n) =0 and Ay =0. Then X is the linear combination of cycles
of {Xn,+1,Xn 42, - » Any}. By Lemma 3.1.8, X contains at least one edge
of the form (c,v;)(a, ¥m—j41). O
Lemma 3.1.15. Let m be an odd integer. Then Agp U Xeap is a linearly
independent subset of C(cabpPr,).
Proof. We know that each of A,; and X,gp is linearly independent. By
Lemma 3.1.14, any linear combination of cycles of Aiqp contains an edge
of the form (c,v;)(c, vj4+1) or (c,v;)(a,v) which is not in any cycle of Aqs.
Thus Agp U Xqp is linearly independent. O

By using the same argument as in Lemma 3.1.15 after replacing Aqp by
Top and X.qp by Jeob, we have the following result.

Lemma 3.1.16. Let m be an even integer. Then 74, U Jeab is linearly
independent subset of C(cabpPr).

Throughout the rest of this work, consider

Bap = { Tap, if mis even (2)

and

By = { Xeas, if misodd _ 3)

Teab, if miseven

Let V(S,) = {u1,u2,...,un} withds, (v1) = n-1land P, = v1v2...Um.
Then the graph S, pP,, is decomposable into S0P, U (Ui My, ., ) Where
M,,q, is the graph defined as in (1). Hence, |E(SnpPm)| = n(m — 1) +
m(n — 1) + 2(n — 1) [m/2]. Therefore,

dimC(SnpPm) =mn—n—-m+2(n—1)[m/2] +1. 4)

Theorem 3.1.17. For any star S, of order n > 4 and path P, of order
m > 3, b(SupPr) < 4.
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Proof. Define B(S,pPm) = Buyu, U (U}Z; Bu,yyuyu;). We now show that
B(Sn,pPp) is linearly independent using the mathematical induction on n.
If n = 2, then B(S,pPn) = By,., and is linearly independent by Lemmas
3.14 and 3.1.6. If n = 3, then B(S,pPmn) = By,u; U Buyu,u, and it is
linearly independent by Lemmas 3.1.15 and 3.1.16. Assume n > 4, and it
is true for less than or equal to n — 2. Note that B(S,pPn) = (By,u, U
(U;-‘;.} By;,1uiu;)) U Bupuyu,_,- By induction steps and Lemmas 3.1.10

and 3.1.12, each of By, U (U;'__fz2 By, uyu;) and By uyu,_, is linearly
independent. By Lemma 3.1.14 and (2), any linear combination of cycles of
By, u u,_, contains an edge of the form (un,v;)(tn, vj41) or (Un,v;)(u1,w)
which are not in any cycle of By, ,, U (U;‘=‘22 By, ,1uiu;). Thus B(SnpPr)
is linearly independent. Now, from (2)

IB“i“i+l| = 'Aabl = (m‘ - 1) +2 Lm/QJ
if m is odd, and
1Buiuiss| = |Tap] = (m — 1) + 2 |m/2]
if m is even. Also, from (3)
,Buj.nu:ujl = |Xeasl =2(m —1) = (m —1) + 2 |m/2)
if m is odd, and
IBuj+1uluj| = IJcabI = (m - 1) + (m - 1) +1

2(m—1)+1
= (m-1)+2|m/2]

if m is even. Thus

n—1

|B(Snppm)' = 'Buluzl + Z IBuj-i-lulujl

=2
(m=1)42m/2]|+(n-2)((m—-1)+2|m/2))
mn-m-—-n+2(n—1)|m/2]+1

= dimC(S,pPpn)

where the last equality follows from (4). Therefore, B(S,pPx) is a basis
for C(SnpPn). To complete the proof, we have to show that B(S,pPp,) is
of fold 4. Note that

E(By,, uiu;) N E(Byyyyuiu,) = 0if k-7 >1and

E(Byuyu;) NE(Buy,yuyn) = 0ifk>2.
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Now we consider two cases.

Case 1. m is odd. Then by Remarks 3.1.5 and 3.1.11, we have the fol-
lowing: (1) If e = (u1,v;)(u1,v;j41) such that j € {|%],[F] + 1}, then
fB(S..me) = f8u1u2 + fB"a“x“z <3+0. (2) Ife= (u1,vL;“n.J)(UQ,vl;}n_J+2)
or (u1, v |42)(u2, v ), then fa(s,pPm) = fBuyuy T fBuguyuy $3+1.(3)
If e € uyuppPrm which is not as in (1)or (2), then fg(s,,p,) = fB,,., +
[Buguyu, S 2+2 =4 (4) If e = (uwi,v;j)(us,vj41) for i > 3 such that
7€ LRI LRI+ 1}, then fa(5,0Pm)(€) = fBurprarn; (&) F fBuuyus, (€) <
1+3.(5) Ife= (ul,vt_vigj)(u,-,vlmj_,_z) or (ul,vtng.,.g)(ui,vl.ﬂ) for i >
3, then fa(s,pPm) = fBuipiuge; (€) t Buuyu,_,(6) S 1+3.(6) If e €
% pPm —1upp Py, for i > 3 and not asin (3), then fa(s,pP,) = fuipruruct
fu.-uluf.., S 2 + 2'

Case 2. m is even. Then by Remarks 3.1.7, 3.1.13, and as in Case 1,
we have the following: (1) If e = (u1,v;)(u2,vj41) or (w1, v;41)(u2,v;) or
(u1,v;)(v1,vj41) such that j = [Z], then fa(s,pPn) = FBuyuy + fBuguru, <
3+ 1. (2) If e € uyugpPy, which is not as in (1), then fg(s,,p,.) = fB.,., +
‘)‘}3“3“1“2 <24+2=4 (3)Ife= (u,-,vj)(u,',vj.l.]) or (ul,vj)(u,-,v,-H) or
(u;,vj.,.l)(u,-,vj) fori > 3suchthat j € {L%J, I_%J-l'l}, then fB(S,.me)(e) =
fgumum (@) +fBu,uyusy (e) < 1+3. (4) If e € uyuipPpn —uyuzpPr, fori > 3
and not as in (3), then fB(S.,me) = fu,-+1u,ui + fuium;._l S 2 + 2. 0

Lemma 3.1.18 ([17]). If m > 3, then b(abpP;,) 2> 3.

The following result follows immediately from Lemma 3.1.18, MacLan’s
Theorem and Kuratowiski’s Theorem and Theorem 3.1.17.

Corollary 3.1.19. 3 < b(S,pPm) < 4,foralln>2, m>3.

3.2 The basis number of S;,05m

Consider S,, to be a star with vertex set {v,vs,...,vm} and ds,, (v1) = m—
1. Note that the automorphism group of S, is isomorphic to the symmetric
group on the set {vg,vs,...,vm}. Therefore, for any v €Aut(G),v(v1) =
v;. Moreover, for any two vertices v;,v; such that 2 < 4,5 < m there
is an automorphism « such that a(v;) = v;. Hence, the graph abpSy, is
decomposable into (aldSy,) U (b0Sm) U {(a,v1)(b,v1)} U ab[Np,_1] where
N._; is the null graph with vertex set {v2,vs,...,vm} and ab[Npn-,] is
the lexicographic product of ab and Np,_;. Now, we use the following sets
of cycles which where introduced by Jaradat in [30].

Has = {(a,v;)(b, vi)(a, vj41) (b vis1)(a,v5) |2 S 4,5 Sm -1},
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Gab = { ‘(j,) = (a,v1)(a,v;)(b,v2)(a,vj41)(a,v1) |2 j <m — 1}

ab = {(a, vl)(a’ ")2)(171 02)(6?01)(‘1’01)} .

Note that H,p is the Schemeichel’s 4-fold basis of C(ab[Ny,-1]) (see
Theorem 2.4 in [22]). Moreover, (1) if e = (a,v2)(b, v ) or € = (a, v )(b, v2)
or e = (a,v2)(b,v2) or € = (a,vm)(b,vm), then fr ,(e) = 1. (2) Ife =
(a,v2)(b,u) or (a,v;)(b,v2) or (a,vm)(b, ) or (a,v;)(b,vm), then fi,(e) <
2. (3) If e € E(ab[Ny—1]) and is not of the above form, then fy,,(e) < 4.

The following result of Jaradat [17], and Jaradat et al. [16] will be used
in the coming results of this section.

Lemma 3.2.1 (Jaradat). Loy = HapUGasUGbe US,s is linearly indepen-
dent subset of cycles of C(abpSy,).

» A
I / \
,7\\\ o up ,A /’,A‘
\\\\ ’y 17 \ \
-o '
Iz ’/f try, FR rat
14 ty AR T 0
: e // /} 'y oAy U N
[\ W
! \

Figure 5: Cycles of £L,p for m =6

6

-

-
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Proposition 3.2.2 (Jaradat et al.) Let A and B be two linearly inde-
pendent sets of cycles such that E(A) N E(B) is an edge set of a forest.
Then AU B is linearly independent.

Let cab be any star of order 3, then we define the following sets of cycles:

Weab = {(c,v1)(c, v2)(a, v2) (b, vm )(b, v1)(a, v1)(c, v1)}
and

Eua = {£3) = (¢,02)(@,03) (b, vm)(@, vj21)(c, ) | 2 < j < m— 1}

Lemma 3.2.3. YV.ap = Ecap U Hea U Geg U Wegp is linearly independent.
Proof. We use mathematical induction on m to show that £, is linearly

independent. If m = 3, then £, consists only of one cycle 8‘52 Thus E.,p
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is linearly independent. Note that .. = (U;.",_'fé'gb U Sg';'l). Assume
that m is grater than 3 and it is true for less than m. Since £73~" contains

the edge (c, v2)(a, vm) which is not in any cycle of U;-"___'fggﬂ, Ecab is linearly
independent. By Lemma 3.2.1, we have H, and G, are linearly indepen-
dent. Note that E(Hee) N E(€eap) = {(c,v2)(a,v5) | 2 < j < m} which is
an edge set of a star. Then, by Proposition 3.2.2, €45 U Hc, is linearly in-
dependent. Now, any linear combination of cycles of Gc, contains an edge
of the form (c,v1)(¢,v;),J = 2 which is not in any cycle of £cap UHeq. Thus
Ecab U Hea U Geq is linearly independent. Finally, Weqp contains the edge
(¢,v1)(a,v1) which is not in any cycle of Ecap UHea U Gea- Thus Veas is
linearly independent. OJ

Figure 6: Cycles of Ve for m =6

Remark 3.2.4. Let e € E(abcpSr), then by the aid of Figures 5 and
6, we have: (1) If e = (a,v1)(b,v1), then fr ,(e) =1 and fy_,(e) = 1.
(2) If e = (a,v2)(b,v2), then fr(e) = 4 and fy_,(e) =0. (3) Ife =
(a,v1)(a,v2), then fr () =2 and fy(e) =0. (4) Ife = (a,v1)(a,v5),
2 < j < m, then fr,(e) < 2 and fy,(e) =0. (5) If e = (b,v1)(b,v2),
then fr,(e) =2 and fy,,,(e) =0. (6) If e = (b,v1)(b,v;), 2 < j < m, then
fro(e) < 2 and fy (€)= 0. (7) I e = (b,v1)(b,vm), then fe,,(e) = 1
and fy..,(€) < 1. (8) If e = (a,v2)(b,v;), 2 < j <m, then fr,,(e) <4 and
fy..(e) = 0. (9) If e = (a,v2)(b,vm), then fr (e} < 2 and fy,,(€) < 2.
(10) If e = (a,v;)(b,v2), 2 < j < m, then f¢,,(e) < 4and fy,_,(e) =0. (11)
Ife = (a, vj)(b> Um), 2 < j £m, then f[:ab(e) < 2and fy,(e) <2. (12) If
e = (a,v;)(b,vk), 2 < j,k < m, and not as in (1)-(11), then f¢,,(e) < 4 and
fy...(€) = 0. (13) If e = (a,v1)(c,v1), then f . (e) =0 and fy_,,(e) = 1.
(14) If e = (¢, v1){(c, v;), 2 £ j < m, then fc,,(e) =0and fy,,,(e) < 2. (15)
If e = (a,v2)(c,v;), 2 < j < m, then f () =0and fy,,(e) < 4. (16) If
e = (c,us)(@;), 2 < j < m, then fr,.(¢) = 0 and fyo(e) < 4. (17) If
e = (@ um)(e,v), 2 < § < m, then frng(e) = 0 and fyo,(€) < 2. (18) If
€= (c’vm)(a:vj)v 2 < j £ m, then fﬂab(e) =0 and fycab(e) <2 (19) If
e = (a,v;)(¢,%), 2 £ j,k < m, and not as in (13)-(18), then f ,(e) =0
and fy,,, () < 4.
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Throughout the rest of this work, we consider

Fab = Lap and Feap = Vegs.

Let V(Sn) = {u1,u2,...,un} with dg,(u;) = n — 1. Then the graph
SnpSm is decomposable into

Uiz %08 m U (Ufop ({(u1, v1)(wi, v1) } U v ui[Nm—1])

where Np,_; is the graph defined as above. Hence, |E(S,pS»)| = n(m —
1) + (n = 1)(1 + (m — 1)?). Therefore,

dim C(S,pPp) = nm? —m? —2nm + 2m +n - 1. (5)

Theorem 3.2.5. For any two stars S, and S,, of order n,m > 2, we have
that b(S,pS) < 4. Moreover the equality holds if n > 4and m > 6 .
Proof. Define B(S,05m) = (U5 Fuirrurus) U Furug. We now show that
B(S,pSy,) is linearly independent by using the mathematical induction on
n. If n = 2, then B(S,pSm) = Fu,u, and it is linearly independent by
Lemma 3.2.1. If n = 3, then B(S,p8m) = Fuyuz U Fugu,uy. Note that

E(]:uxuz) nE(Fusuluz) = {(ulvvi)(uz’vm) l 2<i< m} U
{(UZ’vm)(u%vl)a (ul,'Ul)(U'Z)vl)}
which is an edge set of tree. Hence, B(S,pSn,) is linearly independent by
Proposition 3.2.2. Assume that n > 4 and it is true for less than n—1. Note
that B(S:p8m) = (Fuyuz YU (VZ Fuisrurun)) U Funuyun_,- By induction
steps we have Fy, u, U (UPS Fusyyusu) iS linearly independent. Since

E(Fuyup U (U Fuprunus)) N E(Funuyny)
= {(un—ly"’m)(ul:vi) I 2<ig m} U {(un—l,'vl)
(Un~1,9m), (Un—1,v1)(%1,v1)}

which is an edges set of a tree, as a result, by Proposition 3.2.2, B(S,,pS,)
is linearly independent. Now,

l}-ul“2| = |£abl
= (m-22%+2(m-2)+1,

and
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|-7'-cab| = |ycab|
(m—-2)+m-2%+(m-2)+1
= (m-22%+2m-2)+1

Thus,
n—1
|B(Snpsm)| = |-7'-u1u2| + z I}-ui-i-luluﬁl
=2
n—1
= Y (m-272+2m-2)+1)
i=1
= (n-1)((m-2°+2m-2)+1)
= nm?-m?-2mn+2m+n-1
= dimC(SnpSm).

where the last equality follows from (5). Therefore, B(S,pSy) form a basis
for C(SnpSm). Now, we prove that B(S,pSr,) is a 4-fold basis. Note that

E(J:uluz) n E(]:u{+1u1u.») = 0 ifi>3 and
E(j:uiﬂului) N E(}-uk+1u;uk) = { whenever |k - zl > 1.

Thus, (i) if e € E(u1u2pSm), then f5(s,p5)(€) = [Fu 0, (€) + [Furuyu, (€):
which is by (1)-(12) of Remark 3.2.4, less than or equal to 4. (ii) If e =
(u1,v2)(us,v5) or (ui,v2)(u1,v5),2<j<m and ¢ > 3 or (u1,v;)(u4, k),
2<j<m2<k<m,then fges,ps.)(€) = ffujul“j_l(e) < 4, then by
(16), (17) and (19) of Remark 3.2.4 fg(s,p5.)(€) = fFyu,u,_, (€) < 4. (i)
If e = (u1,v;) (i, ), 2 < j <mand 2 < j <m, then by (19) of Remark
3.24 fr.,(e) =0and fy,_,(e) < 4. (iv) If e € E(u1u;pSm) — E(u1u2pSm)
and not as in (2), then fg(s,ps..)(€) = fﬂ,-.....,-_l(e) + ff“j““luj (e) <
2+ 2 =4 by (12)-(17) of Remark 3.2.1. We next show that b(S,pSm) = 4
for all n > 4 and m > 6. Suppose that B is a 3-fold basis of C(S,pSnm), for
n > 4 and m > 6. Since the girth of S,pSn, is 4, as a result

4dimC(SppSm) < 3 | E(5205m) |
and so
4(nm? —2nm —m? +2m+n—1) < 3(nm? — nm — m? + 2m +n — 2),

which implies that,
(m?+1)(n—1)-m(5n-2)+3<0.

82



Thus,
(m?+1)(n —1) < 5m(n — 1) + 3(m — 1),
which implies that
m<5+3m-1)/m(n-1)-1/m.
But for n > 4, we have
3(m-1)/m(n-1)-1/m< 1.

Thus, m < 5. This is a contradiction. Thus b(S,pS;,) > 4, for all n > 4
and m > 6. Therefore, b(S,pSm) =4, foralln >4, m >6. O

Theorem 3.2.6. B(S,pSn) is a required basis of $,pS,, for each n > 4
and m >6.

3.3 The basis number of S,pW,,

Now, consider W,,, to be the wheel graph with vertex set {vy,va,...,vm}
and dw,, (v1) = m — 1. Note that for m > 5 and for each 2 < i,j < m,
there exist a €Aut(W,,) such that a(v;) = v;. Let a be a vertex. Then we
recall the following sets of cycles of Jaradat [17]:

Po= {'Péj) = (a,vl)(a’vj)(avvj+l)(a’vl) |7=2,3,....,m— 1}’

I, = {(a,v2)(a,v3) ... (a,vn)(a,v2)}.

Lemma 3.3.1. (UL, P,,)U(UL,Zy,)UB(S,pSy) is linearly independent.
Proof. By Theorem 3.2.1, B(S,pSy,) is linearly independent. It is easy to
verify that (U, Z,,) is a set of union of edge disjoint cycles, thus (U™, Z,,)
is linearly independent. Note that, for each i = 1,2,...,n, ‘P,(,".) contains
the edge (ui,v;)(ui, vj41) which does not appear in any other cycle of P,,.
Thus, Py, is linearly independent for each i. Since E(P,,) N E(P,;) =
@ whenever ¢ # j, we have that UZ,P,, is linearly independent. Since
E(U,Py,)— (UL E(v;0P,,—) is a forest, any linear combination of cycles
of (Ui, Py;) contains at least one edge of (U, E(u;0P,,-1), which is not
in any cycle of B(S,pSn) where Pp_1 = vovs...vn. Thus B(S,pSm) U
(U, Py,) is linearly independent. Similarly, any linear combination of
cycles of (UL,Z,,) contains an edge of the form (u;, v2)(us,vm), 1 <i<n
which is not in any cycle of B(S,pSm) U (UL,Py,). Thus B(S.pSm) U
(URoy Py, ) U (VR4 Zy,) is linearly independent. O
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Note that S,pWy, is decomposable into S,pSn U (Ui;(a:0C)) where
C = vovs. .. Umva. Thus, |E(SppWm)| = |E(SnpSm)| + (m — 1)n. Hence,

dim C(PrpWm) = (n - 1)m? 4+ 2m —mn — 1. (6)

Theorem 3.3.2. For any star S, with n > 2 and wheel W, with m > 5,
we have that b(S,pWp) < 4. Moreover, the equality holds if n > 2 and
m > 12.

Proof. Define B(SnpoWp) = B(SnpSm)U{(Ui; Py, )U(Vi=1Zy,). By Lemma
3.3.1, B(S,pWy,) is linearly independent. Now,

[P = (m = 2),
and
|Z.,] = 1.

Hence,

n n
IB(SupWm)] = 1B(SnpSm)l+Y_Pui+ Y Tu
i=1 i=1
nm? —m2—-2mn+2m+n—1+n(m—2)+n
mi(n—-1)—nm+2m-1
dim C(S,pWi).

where the last equality follows from (6). Thus, B(S,pWn) form a basis for
C(SnpWy,). Now, we prove that B(S,pWy,) is a 4-fold basis for all n > 2
and m > 5. By Remark 3.2.4 and Theorem 3.2.5 we have the following:
(1) If e = (us,v1)(us,v;) such that 2 < j < m, then fB(S. W) (€) =
fg(snpsm)(e) + f‘pu._ (e) £2+2 (2)Ife= (wi,v;)(wi,vj41) such that
1< j <m—1,then f(s,own)(e) = fr,,(e) + fr, (e <1+1. (3) Ife=
(15, 2) (2, V) then Fa(suprny(€) = f2,, (&) = 1. (4) If € € E(SnpWim)
and is not as in (1)-(3), then fa(s, ow..)(€) = fB(S.p5m)(€) < 4. To show
that b(SppWn) > 4, for any n > 2 and m > 12, we have to exclude any
possibility for the cycle space C(SppWy,) to have a 3-fold basis for any
n > 2 and m > 12. To that we use the same argument as in Theorem 3.18
of [17). For the completeness we give the proof. Suppose that B is a 3-fold
basis of cycle space C(SppWy,) for any n > 2 and m > 12. Since the girth
of 8,pSnm is 4, then we have the following three cases:

Casel: Suppose that B consists only of 3-cycles. Then |B| < 3(m — 1)n
because any 3-cycle must contain an edge of E(a;0(v2vs...vmve)), for
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i =1,2,...,n and each edge is of fold at most 3. This is equivalent to
the inequality m?(n ~ 1) — mn + 2m — 1 < 3(m — 1)n which implies that
min—1)-4m(n—1)-2m+3n—-1<0andsom < 4+3/(n—1) —
3n/m(n — 1) + 1/m(n — 1), which implies that m < 44 2 — 2/m(n — 1).
Thus, m < 6. This is a contradiction.

Case 2: Suppose that B consists only of cycles of length grater than or
equal 4. Then 4 | B |< 3 | E(S,pWym) | because the length of each cycle
of B is grater than or equal to 4 and each edge is of fold at most 3. Thus
4(m?(n — 1) ~ nm + 2m — 1) < 3(m?(n — 1) + 2m — 2) which is equivalent
tom?(n—1)—4m(n—1)-2m+2 < 0andsom < 44+2-2/m(n—1) < 6.
This is a contradiction.

Case 3: Suppose that B consists of s 3-cycles and ¢ cycles of length grater
than or equal to 4. Then t < |(3(m?(n—1)+2m —2) —3s) /4] because the
length of each cycle of s is 3 and each cycle of ¢ is at least 4, and the fold of
each edge at most 3. Hence | B |= s+t < s+((3(m?(n—1)+2m~2)—3s) /4|
which implies that 4(m?(n—1)—mn+2m—1) < s+3(m?(n—1)+2m—2).
Thus 4(m?(n—1)—nm+2m—1) < 3(m—1)n+3(m?(n—1)+2m—2). By
simplifying the inequality we have that m2(n—1)—7Tm(n—1)—5m+3n+2 <
0. Hence, m £ 7+ 5/(n — 1) — 3n/m(n — 1) < 12. This is a contradiction.
O

Theorem 3.3.2. For each n 2 2,m > 12. B(S,pW,,) is a required basis
for C(SppWin).

4 The minimum cycle bases of wreath prod-
uct of graphs.

In this section, we construct minimum cycle bases for the wreath products
of a star by a path, two stars and a star by a path. Also, we give their total
lengths and the length of longest cycles

4.1 The minimum cycle basis of S,,pPy,

Lemma 4.1.1. Let m be an odd integer. Then A%, = K, U R, U Ry is
linearly independent.

Proof. By using the proof of Lemma 3.1.4, we have that K,; and RoURe,
are linearly independent sets. Clearly, any linear combination of cycles of
Kap contains an edge of the form (a,v;)(b,v;) , 1 < 7 < m which is not in
any cycle of Rqp U Rpa. Thus, A7, is linearly independent. O

Lemma 4.1.2. A* = UL, A; . is linearly independent .
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Proof. The proof of this lemma follows immediately from using the math-
ematical induction, Proposition 3.2.2 and Lemmas 4.1.1 and from noting
that E(U'-"IA;M) NE(A;,,,) = E(wDPy,). O

i=2

Now, we define the following cycles:

28 = (a, v g +1) (b oz )b vz )@ v 41),

and
ZQ) = (a,03)) (b, v )b v 3 101) (0, v ).

Lemma 4.1.3. Let m be an even integer. Then T}, = Kap URgp URpa U
{29,282} - {RUE RLH K } is linearly independent.

Proof. By Lemma 3.1.6, KapURasURsU{ 25, 28 | - {Rﬁ‘“, K} s
linearly independent. Thus KgpURapURpeU {Z ‘E‘Z), Zﬁ:) } - {R&?J , R%? ] ,

KF s linearly independent. Now the cycle Z® contains the edge
ab ab

(b,v))(b, v 3 +1) which is not in any cycle of ICabURabURabU{Zf;), Zt(l:)}

- {'Rl!""J R,E%J,ICL?J } Thus 7}, is linearly independent. U

ab a

Lemma 4.1.4. T* = UL,T,, is linearly independent.
Proof. Following, word by word, the same arguments as in the proof of
Lemma 4.1.2, we have the result. O

A*, if m is odd,

T*  if m is even is a minimal cycle
, .

Theorem 4.1.5. B*(SppPn) = {

basis of S, pPr,.
Proof. By Lemma 4.1.2 and 4.1.4, B*(S.pPm) is linearly independent.
Now,

Mol = el
IKabl + [Ras| + [Roal

(m-1)+ 3] +13)

(m—1)+2(F]

if m is odd, and

|7::|u.~l = |7;*b|
= 1Kab — {ELY + Rab = {REFH + Rsa — (REEVY
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Hiza) 2, 230
(m=2)+ (7] - D+ (G -1D+3

(m—l)+2[%]

if m is even. Thus,

|| Z AL ]

=2
= (n-1(m-1+2|F)),
= dimC(SnpPm)

if m is odd, and

i7" = ZI ulu.

i=2
= (r-1(m-1+23))
= dimC(S,pPr)

if m is even. Thus B*(S,pPy) is a cycle basis of C(S,pP;,). Recall that a
minimal cycle basis is obtained by a greedy algorithm, that is an algorithm
that selects independent cycles starting with the shortest ones from the set
of all cycles. We consider two cases:

Case 1: m is odd. Then the girth of S,pP,, is 4. Since each cycle of
B*(SppP,,) is of length 4, as a result B*(S,pP;,) is a minimum cycle basis.

Case 2: m is even. Note that the only 3-cycles of SppPp are UL Ay, 4,
where Ay, = ,(,?L‘,Z,(,ﬂ“, ,(;’ﬂ“, m} and only three cycles of the
four cycles of A,,,, are linearly independent for each i = 2,3,...n. Thus
(U z=ZZ.(,::Z‘,) (U{‘_zzt([ﬂ,‘) u (U 22’1(.?2,,) is a set consisting of the largest

number of 3-cycles linearly independent of C(S,pP,,). Since (UL, (:2,‘) U

(Ufp Zih) U (Up Z5%) € B (SnpPrm) and B*(SnpPr)— (Uip Z8h)U
(O] ,_231(:,,,) U (U,_QZ,(‘,L‘) are 4-cycles, B*(S,pPp) is & minimum cycle
basis. O

8mn —8m —8n+8, ifm isodd

Corollary 4.1.6. U(SnpPm) = { 8mn —8m —Tn+7, ifmiseven,

and A(Sp pPp) = 4.
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4.2 The minimum cycle basis of SppSm

Lemma 4.2.1. B*(5,p5m) = (B(SnpSm)— — (VP Wagruius) )V (U3Su, u,)

is linearly independent.

Proof. By Theorem 3.2.5, B(S,pSm) is linearly independent. Thus B(Sy,p
Sm) = (UPg Wai 1uyu;) is linearly independent. Now, U 38y, is a cycle

basis of the planar graph S,pv;v2 which obtained by pasting all the cycles

of UZ_3S,, 4, at the common edge of the successive cycles. Thus, Uj_3Su,,

is linearly independent. Note that

(B(Snpsm) - (U?_21Wut+lul“i)) N E(Uz—asulue)
= {(u1,v1)(u1,v2)} U {(u1, v2)(u, v2), (ws, v1)(us, v2) | 3 < i < m}

which is an edge set of a forest. Then, by Proposition 3.2.2, B*(S,pSm) is
linearly independent. O

Theorem 4.2.2. B*(S,pSm) is a minimal cycle basis of SnpSm.
Proof. By Lemma 4.2.1 and since

n—1
|B*(SnpSm)l = |B(snpsm)|—leu‘,,,ulu,Hleu,u.
i=2 =3

(nm? -m? —2nm+2m+n—-1)—(n—2)+(n—2)
(nm? —m? - 2nm+2m+n-1)
= dimC(SnpSm),

B*(S,pSm) is a cycle basis for C(S,pSm). Since the girth of S,pSm is 4,
and each cycle of B*(S,pSy) is of length 4, as a result B*(S,pSn) is a
minimum cycle basis. O

Corollary 4.2.3. [(SnpSm) = 4(nm® — m? — 2nm + 2m 4+ n — 1) and
MSnpSm) = 4.

4.3 The minimum cycle basis of S,pWn,

In the following result B,,Ow,, denotes to the cycle basis of the wheel
u;00W,,, consisting of 3-cycles.

Lemma 4.3.1 (Jaradat). (Up,V (k)) u (Vé?) is linearly independent for
any 2<!<m.

Lemma 4.3.2. B*(SnpWm) = (U Ufkp Vi) U (UE, L) U (U,
B,.ow,.) U (Ul_oSu, ;) is linearly mdependent
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Proof. By Lemma 4.3.1, (UTL,V, ,(,’,)u) uv, ,(,:'.'1)1 is linearly independent for
each i. Note that
YUViRL))

Uip1UL

E((U;"_gvm yuvim )N BUES) (U, V)

Urtk4y Uk41U1 U4

= F (ul |:|’U2'U3 )

which is an edge set of a path for each 1 < k < n — 1. Thus, (UL, UjL,

m) U (UL, u.ux) is linearly independent. Now, for each i = 1,2,...,n,
B,.ow,, is cycle basis of a,00W,,. Since E(B,,aw,,) N E(B,,ow.,, ) =0
whenever i # j, U, B,.nw,, is linearly independent. Since, z_l(u,Ele_l)
is a forest of UL, B, .ow,, where Pp,_1 = vav3...vp, as a result any linear
combination of UL, B,.ow,, must contain at least one edge of U, E(u;00
(Wi —Pp_1)) which is not in any cycle of (U} V(’,)u‘)U(Ut_.z'l)u,.ul ), as
a result (UR U2, V¥, ur, ,(,Z',‘},)U(U,_IBWDWM) is linearly indepen-
dent. By Lemma 4.2.1, UL ,8,,, is linearly independent. Note that, any
linear combination of cycles of U:‘_2Su,u‘ contains an edge of E(S,0v;)
which is not in any cycle of (UL, ,_2 v, )u (Ur_, Vi), Therefore,
B*(S,pWy,) is linearly independent. O

Theorem 4.3.3. B*(S,pW,,) is a minimal cycle basis of S,,pW,.
Proof. Note that

|Bu.ow,,| = dimC(Wp) =m — 1,

and

V| = (m - 2).
Thus,

n n n
B*(SnpWom)| = Zzlvgu+Z|v£:';1|+2|8.,inwm|
=1

=2 j=2 =2
+ Z |8ux“i|
r—2
= ZZ(m 2)+Z(m 2) +Z(m—1)+21
1=2 j=2 =2 1=2
= (n-1)(m-1)(m-2)+(n~ 1)(m—2)+n(m— 1)
+(n—1)
m?(n—1)—mn+2m -1
dim C(S,pW,,).
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Hence, by Lemma 4.3.2, B*(S,pW,,) form a cycle basis for Sp,pWm. We
now show that B*(S,pW,,) is minimal cycle basis. Since the girth of
$,pW, is 3 and each cycle of B*(SnpWm) — (Ui2Su,u,) is of length three,
also, since any cycle contains an edge of S,0v; is of length at least 4 and
since the length of any cycle of U™ ,Sy,u; is 4, as a result, by the greedy
algorithm, B*(S,pW,,) is a minimal cycle bases of SppWp,. O

Corollary 4.3.4. [(S,pWp) = 3(m?(n — 1) — nm + 2m — n) + 4(n - 1)
and M(SppWn,) = 4.
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