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ABSTRACT. In this paper, we obtain some new results, using inequal-
ities such as Holder and Minkowski, etc., on the existence of balanced
arrays (B-arrays) with two levels and of strength six. We then discuss
the use of these results to obtain the maximum number of constraints
for B-arrays with given values of the parameter vector u’. We also
include some illustrative examples. -

1. INTRODUCTION AND PRELIMINARIES

First of all, for the sake of completeness, we present some basic con-
cepts and definitions concerning balanced arrays (B-arrays). The symbols
A(a), P(e), and w(a) denote, respectively, the frequency of the column vec-
tor @, the column vector obtained by permuting the elements of o, and the
weight of the column vector o (the weight of a vector o is the number of
non-zero elements in it).

Definition. An array T of size (m x N) with two levels or elements (say, 0
and 1) is called a B-array of strength ¢t (< m) if in every (t x N) submatrix
T* of T (the number of such submatrices is (7)), the following condition
is satisfied: A(a) = AM(P(a)) = u; (say).

Remarks: The vector yu’' = (o, p1,...,4) is called the inder set of the
B-array T and N is known once we are given p', ie. N = 3;_o () pi. For
t=6, we have N = 32 (%) .

Definition. A B-array T is reduced to an orthogonal array if u; = p, for
each 7.

In the case of an orthogonal array, N = 2y, which for ¢ = 6, is reduced to
N = 254, Thus, O-arrays form a subset of B-arrays.

Date: July 17, 2009. v.0.1b.
2000 Mathematics Subject Classification. 05B15.
Key words and phrases. balanced arrays, strength six, Hélder and Minkowski

inequalities.

JCMCC 72 (2010), pp. 93-100



O-arrays, a special case of B-arrays, have been extensively used in cryp-
tography, computer technology, information theory, coding theory, and in
the famous Taguchi techniques relating to quality control in industry. R.C.
Bose [2] applied O-arrays to point out the connections between the problems
of information theory and experimental designs. Factorial designs form a
very important and integral part of statistical design of experiments, and
these designs have found great use in almost all areas of scientific investi-
gations such as medicine, industry, technology, agriculture, social sciences,
etc. These combinatorial arrays have been greatly used to construct facto-
rial designs. O-arrays were first introduced into statistics, under the name
of hypercubes, by C.R. Rao [14]. In order that factorial designs be made
available to the researcher for all N, the concept of B-arrays (under the
name of partially balanced arrays) was introduced into statistics by I.M.
Chakravarti 3] on the suggestion of C.R. Rao. In a way, B-arrays are a
generalization of O-arrays. B-arrays are also related to other combinatorial
structures. For example, balanced incomplete block designs (BIBDS) are
related, in some fashion, to B-arrays of strength two. Houghton, et. al. [9]
used this connection to show the non-existence of the famous BIB design
(46,6,1). Sinha, et. al. [19] have pointed out the relationship of strength
two B-arrays with rectangular designs, group divisible designs, and nested
balanced incomplete block designs. These combinatorial arrays with dif-
ferent strengths are appropriate for different experimental objectives. For
example, if the objective of the researcher is to estimate all the effects up
to and including three-factor interactions (under the assumption that all
higher-order interactions are negligible), then we need to construct a B-
array (or an O-array) with strength six. To gain further insight into the
importance and usefulness of B-arrays to combinatorics and experimental
designs, the interested reader may consult the list of references (which is
not exhaustive, by any means) at the end of this paper, and also additional
references mentioned therein.

The problem of the existence of B-arrays for a given set of arbitrary
parameters g’ and m (> t+1 = 7) is clearly a very complex and challenging
problem. Another problem of great interest, addressed within the literature
by numerous researchers, is to obtain the maximum number of constraints
m, for a given E, . Such problems for O-arrays have been addressed, among
others, by Bose and Bush [1], C.R. Rao (14, 15], Seiden and Zemach [18],
and for B-arrays by Chopra/Bsharat, Dios and Low [4, 5, 6, 7], Rafter and
Seiden [13], Saha et. al. [17], Yamamoto et. al. [21], etc.

In this paper, we obtain some inequalities (using the Holder and Minkowski
inequalities) involving the parameters m and y’ of a B-array with strength
six. In order for such a B-array to exist, it is necessary that each of these
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inequalities must be satisfied. We also discuss the use of these results to ob-
tain, for a given ', the maximum value of m. In addition, some illustrative
examples using some specific values of ' are provided.

2. MAIN RESULTS WITH DISCUSSION

The following results are easy to establish.

Lemma 1. A B-array T witht = 6, m = 6, and arbitrary indez set E,
always exists.

Lemma 2. If an array T with t = 6 does not ezist for some m = k (say,
k> 7), then it does not exist for anym > k +1.

Lemma 3. A B-arrayT of strength siz (with indez set p’) is also of strength
k, where 0 < k < 6.

Remark: It is not difficult to see that, considered as an array of strength k,
its elements are linear combinations of the elements g, 1, p2, - . ., ue. Let
A(j, k) be the jth element (0 < j < k) of the parameter vector of T' when
considered as an array of strength k, where A(j, k) in terms of the y;s is
given by

6—k

A k) = Z (6 Z k)y,-.,._,-, where j =0,1,...,k, and k<6, (2.1)
1=0

From (2.1), it is obvious that A(t,t) = A(6,6) = pe, A(j,6) = p;, and

A(3,0) = N = A(0,0).

The next lemma expresses the moments of the weights of the columns
of T about 0 as a polynomial function in terms of its parameters m,
Koy K1y -« vy H6-

Lemma 4. Consider a strength siz B-array T with parameters m and y'.
Let z; ( =0,1,...,m) denote the frequency of the columns of weight j in
T. Then, the following must hold:

m
Ly=) z;=N, (2.2)
j=0
m k
Ly = Zj":zj = Zarm,A('r, r), (1<k<6),
J=0 r=1

where my = m(m — 1)(m —2)---(m —r + 1), and a, are known integers
which appear while deriving Y, jz;, 3 5%z, ..., 3 j*;.

Remark: For computational ease and convenience, we provide next the val-
ues of a, for k =1,2,...,6: (1), (1,1), (1,3,1), (1,7,6,1), (1,15,25,20,1),
and (1,31,90,65,15,1). For example, the last set of six integers refers to

95



k = 6 with values of (a;,as,...,aq), etc.

Next, we state (for future use), the inequalities due to Minkowski and
Hélder.

Minkowski’s Inequality: For z;,y; > 0 and p > 1, we have

Nl

[Z(w=+yz)"J [Z ] + [}:y’J : (23)

i=1 i=1

Holder’s Inequality: For z;,y; > 0, % + % =1 with p > 1, we have

S oty < [Z-’vz] [Zy} . (2.4)

i=1
Remark: In what follows, we use the symbols a and b to denote j and
32 respectively (ie. a =7 = Eﬁ—i =X andb= 2= Z—)’—V—”l = L),

Theorem 1. For a B-array T' of strength siz with parameters m and y' to
ezist, the following conditions must be satisfied:

NSLg+15N3L4L2 + 15N L,y L}

> 6N*LyLs + 20N2LsL3 + 5LS. (2.5)
N3L, +6NLy;L2 > 4N2L, L3 + 3L}. (2.6)
NL, > L2 (2.7)

Proof. (Outline). Clearly, 3°(5 — a)* > 0, where a = %}- and k is an even
integer satisfying 0 < k < 6. To obtain (2.5), (2.6) and (2.7), we pick
k = 6,4, and 2, respectively. Expanding the left-hand side of the inequality
and simplifying yield the desired results. 0
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Theorem 2. Let T be a balanced array with parameters m, t = 6, and o
Then for T to exist, the following must hold:

Li+Ls < YIsle ( Vs + Ts). (2.8)
Lz + Lo < ¥/ToLs (VIo+ 3 ¥/Ls) - (2.9)
Ls+ Ly < YIoLs ({‘/L—g + \/_5) . (2.10)

Loy+2L3+42L4+ Ls < (\5/]-'_'1-)4 YLs+2 (\S/L—l)3 (%;)2
+2({/L_1)2({‘/L_6)3+ {‘/LT({‘/L_G)4 (2.11)

Proof. (Outline). Here, we use Minkowski’s Inequality with p = 3 for the
first three results, and p = 5 for the last one. We also replace z; by ]:L"%
and y; by j x* for (2.8); z; by :z:‘f and y; by j2 :z:fi for (2.9); and z; by _15:5%
and y; by ]?fm{‘ for (2.10). After some simplification, we obtain the first
three results. For the last one (2.11), we set p = 5 and replace z; by _15:1:g

and y; by 7 6:1:‘ and simplify. For example, for p = 3, we have

(S +setu+3ma2 +40)] | < (D) + (Twd)

Raising both sides to the power 3, we have
2 1
S +aad) < (Xa) (Ta) + () ().
The results follow by replacing z; and y; by the above symbols. O

Theorem 3. Consider a B-array T with parameters m, t = 6, and y'. For
T to ezist, the following conditions must hold:

LE < LoLj. (2.12)
L3< L L2 (2.13)
L < L3Le. (2.14)
L < LoL}. (2.15)
L3 < LI (2.16)
Li < LL3. (2.17)
Li< LI} (2.18)
Lj < L3Ls. (2.19)
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Proof. (Outline). Here, we use Holder’s Inequality (2.4). We briefly de-
scribe the derivation of (2.12). In (2.4), take p = 6, ¢ = £. This yields

[ eat] < (=) (Zw)"

Replacing z; by z; and y; by j°z; implies L§ < LoLg, which 1s (2.12).
To obtain (2.13), take p = 3 and replace z; by jz;j and y; by 3 4z;. To
obtain (2.16), take p = 3 and replace z; by j%z; and y; by j°z;. We
select p = 4 to derive (2. 14) (2. 17) (2.18), and (2.19). In these cases, the
(zi,:) substitutions are (j%z;,i%z;), (i%z;,3%;), (jz;,5°2;), (5° xJ,JxJ)
respectively. Finally, to derive (2.15), choose p = 5 and (zi, %) = (z;, 5°z;).

O

3. DISCUSSIONS AND ILLUSTRATIONS

A computer program was prepared and a great variety of B-arrays with

given u’ and values of m (starting with m = 6) were run on the inequalities
presented here. If the first contradiction of an inequality occurred at m =
m* + 1 (say), then max(m) = m* was noted. Thus, the least of all such
m* was the number of constraints for which the B-array T with the given
' could possibly exist.
"~ It was observed that there was no one single inequality which was the
best for each array tested. An inequality could be best for one ' but did
not do well for another y'. For example, taking ' =(98,8,86,7,8), we
obtain (using (2.5)) m < "12 which is the best, while all other m values are at
least 500. Now, taking p’ = (8,7,7,5,6,6,8), we found that m < 36 using
(2.6) while the other inequalities gave us m at least 500. Here in this case,
(2.6) was the best inequality. Finally, we observe that (2.10) and (2.16) are
the best ones, each giving us m < 10, for g’ = (1,2,1,1,4,3,2) while (2.5)
gives us m > 500 and (2.6) gives us m < 19. Next, we compare these results
with some of the earlier known results within the literature. From Chopra
and Bsharat [4], we have max(m) = 11 for the array (1,1,2,1,4,1,1), using
(2.4); while here we obtain max(m) = 9, using (2.10) and (2.16) which is
an improvement. From Dios and Chopra [7], we have max(m) = 21 for
the array (4,4,3,2,3,4,4), using (2.2) given in [7]; while here we obtain
max(m) = 18, using (2.6) of this paper which is an improvement of the
earlier result. Thus, the results presented here show improvements in some
cases over the earlier published results.
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