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ABSTRACT

For any integers k ,d> 1, a (p,q)-graph G with vertex set V(G)
and edge set E(G), p=|V(G)| and q=|E(G)), is said to be (k,d)-
strongly indexable (in short (k,d)-SI) if there exists a function
pair (f, ) which assigns integer labels to the vertices and
edges, i.e., f: V (G) ={0,1,...,p-1} and f: E (G) »DO{kk+d,
k+2d,....k+(q-1)d} are onto, where f'(u, v) = f (u)+f (v) for any
(u, v) € E(G). We determine here classes of spiders that are (1,2)
-SI graphs. We show that every given (1,2)-SI spider can extend
to an (1,2)-SI spider with arbitrarily many legs.

1. Introduction. In 1990, Acharya and Hegde [2] have introduced the
concept of strongly k-indexable graphs: A (p, q)-graph G = (V;E) with p vertices
and q edges is said to be strongly k-indexable if its vertices can be assigned
distinct numbers 0,1, 2, ...,p-1 so that the values of the edges, obtained as the
sums of the numbers assigned to their end vertices form an arithmetic
progression k, k + 1, k+2,...,k +(q— 1). When k = 1 strongly k-indexable
graph is simply called strongly indexable graph. Later, they extend the concept
to the following

Definition 1.1. For any integers k ,d > 1, a graph G with vertex set V(G) and
edge set E(G), p=|V(G)| and q=|E(G)}, is said to be (k, d)- strongly indexable
(in short  (k, d)-SI) if there exists a function pair (f, f') which assigns integer
labels to the vertices and edges, i.e.,

f: V(G) - {0,1,...,p-1} and f': E (G) - {k,k+d k+2d,....k+(g-1)d} are
onto, where f'(u, v) = f (u)+f (v) for any (u, v) € E(G).
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Thus strongly k-indexable graph are (k, 1)-strongly indexable and strongly
indexable graph is (1, 1)-strongly indexable.

If we relaxed the definition of f in strongly (k, d)-indexable graph by
f:V(G)> N, then we have the concept of (k, d)-arithmetic graphs of Acharya
and Hegde [1].

For any k,d > 1, we denote the class of all (k,d)-SI graphs by Q(k,d).

Example 1. Figure 1 shows that the disconnected graph 3 K, is (1,4)-, (2,3),
(3,2)-, and (4,1)-SI.
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Figure 1. The forest 3 K, admits different (k,d)-SI labelings.

Example 2. The following are two different (1,1)-SI labelings of K;xCi.

Figure 2. K,xC; has different (1,1)-SI labelings.

Example 3. The tree CT(3;3™) is (7,1)-SI and (10,1)-SI.

Figure 3. Tree which is (7,1)-SI and (10,1)-SL.

Acharya and Hegde showed that the only non-trivial regular graphs that
are strongly indexable are Ky, K3 and K; x K;.and that every strongly indexable
graph has exactly one non-trivial component that is either a star or a triangle.
Results on strongly indexable graphs are meager. There are few examples of
strongly indexable graphs were known. There are many interesting questions left

102



open.
In [7], it is shown that

Theorem 1.1. The caterpillar T is (1,2)-SI if and only if its bipartition (M,N) has
the property that ||[M|-|[N|| <1.

A tree is called a spider if it has a center vertex c with degree x> 1 while
each of the other vertices is either a leaf or has degree 2. Thus, a spider is an

amalgamation of k paths with various lengths. If it has x, paths with length a,,

X, paths with length a, etc., we denote the spider by SP(a,*', a,%, ... , a,™*™),

where x; +x2+ ...+ X, =x. (See Figure 4.)
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Figure 4.

General (k, d)-SI graphs were considered by the first author in [6]. Lee et
al [7] determine classes of graphs that are (1, 2)-SI and (2, 2)-SI. We determine
here classes of spiders that are (1,2)-SL

2. (1,2) - SI Spiders with three legs.

Lemma 2.1. The path P, has a natural (1,2)-SI labeling.

If V(P,) ={v1,va,...,Vs}, then the labeling f{v;) = i-1 is clearly (1,2)-SI
labeling.

Lemma 2.2. If n is even, then the path P, has another (1,2)-SI labeling which is
defined as follows:
g(v)) =i if i is odd,
and gvi)=i-2 ifiiseven.
We will call this labeling as twist(1,2)-SI labeling.

Example 4. Figure 5 shows P8 with natural and twist (1,2)-SI labelings.
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The condition of Theorem 1.1. is not sufficient for spiders to be (1,2)-SI.

Example 5. Consider the spider SP(2,2,2) which is the spider with three legs of
length 2. We see that it is (3,1)-SI and (4,1)-SI (see Figure 5). However, it is not

(1,2)-SL

SP(2,2,2)is (3,1)-S! SP(2.2,2)is (4,1)-SI
Figure 6. Spider SP(2,2,2) is (3,1)-SI and (4,1)-SL.

The following result provide an infinite many (1,2)-SI spiders with three

legs.
Theorem 2.2: For n > 2, and m > n the spider SP(n, m,m+1) is (1,2)- SI..
Proof. SP(n, m, m+l) has n+m+m+1+1 = n+2m+2 vertices and n+2m+1 edges.
We need to prove that there is vertex labeling

£:V(SP(n,m,m+1))-> {0,1,2,...,n+2m+1} with the induced edge labeling

f*(E(SP(n,m,m+1))) = {1,3,5,...,2(n+2m+1)-1}.
Let us denote the vertices of SP(n, m, m+1) as in figure below (Figure 7) :
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We will label the vertices x;, Xy, ..., X, With 0, 1, ..., n-1. center vertex ¢ with n,
label yy, y2, ..., Ym With n+1, n+2, ..., n+m, and label z,, z,, ..., Z5+; with
n+m+l, ntm+2, ..., n+tm+m+1, respectively. i.e. f:V(G) = Zniam+2 18

fix;) =i-1 for i=1,2,..,n,

f(y;) =n+i fori=1, 2, ...,m.

f(c)=n,

f(z;))= n+m+i for i=1, 2,..., m+1.

Now let us check the induced edge labels. It can be seen that

£ ({x;, xi+y }) =2i-1, for i=1,2,...,n-1.

F( {xm c })=2l'l-l,

f'({c, y1 )=2n+1,

£'({yi, ¥ie1 }) = (nFi)+H(n+i+1)=2n+2i+1, for i=1, 2,...,m-1.,

' ({c, Zm+1 }) = nHn+m+m+1)=2n+2m+1,

f({zi, zir1 }) = (n+mH)+(n+m+i+1)=2n+2m+2i+1, for i=1,2,...,m.
From the above, we can see f* has range

R= {2i-1:i=1,2,...n-1} U {2n-1, 20+1} U {20+2i+1: i=1,2,...,m-1} U

{2n+2m+1}u{2n+2m+2i+l: i=1,2,...,m}
= {1,3,5,...,2n-3,2n-1,2n+1,2n+3,...,2n+2m-1, 2n+2m+1, 2n+2m+3,

L2ntdm+1}.0

Example 6. Spider SP(2,2,3) with two different (1,2)-SI labelings.

SP(2,2,3)is (1,2)-SI SP(2,2,3)is (1.2)-SI
Figure 8.
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We have shown in [6] a general construction of (k, d)-SI graph from two
given (k, d)-SI graphs. We illustrate here the usefulness of this method by
presenting a recursive construction of infinite families of (1, 2)-SI spiders with
three legs.

Ingredient: Suppose G is a (p1,q1)-graph in Q(k,,d) and H is a (p2,92)-graph in
Q(k,,d) with labelings g,h respectively.

Constraint: d is a divisor of 2 p;+ (ky-k;) and [2p,+ (ko-ky)] /d - q, > 0.

We can construct a new graph on V(G) u V(H) as follows:

Keep the original (k;,d)-labeling on G and extend the vertex labeling on H
by h®p, where (h®p,) (v) = h(v) +p, for all ve V(H).

Under the h@®p, labeling H becomes a (2p,+k,d)-SI graphs.

Lett=[2p,+ (kz"k])] d-q> 0.
If t =0, then the disjoint union G UH is (k;, d)-SI.
Ift>0, letus fill in t edges which connect vertices of G and H by the following

scheme :
Pick u in G with label x and v in H with label 2p,+y join them so that its

induced edge label 2p,+x+y is range from k;+ q,d to ki+ (qu+1)d ,..., ki+ (qiHt-
1)d. We denote the set of these edges by I1. That is IT= {(u,v): g(u) =x and
h(v)=y and x+y=ki+ qid, ki*+ (q+1)d ,..., ki+ (qitt-1)d}.

Then E(G) v E(H) v T is (k;,d)-SI.

We denote this graph by GSTI®H.

Theorem 2.2. If G is a (p;,q;)-graph in Q(k;,d) and H is a (p2,q2)-graph in
Q(k,,d) and d is a factor of 2p,+ (kp-k;) with [2p,+ (ka-k,)] /d - q) > 0, then there
exists a (p; +p2,q2+[2pi+ (kz-k))] /d)  graph in Q(k,,d) which contains G, H as
induced subgraphs.

————Theorem 2.3. For any (pl’ QI)‘gl'aph G, (PLQZ)'graph Hin Q(k1 2)’ with pi2qi
we can construct a (k, 2)-SI graph which contains G,H as induced subgraph.
Now let us consider k=1. We will illustrate the above construction by the

following example.

Example 5. Using G = P; H= Pgand IT= {(x,3, ¥ 1,5) }. We see that GOIT®H
=SP(2,4,5) is (1,2)-SL.
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Theorem 2.3: Forn > 1, and m > 1, the spider SP(n, n+1,m) is (1,2)- SI.
Proof. Let G =P+ and H =Py, with the natural (1,2)-SI labeling and IT=
{(x1,1, ¥ 1,m) }. We see that GBIT®H =SP(n,n+1,m) is (1,2)-S1.0

Corollary 2.4: For k>1, the spider SP(1,2,k) is (1, 2)- SI.

Proof: Let us label the vertices of SP(1,2,k) as in the figure below:

p=(2+1)+1+k=k+4

142(q-1)=2q-1=2k+5

Figure 10.
It is clear from the figure above that SP(1,2,k) has p=k+4 vertices and q=k+3
edges and the vertex labeling induces the edge labeling of {1, 3, 5, ..., 2(q-1)} =
{1,3,5, ..., 2k+5}. This proves SP(1,2,k) is (1,2)-SI for any positive integer.
Theorem 2.5: For k>1, the spider SP(2k,2k,2k+2) is (1, 2)- SI.
Proof. Let G = Py with the natural (1,2)-SI labeling and H =Py.; with the

reverse twist (1,2)-SI labeling and IT = {(x;, 2k+1, ¥ 1,1) }. We see that GOITOH
=SP(2k,2k,2k+2) is (1,2)-S1.0
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Example 6. Spider SP(4,4,6) with its (1,2)-SI labelings.
X9 X2 X3 X4 X5 X X7 X1 X8

G . . :
1 35 791113 15

Figure 11.

3. (1,2) - SI Spiders with more than three legs.

Theorem 3.1. The spider SP(11,2,2) is (1,2)-SI if and only if n=1and 2.
Proof, If n=1 and n=2, we see that SP(1,2,2) and SP(1,2,2,2) are (1,2)-SI.

Figure 12.

However, if n>3, then the bipartition (M,N) of the spider SP(11",2,2) has
the property  that |[M]-[N|| >1. Therefore SP(1™",2,2) is not (1,2)-SLU

Theorem 3.2. The spider SP(1,1,2,2k) is (1,2)-SI for all k>1.
Proof. For k=1, we see in Theorem 3.1. that it is (1,2)-SL
Assume the statement is true for k =n, i.e. SP(1,1,2,2n) is (1,2)-SI. We want to
show that SP(1,1,2,2n+2) is also (1,2)-SI. We can extend SP(1,1,2,2n) to
SP(1,1,2,2n+2) by adding two vertices {Xsz+1 , Xa2x+2} and two edges (Xaz,
Xazke1)s (Xa2k+1, Xa2xs2). Now we extend the original (1,2)-SI labeling f of
SP(1,1,2,2n) to SP(1,1,2,2n+2) by setting

f(X42101) = 2k+4 flxane2) = 2k+3.
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. Figure 13,

It is clear that this is a (1,2)-SI labeling (see Figure 13.0

Theorem 3.3 The spider SP(1™,2)) is not (1,2)-SI for all n.
Proof: First we show that for n=1 and 2, SP(1™,2®) is not (1,2)-SI. .For easier
describe the labelings of vertices, let us denote the spiders as

SP(1,2,2,2) SP(1?, 2,2,2)

Figure 14.

For SP(1,2,2,2): ¢ can have odd or even label.
(I) chas even label. Then x1, x2, x3 and z must have odd labels.
1) c has label 0.

(i) z has label 1. So {3, 5, 7} are labels of x1, x2 and x3 and it makes
no difference which one has which, so say x1 has label 3, x2 has
label 5 and x3 has label 7. So y3 must have label 6. Now no vertex
can have label 2. Since if y1 were 2, then edges (x1, y1) and (c, x2)
will have label 5; if y2 were 2, then edges (x2, y2) and (c, x3) both
have label 7. Hence this is not a Q(1,2)-VG labeling.

(ii) z has label 3. Similar as above. No vertex can have label 2.

(iii) z has label 5. Similar as above. No vertex can have label 2.

(iv) zcan not have label 7. since no way to get edge label 13.
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2) c has label 2.

(i) zcannot label 1. Since no way to get edge label of 1.

(ii) z has label 3. So {1, 5, 7} are labels of {x,, X, X3}. Since vertex
of label 0 has to be adjacent to vertex of label 1 to generate edge
label of 1 and vertex of label 6 has to be adjacent to vertex of
label 7 to generate edge label 13. This means vertex of label 4

(iii) z has label 5. Similar as above. No vertex can have label 4.

(iv) z can not have label 7. since no way to get edge label 13.

3) c has label 4.
(i) z can not be 1, since no edge will have 1.
(ii) z has label 3, 5 or 7, then x1 has label 1and y1 must have label 0.
Then no way to get edge label 3.

4) c has label 6. Similar as case 3). x] must be 1 and y1 must be 0. Hence
no way to generate edge label 3 again.

(II) c has odd label. Then x,, X,, X; and z must have even labels.

(i) c has label 1. z cannot not be 0. Since 7 has to be adjacent to 6 to
generate edge label 13. If z is 0, then no vertex can have 3. If z is
nonzero, then x1 is 0, then y1 cannot have any label.

(ii) ¢ has label other than 1, then x1 must be 0 and x2must be 6 and y1
must be 1 and y2 must be 7 to generate edge label 1 and 13,
respectively. This means y3 has to be 5. Then x3 cannot have a
label 2 or 4.

If n>2, then the bipartition (M,N) of the spider SP(1™,2°]) has the
property that |[M]-|N|| >1. Therefore SP(1™,2,2) is not (1,2)-SL.O

Example 11. Spider SP(1,2,2,2) is (3,1)-SI, (4,1)-SI and (5,1)-SI but not (1,2)-
SL

However, we see
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Theorem 3.3. The spider SP(1,2,n,n+1) is (1,2)-SI forall n>1.
Proof. Let G = SP(1,2,n) with the (1,2)-SI labeling as Corollary 2.4.and H =P,,,,

with the reverse twist (1,2)-SI labeling and IT = {(x;, 2x+1, ¥ 1,1) }. We see that
GOII@H =SP(2k,2k,2k+2) is (1,2)-S1.0

Example 12. Figure 16 illustrates the labeling scheme for n=3 and 4.

SP(1.2.3.4) SP(1.2.4.5)

Figure 16.
Theorem 3.4. The spider SP(1™,2,3) is (1,2)-SI if and only if n=1.
Proof. If n =1, Figure 17 depicts a (1,2)-SI labeling for spider SP(1, 21%,3).

Figure 17.

We want to show that the spider SP(1™,2%1,3) is not (1,2)-SI for n>1.For
the bipartition (M,N) of SP(1!",2%13) is |[M]|-[Nj| >1. Therefore SP(1",2%3) is
not (1,2)-SL.O
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4. Extension and Open Problem.
In this section we want to show some applications of previous results.

Theorem 4.1. Given a (1,2)-SI spider SP(a,,a;,...,8c) with 8,<a,<...<ay, we can
extend to a (1,2)-SI spider SP(a,,a,,...,8x, 8k+1) Where ag. = x+2-c, where c is the
vertex label of the center vertex of the spider, x+1 is the largest vertex label of
the leg ay.

Proof: Let ¢ be the center vertex of the (1,2)-SI spider SP(a,,a,,...,8¢). Assume
the leg of length a, of the spider SP(ay,a;,...,3) has the highest edge label 2x+1
which has adjacent vertices of labels x and x+1. The vertex label x+1 is the
highest vertex label in SP(a;,a,,...,a,). Now we can extend SP(a,a,...,ax) by
adding another leg of length (x+2-c) in such a way that the vertex adjacent to
center vertex have vertex label 2x+3-c which will induce the edge (c, 2x+3-c)
with edge label 2x+3, the rest vertices of a,+ from the end vertex have vertex
labels (x+2), (x+3), ...,(2x+2-c). It is clear we have a (1,2)-SI labeling for
SP(ay,a3,. . .,3x »ax+1).0

Example 13. Figure 18 depicts the way to extend a (1,2)-SI spider SP(1,2,3) to 2
(1,2)-SI spider SP(1,2,3,6). We see c has label 1, the highest edge label of
SP(1,2,3) is 2x+1= 11. Thus the highest vertex label in SP(1,2,3) is x+1= 6.
Thus by append a path P, of length x+2-c =7-1=6 and label the vertices vag, Va5,
Vaa, Va3,Vaz, Va1 by 7,8,9,10,11,12. We obtain a (1,2)-SI labeling of SP(1,2,3,6).

SP(1,2,3) extend to SP(1,2,3,6)
Figure 18.
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One can see that many spiders such as SP(2,2,2,2) is (3,1)-SI , (4,1)-SI
and (5,1)-SI but not (1,2)-SI. However, they satisfy the bipartition condition
IM]-INJ| < 1.

We propose here the following open problem.,

Problem. Characterize spider T such that T is (1,2)-SI.
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