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Abstract

We discuss a transform on the set of rational functions over the
finite field F,;. For a subclass of these functions, the transform
yields a polynomial and its factorization as a product of the set of
monic irreducible polynomials all of which share a common prop-
erty P that depends on the choice of rational function. A general
formula is derived from the factorization for the number of monic
irreducible polynomials of degree n having property P. However
it is also possible in some instances to exploit the properties of the
factorization to obtain a “closed" form of the answer more directly.
We illustrate the method with four examples, two of which appear
in the literature. In particular, we give alternative proofs for a re-
sult of L. Carlitz on the number of monic irreducible self-reciprocal
polynomials and a remarkable result of S. D. Cohen on the num-
ber of (7, m)—polynomials, that is, monic irreducible polynomials of
the form f(z") of degree mr. We also give a generalization of the
factorization of z9~! — 1 over F, that includes the factorization of
29 D? _1 The new results concern translation invariant polynomi-
als, which lead to a consideration of the orders of elements in '}""-q, the
algebraic closure of F;. We show that there are an infinite number
of 8 € Fy such that ord(d) and ord(r(6)) are related, in the sense
that given one, one can infer information about the other.

1 Introduction

For g a prime power, let Fy denote the finite field of order g. In this pe-
per we discuss a general method of counting irreducible polynomials with
various properties over finite fields. In particular, we provide a single frame-
work with which to obtain counting results concerning the number of monic
self-reciprocal, and translation invariant irreducible polynomials over finite
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fields, as well as results concerning quadratically irreducible and other kinds
of irreducible polynomials over finite fields. Our method, while much more
general, is reminiscent of the following example.

For a positive integer n > 1 consider the polynomial Cy(n, z) = z9 -z €
Fglz]. 1t is well known that

2" — = H (z—a)=HMI(Qad),

aquu din

where MI(q,d) denotes the product of all monic irreducible polynomials
of degree d over F,, see for example Theorem 3.20 of [8]. While the above
factorizations are of interest in themselves, the more important use is that
they allow us to obtain a formula for the number of monic irreducible
polynomials of degree n over Fy.

By taking degrees on both sides of this equation and then applying
Mbbius inversion, this equation leads to the well known formula

Nyfn) = = 3 (g™
din

for the number of monic irreducible polynomials of degree n over the finite
field F,, where of course u is the Mobius function from elementary number
theory.

Another similar formula is the following:

Let SMRI(g, k) denote the set of monic irreducible self-reciprocal poly-
nomials of degree k over F,. Then Carlitz [2] showed that

#SEMI(g,2m) = 5= 3 (g4 -1)

din
d odd

if ¢ is odd, and
1
= — n/d
#SRMI(g,2n) om0 E ©(d)g

din
d odd

if g is even.
We also have that if n = 2¥¢, v > 0, t odd, then

_ _I_(qn —_ 1) n= 1, q Odd,
#SMRI(g,2n) = { .:% Ngnse(t) otherwise.

We note that in [3], the author obtains the above formulae using a

simpler method in addition to obtaining other results. The main point
of this paper is that it contains a method of producing factorizations and
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enumerative formulas, both old and new, from a unified theory. In this
regard we need two concepts, replicators which are studied in section 2 and
k-normal rational functions which are discussed in section 3. The main
result of this paper occurs in section 4 and several illustrative special cases
are briefly discussed in section 5. In section 6 we discuss polynomials which
are quadratically irreducible.

The following notation and terminology will be used throughout the
remainder of this paper. The ring of polynomials in a single variable z with
coefficients in Fy will be denoted by Fy[z] and F(z) will denote the field
of rational functions over Fy. By a rational function r = f/g, we mean a
function for which g # 0 and r is reduced so that (f,g) = 1. The degree of
7 is defined to be the maximum of the degrees of the polynomials f and g.

2 Replicators

A rational function r(z) = f(z)/g(x) over Fy is said to be a replicator over
F, if for every n > 1, 29" ~! — 1 divides f(z)? — f(z)g(z)?" ~!. In this case,
we write

f@)7 - f(2)g(@)¥ " = (277" = 1)#(n, )

for some polynomial #(n,z) € Fg[z]. The polynomial #(n,z) is said to be
the n-th order transform of r(z).

As an example let r(z) = 22. Since (z%)7" —z? = (29" ~1-1)(z?" +142?),
we see that r(z) is a replicator over F, for every g and the n-th order
transform of r(z) is 29" +1 4 z2. We will see later that one can replace 2
above with any polynomial and still obtain a replicator. On the other hand,
the rational function r(x) = z/(z — 1) is not a replicator over Fy for any ¢
since = — 1 does not divide 29" — z(z — 1)7" 1,

We now proceed with some general remarks on replicators.

Lemma 1
k—1

@Dk _ 1 = (91 - 1) Zx(q"—l)j
=0
Proof: The sum telescopes.
For g € Fy[z] let
I, ={f € Fylz] : 29" ~* — 1 divides f9" — fg2" ! for all n}.

That is, I, is the collection of all polynomials f for which f/g is a
replicator.
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Proposition 2 I, is an ideal of Fy[z].

Proof: If f" — f1g?" " = (7"~ — 1)h; and
57— f29""1 = (29"~ = 1)hy, then

i+ f) — i+ )7 = f+fF —hg” ' —fag” !
= (271 = 1)(h1 + ho).

Also, if f9" — fg?"~! = (27 ~! — 1)A then

()" -2k gt = STV - fgT ) )
= @R - f 4 T - fgT )
(7 @D - 1) + (7T - k)
k-1
= zF@" " -7 Y2l k)
=0

by Lemma 1.

Proposition 3 Suppose that a polynomial g € Fylx] can be written g(z) =
z*p(z) with p(0) # 0 and p(z) square-free. Then I; =< p >, the principal
ideal generated by p.

Proof: First notice that

pq" _ pgqn—l = pqn - x(qn-l)kpq“ = _pq” (z(q“_l)k - 1).

By Lemma 1 we see that p € J; and hence < p >C I,. Suppose f € I
and let r be an irreducible factor of p. Let d = deg(r). Then there exists

h € Fylz] such that fo - fgq“:1 = (27°"1 = 1h, ie., f(FI1 = g?""1) =
(29°=1 —1)h. Since r divides 29 ~! —1 and r divides g we see that r divides
f. Consequently, p divides f and I, C<p >.

Corollary 4 Ifg = z*, k> 0, then f/g is a replicator for every f € Fy[z).
In particular, every polynomial is o replicator over Fy for every q.

For a fixed positive integer n, define the mapping ¢ : Fy[z] — Fy[z] by

¢(f) = f("w :E).

Proposition 5 The mapping ¢ is linear.
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Proof: For fi, f2 € Fy[x],
(h+£)T -(h+f) £ -h + =t

=1 -1 Tgttlo] T get-lo 1

Also for a € F,
@) —af _af" —af  f-f

g-l—1  gt-l-1 Tge-1_71°

]
In the next proposition we compute the n-th order transform for any
polynomial.

Proposition 6 Suppose f = amz™ + am—1z™ 1 + -+ + a1z + ag is in

Fylz). Then
fn,z) = Z axz® E @13,

j=0

Proof: By the previous proposition it suffices to compute ().

20k _ gk (" ~Dk _ 1
T T -
¢(z*) = qn_l 1 =z* por e =z E a:(" i

Jj=0

by Lemma 1.

3 K-normal rational functions

Let k be a positive integer. A rational function r(z) = f(z)/g(z) over Fy is
said to be k-normal if for every n > 1 and for each A € Fin, the degrees of
the factors of the associated polynomial f(z)—\g(z) divide k, and for some
A, at least one factor has degree equal to k. In particular, if f(z) — Ag(z) is
irreducible for some X and f{x) — Ag(z) is either irreducible or factors into
linear factors for all other A, then r(z) is k-normal, where k is the degree
of r(z).

As examples, linear rational functions are trivially seen to be 1-normal
and quadratic rational functions are 1 or 2-normal over F; for every gq.

If g is a prime power, let r be a divisor of ¢ — 1. Then f(z) = z" is
r-normal over F,. This fact is a corollary of the following lemma.

Lemma 7 Let g be a prime power. Let A be an element of order e in F*,
and let v be a divisor of ¢ — 1. Let d = (r,(g — 1)/e), and let ¥ = r/d.
Then there exist distinct elements 89,01,...,04-1 € Fy such that 2" — A =

J=0 Yzt - 655 i), where 8; is a primitive d** root of unity in Fy and z™ — 6,
is zrreduczble over Fy.
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Proof: Suppose that A € F and a is a generator of Fy. Since A has

order e, then A can be written as A = ol 5% where (e, k) = 1. Note that
by the definition of d, (¢ — 1)/de is an integer.

For the factorization of " — A, let § = o(%&*% Noww=a'T isa
primitive d** root of unity in F§,s0let 0; = a(urz)kw’, ji=0,1,...,d-1.
The d; are distinct, and since 6? = A, then

-2 = ()=
d-1 .
= Hj=0($r—6j).

It remains to show that =™ — §; is irreducible over F, for j =0,1,...d - 1.
Let h; denote the order of §; = éw’. Note that if ¢ = 3 (mod 4), then
4 tr. Therefore, in order to show reducibility, it is sufficient to show that
if s is a prime that divides 7, then s divides h; but not (¢ — 1)/h; (see [§]
Theorem 3.75, p.124).

Letnp = a’f‘l so 7 has order de. We first show that z' —7 is irreducible
over F;. Let s be a prime that divides 7, and suppose that £,u, and v are
such that sllg—1, s*|le, and s*||r. Then s¢~*||(¢g—1)/e. Ifv < £—u, then

8¥||d, and s|f. This is always the case if u = 0, so the any prime divisor of 7
is also a divisor of e, and therefore these are the only primes that play a role
in deciding the irreducibility of z* — §;. On the other hand, if v > £ —u,
then s¢~%||d, and s||de, and slr, but qu 1)/de. Since every prime that
divides ¥ also divides r, then ™ — 7 is 1rreduc1ble

Now consider the irreducibility of z°* — ;. Note that §; = ol Jei+k
and the order of §; depends on any prime dwxsors ofej+k that also d1v1de
de. However it is st1ll possible to show that = — §; is irreducible over Fy,
since we need only consider primes that divide e and ej + k. But if s is
prime that divides e, then s { (ej + 1) since (e, k) = 1. Therefore 2" —§; is

irreducible, as required.
"

Corollary 8 Let g be a prime power, and let v be a divisor of g—1. Then
f(z) = z" is r-normal over F,.

Proof: Suppose that r|g— 1 and that A € Fyn, and consider g = " — .
If A = 0, then all the irreducible factors of g are of degree one. If A # 0,
then by the previous lemma, all irreducible factors of g have degree r/d for
some divisor d of 7, as required.
a

The proof of the following is immediate.
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Corollary 9 Let g be a prime power and ) be an element of order e in Fy,
and f = (g—1)/e. Then there exist distinct elements 8o,61,...,67_1 € F,

such that 2971 — A = H{; Hze — 0;), where z¢ — §; is irreducible.

Proposition 10 The polynomial 29 — z is g-normal over F,.

Proof: This follows from the fact that the polynomial 9 — 2 — ) factors
according to Theorem 3.80 of [8], into irreducible polynomials whose degrees
divide g.

4 The main theorem

For a polynomial p(z) = 2™ +am-12™ 1+ - -+ @12+ ag over Fy» we define
the following sequence of polynomials:

p(])(z) - mm + aq"_lzm_l + e + a‘{jx + a:gj-

m

Notice that p(®}(z) = p(z) where s is the least common multiple of the
degrees of the coefficients of p(z).
Define the spin S,(z) of the polynomial p(z) by

s—1

Sp(z) = [[ 99 (@).

=0
It is not hard to check that the following lemma holds.

Lemma 11 For polynomials f, g € Fylz], the spin of the polynomial f(z)—
Ag(z) is the polynomial HLI f(z) — AT g(x), where d is the degree of A

Lemma 12 Suppose p(z) is an irreducible polynomial over Fyn of degree d
and let o € Fyan be a root of p(z). Then Sp(z) is the minimal polynomial
of a over F.

Proof: First notice that p(z) factors as p; (z)pz(z) if and only if pU)(z)
factors as pij)(z)pgj ) (), and hence p)(z) is irreducible for each j. Next,
notice that the d distinct roots of p¥)(z) are a?’,09™" ...  qld-1n+i,
Hence S,(z) has the same roots as the minimal polynomial of o over F,.
Since these roots are distinct, we have equality.

=

We now obtain the following generalization of Theorem 3.7 of [9).

127



Lemma 13 Let f,g € Fy[z] and suppose A € Fyn has degree d and min-
imal polynomial h(z) over F,. Then the factorization of g%h(f/g) into
irreducible factors over Fy is given by [1, Sp(x), where p ranges over all
irreducible factors of f — Ag.

Proof: The polynomial h(z) has the factorization h(z) = ]-[:."=1 (z— )“’i)
over the extension field Fyn. Thus

d d
o*n(f/9) = ¢ T[(f@)/9(2) = 27) = [[(f = 27 9) = T[] Sp(@).
i=1 i=1 »
a

Now let 7(z) = f(z)/g(z) be a k-normal replicator over Fy and suppose
p(z) is an irreducible factor of f — Ag for A € Fyn of degree d with minimal
polynomial h(x) over F,. We say that Sp(z) is hard for r(z) if the degree
of Sp(x) does not divide n.

Write . . .
fq - fgq “l= (xq —1- I)G(n!x)f(na 32),

where 7(n, ) is the factor of f9" — fg7 ! of largest degree which is square-
free and satisfies (C,(n, z), 7(n,z)) = 1. Further let G(n) = deg(G(n, z)).

Let HMI(q,n,r(z)) denote the collection of all monic irreducible poly-
nomials of degree n which are hard for 7(z). Then we obtain the following
factorization of 7#(n, z).

Theorem 14 Let r(z) be a k-normal replicator over Fy of degree m. Then

#(n,z) = [J h(=), (+)
where the product is over all h(z) € HMI(g,d,r(x)) with d dividing n but
d not dividing n/k.

Proof: Recall that .
¥ —z= H h(z)

din

where h(z) runs over all monic irreducible polynomials of degree d dividing

n. Hence . . . .
O = fgu =9 ((f/9)* —f/9)
= ¢ [[ n(s/9) = [1o" n(s/9) =TT T1 So(=)

d|n din dn p

by the previous lemma. Consequently,

(27" ~! = 1)G(n,2)7(n,z) = HH Sp(z).

din p
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Dividing each side by (z?" ~! — 1)G(n, z) yields the theorem.
We now obtain the following counting formula.

Corollary 15

#HMI(g, bn,r(@)) = o= 3 wln/d)(m—1)q" - G(d) + 1]

din
di(n/k)

1 n
= = 3 u(@lm~ )¢ - Gn/d) + 1]
ki
Proof: By taking degrees of equation (*) we have

mg® - (¢"-1)-G(n)= Y  dN(d),
dt(n7k)

where N(d) is the number of monic irreducible polynomials over F, of
degree d which are hard for 7(z). Applying M6bius inversion leads to the

corollary.
a

A potation in a summation of the form ) F(n,d) can be simplified
din
dtk

when k is a prime power. Note that n can be written uniquely as n = k%n;
where a > 0 and & { n;, and let n; be called the k— free part of n, written
k — free(n). Then by definition,

Y. F(n,d)= > F(n,d) =Y F(k®n,d).
dn

d|k—free(n) din,
dik
In particular, if g is a prime power, then
o wde =" u(d)dt™,
dig— free(n) d|ny

S0
Z /.l.(d)qn/d = nquka (nl) =n Nqn/nl (n1)

dlg—free(n)
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5 Special cases

A polynomial f € Fyz] is said to be translation invariant if f(z+a) = f (=)
for all o € F,.

1. Let TIMI(g,m) denote the set if all monic irreducible translation
invariant polynomials of degree m in Fy[z]. The following theorem is useful
for calculating the cardinality of TIMI(g,m).

Theorem 16 Let f be an irreducible translation-invariant polynomial of
degree m in Fylz]. Then there is an irreducible polynomial g € Fglz] such
that f(z) = g(z? — z).

Proof: Suppose that f € F,[z] is irreducible and translation-invariant
of degree n. Let R C Fyn denote the set of roots of f. Let 6 be a root of
f,andlet X() = {0+a:a € F} and X*(6) = {#+a:a € F;}. Since f
is translation-invariant, then X () C R. Consider the relation defined on
R by the rule “for 6,,02 € R, 6, ~ 02 if and only if 6, —02 € F,". This s
an equivalence relation on R, and its equivalence classes are the sets X (6).
Each class contains ¢ elements, so g|n, say n = gt, where ¢ is the number
of equivalence classes.

For any root § and any a € Fy, 6 and 6 + « are algebraic conjugates.
Let u be the least positive integer such that 97" € X*(6), and suppose that
99 =0+ B where B € F,. Then (§7)%" = (6+8)? =06+28. Similarly
07" =6+3B8,s=0,1,.... In particular 69" =9, so qu is a multiple of
n, therefore u > n/g(=t).

Let 6; = 6”‘,1' =0,1,...n — 1, so in particular, § = 6. Then (0:)" =
(67 = (0 + B)* = 6; + . This implies that u is the least positive
integer such that 0:-’“ € X*(8;), for any i, since if there were a u; satisfying
0 < u; < u such that 0‘{"1 € X*(61), a similar computation would show
that 67 € X*(0), a contradiction of the definition of u. This implies that
X(86), X(81),-..,X(8,-1) are distinct equivalence classes, because if some
X(8;) = X(0;) where 0 < & < j < u—1, then (8;)7 ' € X(6;), where
0 < j — % < u, which contradicts the fact u is the least positive integer
such that (9;)‘1’-‘ € X(0;). Therefore there must be at least u distinct
equivalence classes, so u < n/g(=t), and we have u = 1.

Let P@)= [] - Then P(6)= [] (6—a)=67-0.

YEX(0) aeF,

Note that

@ —0)" =(6") -0 =(0+B)7— (8 +8)=67—06.

Therefore the degree of P(6) over F, is a divisor of t. But P(6;) = P(6;)
implies that 87 —6; = 6 —6;, that is, P(60), P(61), .. ., P(f:-1) constitutes
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a set of ¢ distinct algebraic conjugates over Fy, so

t—1 t—1
9(@) = [[(= - P(6:) = [ [ (= - (67 - 6:))

i=0 i=0

is an irreducible polynomial of degree ¢ over F,. Further

t—1 t—1
o ~2) = [[@-=z-f-6)) =[]~ 6f - (= - 6)

i=0 =0

t—1 t—1
= Jl(z-6)2-@=-6))=]] [ - 6: - ) = f(x),

=0 i=0 acF,

as required.
As was noted earlier, the polynomial z¢ — z is g-normal replicator of

degree g over F,. It can be easily verified that

=77 = (27-2)" - (a7 - 2)

(@ = zf(z? - )7 -1).

Therefore #(n,z) = z and G(n) = 1.
This provides an example of a new result obtained by the mechanism
of this paper, namely

dlg—free(n)

— n/d :
ATIMI(qm) = { (@-1/gn) X u(d)g/ if gm,
' 0 otherwise.

and for the case of m = gn, let n = ¢°n; where a > 0 and g{n;. Then
#TIMI(g,qn) = ((g — 1)n1/qn)Nyn/n,y (n1).

In [13] Shparlinski showed that in general for an element a € F, there is
no connection between the multiplicative order of a and the multiplicative
order of a+1/c. In fact, he showed that under some rather mild conditions,
the orders can in fact be independent of each other. This work on the orders
of a and @ + 1/a was motivated by the question of whether an optimal
normal basis generator is always primitive; we refer to [12] for a discussion
of such generators.

We now show that under some highly constrained conditions, there can
be a relation between the orders of  and 8 = a+1/c in a finite field. In the
following we show that if & is a root of a translation invariant polynomial
over F3, then there is a relation between ord(er) and ord(8) . In particular,
we prove the following,.
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Proposition 17 If o is a root of a translation invariant irreducible poly-
nomial of degree 2k over Fy and B = a+ 1/, then ord(B) = ord(a) if k is
even, and ord(B) = ord(c)/(ord(c),3) if k is odd.

Proof: Let o be a root of a monic translation invariant polynomial
f(z) of positive degree over F3, and let 8 = a +1/a . Then f(z) is a
polynomial in :c(:z: + 1) and so it has degree 2k with k > 0. Over the field
Fy, #(z) = 2" + z + 1, and so by Theorem 12, f(z) divides 7(n,z) and
hence o2 = a + 1. After squaring and dividing by a, we have a2 -1 =
a+l/a=4.

We have that ord(8) = ord(a)/(ord(a),2¥*! — 1). Moreover (2% —
1,251 —1) = 3 if k is odd, and equals 1 if k is even. Since a € Fya«,0rd(a)
divides 22* — 1 and hence (ord(c),2%*! — 1) = 3 if k is odd and 3 divides
ord(a) otherwise.

a

Proposition 17 shows that infinitely often, there is direct relation be-
tween the order of @ and r(f), where r(z) = z + z~!. We show that a
similar statement is true for any rational function over F;; apart from those
that are essentially constant, that is, for all rational functions not of the
form af(z)/f(x) where a € F,. Clearly it is sufficient to prove the result
for rational functions in their reduced form.

Suppose that r(z) = f(z)/g(x) is a non-constant reduced rational func-
tion over the field F,. Let F, denote the algebraic closure of Fy, and
suppose that 8 € F, is not a root of either of the polynomials f(x) or g(z).
Then 6 is said to be a power-mate of r if ord(6) = ord(r(8)). Let PM(q,r)
denote the set of power-mates of 7. We show that the set PM(q,r) is
infinite.

Theorem 18 Suppose that r(z) is a non-constant reduced rational function
over the field F,. Then PM(q,r) is infinite.

Proof: Let p be the characteristic of Fy.
Case 1: The function r(z) is a polynomlal In this case suppose that

r is a non-constant polynomial. If r is a p-th power, say r = 'r” for
some polynomial r; since r is not constant then it can be written as r =
'rg where 72 is a polynomial that is not a p-th power. It follows that
ord(r(6)) = ord(rz(@)) for any 6 € F, that is not a root of r. Therefore it
is sufficient to establish the result for polynomials that are not p-th powers.

Suppose that r(z) is not a p—th power. Let n be an integer satisfying
g* > deg(r). Let ho(z) = 27 —r(z). Then h,(z) = —r'(x) where
r # 0, and any repeated factor of h,, including any repeated factor z,
is also a factor of 7 (z). Also any factor of multiplicity ¢ in '(z) occurs
with multiplicity at most ¢ + 1 in h,(z). Let deg(r’) = dy. If s > 1, then
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2s 2 s+1, thus d, the total degree of the product of factors with multiplicity
t > 2 in h,(x), satisfies d < 2d,.

Assume that PM(q, ) is a finite set, and let M PM(q,r) denote the set
of minimal polynomials of the elements of PM(q,r). Then MPM(q,r)
can be partitioned into two disjoint sets, S; and S;, where S) = {m €
MPM(q,r) : m|r'} U {z} and S = {m € MPM(q,r) : m{r'}. Let dp
denote the sum of the degrees of the members of S;. Note that d; and dp
do not depend on n. Let n; be an integer satisfying ¢"* > 2d; + dy + 1,
where the summand 1 is included to cover the eventuality that z is a factor
of multiplicity 1 in r. Since deg(hy, (z)) > 2d; + d2 + 1, then hy, (z)
must be divisible by an irreducible polynomial g(z) that does not occur in
PM(g,r). Let 6 be a root of g(z). Then 69" = r(6), and since § and §9"*
are algebraic conjugates, then ord(d) = ord(6” '), so 8 € PM (g,7), which
contradicts the fact that PM(q,r) is finite.

Case 2: The function r(z) is not a polynomial. In this case r(z) can
be written uniquely in the form r(z) = f(z)/g(z) where g(z) is a non-
constant monic polynomial. Using an argument similar to that in Case
1, we may assume without loss of generality that g is not a p-th power.
Recall that if r = f/g, then deg(r) = max{deg(f), deg(g)} Let n be an
integer satisfying ¢ > deg(r) Let h,,(:z:) =g(z)z? ~f (:z:) viewed as a
polynomial over F,,. Then h, (z) = 29" ¢'(z) — f’ (), where ¢’ #0.

Again assume that PM(q,r)is a ﬁmte set, and let MPM(q,r) denote
the set of minimal polynomials of the elements of PM(g,7). Let m be any
monic irreducible factor m of h, other than m(z) = z, and let 6 be any
root of m € Fy. Then @ # 0 and g(0)87 — f(6) = 0. If g(8) = 0, then
f(0) = 0, which is impossible since (f,g) = 1. Similarly f(8) # 0. So
07" = £(8)/9(6), and since 6 and §7" are conjugates then m € MPM (g,7)
and therefore all monic irreducible factors lie in MPM (q, ruU {:c}

Let a and b be any two distinct integers such that g® > ¢® > deg(r).
Let m be any polynomial divides h, and hb with multlphcxtles k, >2and
ky > 2 respectively. Then m divides G = (ha(:z:) hy(z)) with multiplicity
kap = min(ka, k). But G divides D = hy(x) — hy(z) = (22 —29")g () =
(x99 — 1)z9°g’(x). Clearly z7°~9" — 1 has no repeated factors, so any
polynomial m € M PM(q,r) that appears with multiplicity ¢,,, > 1 in g'(z),
can occur with multiplicity at most u,, = tx + 1 in G, and any polynomial
m € MPM(q,r) that does not divide g'(z) occurs with multiplicity um, < 1
in G. Further, let u; denote multiplicity of the factor z in f (a:) Ifcis
any integer satisfying ¢°¢ > deg(r), the multiplicity of z in k. is u., and
therefore the multiplicity of = in h is at most u.

Let S = {m € MPM(q,r) : mlg} Sz = {m € MPM(q,r) : m1{g'}
and § = 5;US;U{z}. For any polynomial m € S, we define the value v(m)
of m as follows. If m € Sy, then v(m) =2, if m € S, then v(m) = upy +1,
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and v(z) = u;. Note that no polynomial m of S can appear in both h,
and h, with multiplicity greater than v(m).

Let 8, = Y ,.cgv(m)deg(m), and let s* and n* be the least inte-
gers satisfying ¢° > s, and ¢™ > deg(r), respectively, and let ng =
max{s*,n*} + 1, and let n; = no +1,4=0,1,2,---. As noted above, for
i > 0, all monic irreducible divisors of hn, liein S. Form € Sand ¢ > 0, let
w;(m) denote the multiplicity of the polynomial m as a factor of hn,. Since
g™ > ¢° > s,, then there must be at least one m € § such that wo(m) >
v(m). Let Wy = {m: wo(m > v(m)}. Since wo(z) = v(z), then z ¢ Wy,
so Wo € MPM(q,7). Similarly, there must exist an m; € MPM(q,7)
such that w; (m;) > v(m1). If m; € Wp, then m; has a multiplicity that is
greater than v(m, ) in both the factorization of hy,, and hy,, a contradiction.
Let Wy = Wy U {m € MPM(q,r) : wi(m) > v(m)}. Continuing in this
way, construct Wo, W1, Wa -+, with Wo ¢ W1 G Wa--- C MPM(q,r).
Since MPM(q,r) is finite, there exists a j such that W; = MPM(q,r).
Thus no factor m of hn,,, can occur with multiplicity w;41(m) > v(m), a
contradiction of the assumption that PM(q,r) is finite.

»

By combining the methods of Proposition 17 and Theorem 18, it is
possible to obtain other relations between the orders of § and r(8) for
infinite classes of @ similar to those obtained in Theorem 18.

9: The enumerative result for translation invariant polynomials can be
generalized as follows. Let Fy be a subfield of Fy. A polynomial f € Folz]
is said to be Fy - subfield translation invariant if f(z + a) = f(z) for all
o € Fy, where Fy is viewed as a subfield of Fy. For brevity, if ¢’ is
specified, the polynomial is said to be subfield invariant.

Although every translation invariant polynomial in Fy[z] is Fy - subfield
translation invariant for every subfield, the converse is not true. For exam-
ple, let a be a root of z2+z+1in Fy. Then z?+z+a and ?+z+a+l
are Fy- subfield translation invariant, but they are not translation invari-
ant. (They are the only Fy-subfield translation invariant monic irreducible
polynomials of degree 2 over Fy.)

Let STIMI(q',q,m) denote the set of all monic irreducible subfield
translation invariant polynomials of degree m in Fy[z].

The following theorem is useful for calculating the cardinality of
STIMI(q',q,m).

Theorem 19 Let f be an irreducible Fy -subfield translation invariant poly-
nomial of degree m in Fylz|, then there is an irreducible polynomial g €

Fyz] such that f(z) = g(z? — z).

The proof of this theorem is the proof of Theorem 16 mutatis mutandis.

It can be shown that the polynomial 27 — z is ¢’-normal replicator of
degree ¢’ over Fy.
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Note that
f-fe = (@ -2)T - (" - 2)
(:z:""-1 - )z[(z?" —2)?1 - 1).
Hence 7(n,z) = z and G(n) = 1. Therefore

#STIMI(G q,m) = { (@-1/gn) T wd)g™*if ¢im,

dlg¢’—freen
0 otherwise.

If m = ¢’n, the result can be written in terms of Ny(n), the number of
monic irreducible polynomials of degree n over F,. Let n = ¢"*n; where
a > 0 and ¢’ {n;, then it is easily shown that

#STIMI(q',q,m) = ((¢' — )n1/q'n)Nyn/ny (n1)-

3. Consider r(z) = .wi;l:l The rational function r(z) is a 2-normal
replicator over Fy of degree m = 2. Thus

fO—fg =+ 1) —(@®+ 1)z = (27 - 1)z - 1).

Here, .
#(n,z) =% 1 -1,
_J z*°-1 ifgisodd
G(n,x)—{ z+1 1fglseven :
and
_f 2 ifgisodd
G'(n)—{ 1 ifgiseven °

We note that these results agree with those from page 75 of [6]; see
also [10]. By Corollary 15 we obtain the result on the number of monic
irreducible self-reciprocal polynomials over F, given in the introduction of
this paper:

1
#SRMI(q,2n) = 5= > p(d)(g™* - 1)
d“odd

if ¢ is odd and )

= — n/d
#SRMI(q,2n) = o le w(d)g
d o'&d
if ¢ is even.
If n=2",v2>0,¢odd, then

_J E@-1) n =1, g odd,
#SMRI(q,2n) = { L (Nonse(t) otherwise.
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This is a result of the fact that Zdln u(d) = 1if n =1 and is zero otherwise,
and the properties of n being 2 — free, as discussed earlier.

4. A monic irreducible binomial over the field Fy is an irreducible poly-
nomial of the form z" — X where A € Fy. Let B(r,q) denote the set of
all monic irreducible binomials of degree r in Fy[z], and let P(r,q) denote
the product of all elements in B(r,q). We use the fact that f(z) = z" is
r-normal over F, to determine #B(r,q), the cardinality of the set B(r,q)

This result is related to a result of S. D. Cohen [3] on counting (r,m)-
polynomials, that is, irreducible polynomials of the form p(z"), where p is
a monic (necessarily irreducible) polynomial of degree m in Fy[z]. This will
be discussed after the determination of #B(r, ).

As usual, the method produces a factorization that is normally used
to produce a "sum over divisors" formula. However, in this instance the
closed form of the answer is that of a product. Rather than using sums to
produce the answer, we use the factorization itself to lead directly to the
product, illustrating the flexibility of the method.

In the following we let Q4(z) denote the cyclotomic polynomial of order
d when it is defined over Fj,.

Theorem 20 Suppose that the integer r > 1 and the field F, are given.
Let v’ be the squarefree part of . Then

(1) 20~ V* =1 =T],_, P(d, q), and

(2) Ifr'lg—1 and either 41 q+1, or 4lg+1 but 417, then

#B(r,q) = (p(r)/r)(g — 1). Otherwise #B(r,q) =0.

Proof: If f(z) = z", then
fq _ fgq—l =g — " = (xr(q—l) _ l)mr,
and G(1,z) = «" and 7(1,z) = (z"@V - 1)/(z2~! - 1).

But
@@V -1)= ] @ -»,
AeF;

and since it is 7-normal over Fy, then 7(1, z) is the product of the monic
irreducible polynomials in F, that are hard for f(z). But by the definition
of hardness, an irreducible factor of a monic binomial z™ — J, is hard for
f(z) = z" if its degree does not divide 1. By Lemma 7, the degrees of the
irreducible factors of are divisors of r. Moreover it is easily seen that for
any irreducible binomial g(z) = z¢— )" such that d|r, there is a A such that
g(z)]z" — A. Since 7(1,z) has no repeated proper factors, then

7(1,7) = [] P(d, ),
A
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and therefore
2@ — 1 =] P(d,q).
di|r

In particular

) [T Quz"?) =29" ~1= [] P9,

dlg—1 dlg—1

where Q4(z) is the d-th cyclotomic polynomial over F.

Part (2): By Corollary 9, the irreducible factors of Qq(z?~!) all have
degree d. Equating sets of irreducible factors of the same degree in the
products in equation (*) yields P(d,q) = Qa(z?7!) for any d that divides
g-1.

Let A be any member of F‘ Now any prime that divides r also divides
of 7, so under the above hypotheses, z" — A is irreducible over F, if and

only if 2" — A is irreducible over Fy, so #B(r,q) = #B(r',q).  Since
P(r',q) = Qr(z?7!) and Q(z) has degree ¢(r'), then T'(#B(T, q) =
#(r')(g — 1), and the result holds for /. If r = [T, P is the canon-
ical prime decomposition of r, then ¢(r) = pf*~1pg2~1... pauw=1 _7..1 i,
therefore ¢(r)/r = ©(r') /7', so the result holds for r as required. It is easily
shown that if the hypotheses fail then ™ — ) is reducible, which completes

the proof.

|

The notion of an (r,m)-polynomial, that is, an irreducible polynomial
of the form p(z"), where p is a monic irreducible polynomial of degree m
in Fy[z] was introduced by Cohen in [Cohen, 1968), where the number of
such polynomials was determined. Let L.(rm,q) denote the number of
(r,m)-polynomials over Fy. Clearly every monic irreducible polynomial
of degree m in Fy[z] is a (1,m) polynomial, and conversely, and therefore
Ly(1m, q) = N,y(m), so the problem is to determine L,(rm,q) for 7 > 1.

For r = 1, the polynomial f(z) = z is a (1, 1)-polynomial but is not

a monic irreducible binomial. But for r > 1, every (r, 17)—polynomial is

a monijc irreducible binomial and conversely. Thus for r > 1, we have
Lr(rl,q) = #B(r, 9)-

As above, let 7' denote the squarefree part of , and suppose r > 1. It
follows from Theorem 18 that if r’|g — 1 and either 4 t g+ 1, or 4|g+1
but 4t r, then L.(r1,q) = (¢(r)/r)(q — 1), otherwise L.(r1,q) = 0. This
result was first established by Cohen (by other methods) and is central to
his proof of his theorem below.

The following is required for the statement of the theorem. Suppose
that g is a prime power and 7 > 1 is an integer such that (r,q) = 1. Let
k denote the order of ¢ mod 7/, that is, k is the least positive integer such
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that ¢* =1 mod 7. If m is a positive integer, then r’|g™ — 1 if and only
if k|m. Then m can be written in the form

m = knmn,
where (r,n) = 1 and nj|r.

Theorem 21 (Cohen) Suppose that integers r > 1, m > 0, and o field F,
are given. Then, if r'|g™ — 1, 4t (r,q™ + 1) and m is written in the form
m = knyn as above, we have

wiemo={ YR 35

Otherwise we have L.(rm,q) =0.

For the sake of completeness, we include a proof of Cohen’s result in
terms of monic irreducible binomials. The formulae are written as products,
and in the case n = 1, our proof avoids summations.

Proof: Case 1 Suppose that n = 1. Let p(z) be a monic irreducible
polynomial of degree m in Fy[z]. Then, as in the proof of Theorem 20, p(z")
is an (r,m)-polynomial if and only if it is an (r',m)-polynomial, which is
the case if and only if ' — X is irreducible over Fym where ) is a zero of p(x)
in Fym. So we can restrict our initial consideration to r'. Since k|m, then
|g™ — 1, and #B(r',q™) = (¢(r')/r')(¢™ — 1). Suppose that " —visa
factor of P(r',q™), and suppose that 7 is of degree t < m. Then r’ lg* —1,
8o k|t and t = kv where v|n;. Ift = 1, then clearly p is of degree m(= k). If
t > 1, let s be a prime such that s|(n;/t)t. Then s|r’, and therefore ™ —v
factors over Fye:, contradicting the fact that z" — v is irreducible over Fym.
Therefore v is of degree m. Let f be the minimal polynomial of v over
Fg, then f (z) = [Irg (" —v?) over Fym, and therefore f is an (r',m)-
polynomial over F, and conversely. Therefore, over Fy, we have P(r',¢g™) =
I st m £ @) 0 Lo ('m,q) = #B(r',a™)/m = (p(r')/r'm)(a™ = 1).
The result for general r follows from the fact that o(r)/r = o(r')/r'.

Case 2 Suppose that n > 1. Again we can restrict our initial con-
sideration to the case of 7. Suppose that v € Fym is such that " —vis
irreducible over Fym, and that v is of degree ¢. Then k|t and t = kd where
dlnyn. As in Case 1, if d is divisible by a prime divisor of 7, then z7 — v
cannot be irreducible, so (d,n;) =1, and d|n, so t = kn;d.

Consider Fym as an extension of Fxn,. Again

#B(r',q™) = (o(r')/r') (@™ - 1).
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Let S; = {v:z" —p € B(r',q™),deg(v) = t}. Then, as above,

HpGSe @ —m) = HfGS(r',t,q) f(z)

over Fy, so #S; = tL.(r't,q).
Thus 3 4, knidLy(r'knid, q) = (p(r')/r')(¢*™" - 1).
As noted by Cohen, Mébius inversion of this equation yields

knanLe (r'kman, g) = ((r')/r) 3, w(d)(g*™™/¢ - 1),
and since 3, pi(d) = 0 for n > 1, then
mLy(r'm,q) = (p(r')/r') }_,, w(d)(@"™/* - 1).

Generalizing from 7/ to r completes the proof.

6 Quadradically irreducible polynomials

Assume that g is an odd prime power and let S denote the collection of all
monic self-reciprocal irreducible polynomials over F, of degree 2d where d
runs over all divisors of n for which n/d is odd.

From Section 3, part 3 (see also Jungnickel [6] page 75,) we have the
following factorization

9t -1
51 Hf'
T 1 fes

Let s = 9% We have

]
zqn+1 —1= (:L.2 _ 1) Zmﬁ
i=0

since the right hand side telescopes.
Let P, denote the collection of all polynomials over Fj, of degree n and
let Sz, denote the collection of all self-reciprocal polynomials over F, of

degree 2n. Define

by
f(@) =" f(z+271),

where n = deg f.
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A self-reciprocal polynomial b(z) of degree 2n can be written as

n-—1
b(z) =Y bi(a®™F + ') + baz™
=0
Define
¥: Sy, — P,

by

n—1
b(z) — z b;Dy—i(z,1) + b,
i1=0
where for a € Fy, the Dickson polynomial Dy(z,a) of degree n > 1 and
parameter a is defined by

/2l g
Dn(x’a)= Z n—i( i

=0

)(_a)imn—%’

see 7] page 8, or [8] page 355.

It is shown in [4] that the function ¥ is multiplicative and is the inverse
of ®. Define Dy(z,1) := 1 if 4 divides ¢" — 1 and Do(z, 1) := 0 otherwise.
Then we have the following factorization

> o =1

i=0 fes
SO R
3" Doz, 1) = [T 2.
=0 fes

A monic irreducible polynomial f of degree n over F, is said to be
quadratically irreducible if 2 — Az + 1 is irreducible over Fyn for any root
A € Fyn of f. We now obtain

Proposition 22 For a monic irreducible polynomial f of degree n over Fy,
the following statements are equivalent:

1. f is quadratically irreducible over Fy.

2. f(2)f(—2) is a non-square in Fy.

8. X% — 4 is a non-square in Fyn for one (and hence all) roots A of f.

4. ®(f) is irreducible over Fy.

5. f = ¥(g) for some monic self-reciprocal irreducible polynomial g of
degree 2n over Fy.
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Proof: The equivalence of statements 1, 2, 3, and 4 is in [10]. The
equivalence of 4 and 5 follows since from [11], ¥ is the inverse of ®.

Let J denote the collection of all quadratically irreducible polynomials
over Fy, of degree d, where d runs over all divisors of n for which n/d is
odd. We are able to obtain the following factorization of the polynomial

Yizo Dai(z,1):

za:pm-(x, N=T]+

i=0 feJ

Let N(n,g) denote the number of quadratically irreducible polynomials
over F, of degree n. It follows easily that

Nng) =5 3 w(@(g™é-1).
ddlc;‘dd

Remark: The function ® gives a bijection between the set of quadrat-
ically irreducible polynomials over F; of degree n and the set of monic self
reciprocal irreducible polynomials of degree 2n thus the formula for N(n, q)
above can also be obtained easily.

In the case when ¢ = 2, if in the above we replace

xq e S 1
Z :c2‘ Do, Z Dz,(x, 1)
i=0 =0
with
$2"+1 -1

Zx 1, ZD,(x 1)

i=0 =0
respectively, then we obtain,

Proposition 23 For a monic irreducible polynomial f of degree n over F,
the following statements are equivalent:

1. f is quadratically irreducible over Fs.

2. The trace of f is 1 and the trace of its linear coefficient is also 1.

3. ®(f) is irreducible over Fj.

4. [ = ¥(g) for some monic self-reciprocal irreducible polynomial of
degree 2n over Fs.
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In addition -
ZDi(x’ 1) = H f
i=0 feJ

and 1
_-— n/d.
N@2)=5- Y wda

din
d odd
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