1

When cryptographic primitives are built based on the discrete logarithm
problem (DLP), it is required that the DLP be computationally intractable.
The intractability of the discrete logarithm problem depends on the group
representation. For example, in Z,, the additive group of integers modulo
n, the discrete logarithm problem is easy to solve. Namely, for a given
element 8 in Z, and generator a of Zy,, it is easy to find the non-negative
integer = such that za = B. Since ged(n, &) = 1, the multiplicative inverse
of a can be computed by means of the Extended Euclidean algorithm and
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Abstract

The intractability of the traditional discrete logarithm problem
(DLP) forms the basis for the design of numerous cryptographic prim-
itives. In (2] M. Sramka et al. generalize the DLP to arbitrary finite
groups. One of the reasons mentioned for this generalization is P.
Shor’s quantum algorithm [4] which solves efficiently the traditional
DLP. The DLP for a non-abelian group is based on a particular rep-
resentation of the group and a choice of generators. In this paper
we show that care must be taken to ensure that the representation
and generators indeed yield an intractable DLP. We show that in
PSL(2,p) = {a, B) the generalized discrete logarithm problem with
respect to (o, 8) is easy to solve for a specific representation and
choice of generators « and . As a consequence, such representation
of PSL(2,p) and generators should not be used to design crypto-
graphic primitives.

Introduction

hence the discrete logarithm revealed.
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In [2] the authors generalize the discrete logarithm from cyclic to any
finite group. We assume that the generalized DLP is defined as in [2] and
examine its tractability in the projective special linear group PSL(2,p),
where p is an odd prime. We show that in PSL(2,p) = (e, 3) the gen-
eralized DLP with respect to (a,f) is easy to solve for a specific group
representation and specific choice of generators a and 3.

As a consequence we have that such group representation of PSL(2, p)
together with particular generators should not be used in the design of
cryptographic primitives whose security relies on the intractability of the
DLP.

2 Preliminaries

Let G be a finite cyclic group generated by element o, and let 8 be an
element from group G. The traditional discrete logarithm problem is to
find the non-negative integer  such that o® = .

As defined in [2], the generalized discrete logarithm problem (GDLP)
for an arbitrary finite group is as follows: Let G be a finite group generated
by ay,...,a;. Given 8 € G, determine a positive integer k and a (kt)-tuple
of non-negative integers (z11,...,T1¢, +++sTk1y.+.,Zkt) Such that

k
p=TI(e5"...0f"). 8

i=1

The (kt)-tuples (z11,...,Z1¢y...,Zk1,...,Tke) for which equation (1) holds
are called the generalized discrete logarithms of B with respect to (a3, ..., o).

If
k
Se = {TT 03" ...af*) | 215 € Zn, } 2

i=1
where n; denotes the order of element ;, then the smallest positive integer
ko such that for all k > kg G C Si is called the depth of group G with
respect to (aa,...,a).

Given a field F,, of g elements, and a fixed natural number n, the group
of all n x n nonsingular matrices with respect to the operation of matrix
multiplication is known as the general linear group of degree n over F, and
is denoted by GL(n,q). It is easy to see that |GL(n,q)| = [Troy (g™ — g').
The set of all matrices in GL(n,q) of determinant 1 forms a subgroup
of GL(n,q), the special linear group, denoted by SL(n,q). SL(n,q) is



the kernel of the homomorphism det : GL(n,q) — F;, and therefore
|SL(n,q)| = |GL(n,q)|/(g—1). The center Z(GL(n,q)), of GL(n,q), con-
sists of all scalar matrices {AI | A € 3}, thus the center of SL(n, g) consists
of all matrices {AI | A = 1}. The projective special linear group of degree
n over [F,, is the quotient group PSL(n,q) = SL(n,q)/Z(SL(n,q)). Here,
we deal with the case n = 2, where g is odd, hence |PSL(2,q)| = (¢°—1)gq/2.

3 Weak GDLP in PSL(2,p) with respect to
two specific generators

Consider the group G = PSL(2,p) where p is an odd prime. Let o and
[ be any two non-commuting elements of order p in G, and let H and K
be the subgroups of group G generated by o and 8, respectively. In [5]
the author shows that G is generated by o and 8 and that G = HKHK.
Thus, the depth of G with respect to generators o and g is two.

For the purpose of further analysis we assume that the group G is rep-
resented by matrices of SL(2,p), up to a factor +I, where I is the 2 x 2

identity matrix.
11 10

are both of order p, non-commuting and generate G, i.e., G = (4, B). We
show that the generalized discrete logarithm problem in G with respect to
(A, B) can be solved efficiently.

Suppose that M = [ z 3 ] € G, with a,b,c,d € Fp. Since the

The matrices

depth of G is two, M can be represented as M = A*BiA*B¢ for some
non-negative integers i, j, k,£. Solving the generalized discrete logarithm
problem means to find a tuple of non-negative integers (i, , k, £) such that
M = A'BIA*Bt,

Note that
i |1 ¢ ;|10
A_[O 1] and B’—[j 1]. (3)
Then,
injakpt | 1 1 10 1 k% 10
cwas=[o 1|5 T][2 0]



Hence,

[a b]=[1+ij+£((1+ij)k+i) (1+z'j)k+i] 5)
c d i+e(k+1) jk+1|°

By equating corresponding entries of the matrices, we obtain the fol-
lowing system of four equations with four unknowns 4,j,k,¢ in Fp = Z,:
1+ij+L((1+)k+i)=a
Q1+i)k+i=b
J+e(gk+1)=c
jk+1=d
Indeed, the system of equations can be solved for i, j,k,¢ using Grébner
basis computation. Let I be the ideal
I= {148k +ij+ijkl+i —a,
k+ijk+i-0b,
j+ikl+£—c,
jk+1-d).
A Grobner basis GB for the ideal I is computed over the set of rational
numbers:
GB = [{ - jic+ ja —c,
k+id-b,
jibe+ ji— jab—a+ bec+ 1,
jid—jb+d -1,
ad-bc—-1].
Therefore, solving the generalized discrete logarithm problem in the group
PSL(2,p) with respect to (A, B) is equivalent to solving the following sys-
tem of equations in i, j, k,£ € Z,.
£—jic+ja—c=0
k+id-b=0
jid—jb+d~-1=0
Generally, the system of equations has more than one solution. The follow-
ing proposition provides a method for obtaining a solution when M € G.

For the next proposition we continue to have A = [ (1) i ], B =

[ i (1) ] and M = [ ‘: 3 ], elements of PSL(2,p).



Proposition 3.1 Let A, B and M be as above. Then, there exists a non-
negative integer n < p such that nd — b # 0 over Z,, and such that the
4-tuple (i,5,k,8) withi=n,j=(1-d)(nd-b)"',k=b-nd, £ =
(1 - d)(nc — a)(nd — b)~! + ¢ provides a solution to M = A*BiA*B¢.

Proof: The proof consists of directly verifying that the given values for

%, J, k, £ satisfy the above system of equations. The existence of n is ensured

since M € PSL(2,p) and hence b and d can not simultaneously be equal
to zero.

O

The example that follows illustrates the described method.

Example 3.1 Consider the group G = PSL(2,7) represented by means of
matrices of SL(2,7) modulo {£I}. Suppose M, A, B € G are as follows:

m=[8 2] =[5 1] m=[19]

Computing the generalized discrete logarithm of matrizr M with respect
to the generators A and B corresponds to determining the tuple of non-
negative integers (i,7,k,£) such that A'BIA*B¢ =M.

The system we encountered earlier becomes:

14+ +L((L+ij)k+i) =5
A+ij)k+i=2
i+e(k+1)=6
jk+1=4

Proposition 3.1 yields (4, , k, £) = (0, 5,2, 2). Simple matrix multiplication
in Z shows that indeed A°B%A2B% = M.

4 Weak GDLP in PSL(2,p) with respect to
any two generators of order p

Suppose now that C and D are any two non-commuting elements of order
p in G = PSL(2,p), and that A and B are the matrices defined in the
previous section. We have that G = (C, D), moreover, by exploiting the
fact that G acts doubly transitively by conjugation on the (p+ 1) p—Sylow
subgroups of G, we can efficiently solve the generalized discrete logarithm



problem with respect to the generating tuple (C, D). Thus, for any given
M € G our goal is to determine non-negative integers 1, j, k, £ such that;

M =cCiDickDt.

Let Q be the collection of all p-Sylow subgroups of G. Then |Q| =p+1
and if P € Q, then |P| = p. G has a doubly transitive representation
on by conjugation. Thus, the normalizer of P € R, Ng(P), is of order
p(p— 1)/2 and acts transitively on Q \ {P}.

Let P,Q € Q and let g € G such that P9 = @, where P9 = g~1Pg.
There are in all p(p —1)/2 elements g € G carrying P to Q by conjugation,
namely the elements of Ng(P)g = gNg(Q). For any two pairs of p-Sylow
subgroups, and hence for the particular pairs ({A),(B)) and ((C), (D)),
there exists an element g € G such that

((C), (D)) = ({(A)*,(B)?) -
Then, C and D may be expressed as follows:

C=g'A°g D=g'BYyg
for some positive integers s,t < p .

To determine an element g € G such that (4)9 = (C) and (B)? = (D),
we proceed as follows. We determine an element g; € G such that (4)9 =
(C). Then (B)#* = (B;). Now, Ng({C)}), acts transitively on Q \ {(C}}.
Therefore, there exists an element g € Ng({C)), such that (B;)%* = (D).
Then, for g = g192

(4) = ((4)")" = (C) = (C), and
(B)? = ((B)#)” = (B1)** = (D).

Note that the element g» can be chosen among the p elements of (C), i.e.,
from the centralizer of (C), as 2\ {{C)} is a single orbit of length p.

If we assume that the element g € G such that gCg~! € (A4) and
gDg™ € (B) has been found, then for some positive integers s and ¢,

A® = gCg~?! and Bt = gDg~1. On the other hand A® = [ L s ] and

01
10
t —
B_tl

is the (2,1) entry of the matrix gDg~!.

. Therefore, s is the (1,2) entry of the matrix gCg~! and ¢

Assume that we have computed element g. We may write:

M = cC‘DickDt



= (971A%) (g7 B'e)’ (g7 A%9)" (g7  B9)
(971 A%g) (g™ B g) (g~ A% g) (g~ B*g)
— g—lAaiBtjAakBtlg

Let z = 8i, y = tj, v = sk and w = tf. Then, M = g~'ABYAYBY¥g
and hence gMg—! = A*BYAYB¥. Denote by M; = gMg~!. Obviously,
M, € G and My = A*BYAYB". Thus, we have transformed the generalized
discrete logarithm problem of PSL(2,p) with respect to C and D to the
generalized discrete logarithm problem of PSL(2,p) with respect to A and
B which we were able to solve in the previous section. Therefore, since every
nonzero element in Z, has an inverse, we are able to compute integers i, j,
kand ¢ from i=2zs"1, j = yt~!, k = vs~!, £ = wt~! where all operations
are performed modulo p.

Note that it can not happen that s or ¢ is equal to zero, due to the fact
that C = g~'A%g and D = g~!B*g. If say s = 0, then A® is the identity
matrix and therefore C' would also be the identity matrix, which leads to
the contradiction that C is matrix of order p. Similarly, ¢ # 0.

The following example illustrates the algorithm we just described. Com-
putations are performed using the Magma algebra system [1].

Example 4.1 Suppose that group G = PSL(2,7) is represented by matri-
ces in SL(2,7) up to a factor of +I. Non-commuting matrices C, D of
order p=T7 in G are given, as wellas M € G :

3 5 5 1 2 5
-3 8] =[5 4] o-[23)
Our goal is to compute the generalized discrete logarithm of M with re-

spect to (C, D) i.e., to find nonnegative integers i,5,k,€ such that M =
CtDiCkDt,

We use the matrices A, B € G which were defined in the previous sec-
tion. First we find element g; € G such that (4)9 = (C). Note that there
arein all p(p—1)/2 = 21 elements g; € G such that (A)9! = (C). These are

the elements in Ng({4))g1 = g1Ng({C)). One of them is g; = [ g i ’
Next we compute B, = gy !Bg; = [ f g ] Element g, = [ : 2 ] from

N¢({C)) is such that (B;)? = (D). Then, for g = g1g» = [ 3 é ] the

following holds: (A4)° = (C) and (B)? = (D). Integer s corresponds to



the (1,2) entry in matrix gCg~! = [ é } ] while integer ¢t corresponds

to the (2,1) entry in the matrix gDg~! = [ ; (1) ] Therefore, s = 1

andt = 2. So s~! =1 and t~! = 4 in arithmetic modulo 7. Finally,
3 3
= -1 _
M, =gMg~' = [ 1 6]'

We have transformed the generalized discrete logarithm problem to the
canonical factorization PSL(2,7) = (A)(B)(A){(B) . Namely, we now
look for integers z,y, v, w such that M; = A®BYAYB"Y. By using proposi-
tion 3.1 we obtain (:B, Yy,v, w) € {(0741 3, 3)’ (lr 3a 4, 2)) (29 17 5, 0), (3’ 21 61 1)’
(5,5,1,4), (6,6,2,5)} and the corresponding generalized discrete logarithms
of M with respect to (C, D) are elements of the set {(0,2,3,5), (1,5,4,1),
(2,4,5,0), (3,1,6,4), (5,6,1,2), (6,3,2,6)}.

An element g € G = PSL(2,p) such that {(C) = (A)9 and (D) = (B)¢
can also be computed by another method. We look for an element g €
G which satisfies C = g~1A%g and D = g~1B!g, for some non-negative
integers s,t < p. Equivalently, we require that g € G satisfies the following
equations: gC = A%g and gD = Btg, for some non-negative integers s,t <
g1 92

gs 94
and s and ¢ from which an element g is determined.

p. Since g = € G, we obtain a system of equations in g1,...,94

5 Conclusions

We have discussed the tractability of the generalized discrete logarithm
problem in the finite non-abelian group PSL(2, p), represented by matrices
of SL(2,p) modulo {+I}, with respect to two generators of order p, and
have showed that the GDLP is tractable in this setup. Obviously, this
group representation together with the mentioned generators is not a good
candidate for the design of cryptographic primitives. However, PSL(2, p)
can be generated by elements of order different from p. For example, by
two elements of order (p+1)/2, or (p — 1)/2. We conjecture that there are
such instances where GDLP is intractable.
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