Reconstructing a VW plane from its Collineation Group

Cafer Caliskan, Spyros S. Magliveras
Department of Mathematical Sciences
Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, U.S.A.
ccaliska@fau.edu, spyros@fau.edu

Abstract

In this study we analyze the structure of the full collineation group of certain Veblen-Wedderburn(VW) planes of orders 5^2 , 7^2 and 11^2 . We also discuss a reconstruction method using their collineation groups.

1 Introduction

In [1] some group—theoretical methods for constructing both the Hughes plane of order q^2 and the Figueroa plane of order q^3 , q an odd prime power, are discussed. The method is using the well–known linear group GL(3,q). In this paper, we discuss a reconstruction method for certain non–desarguesian VW planes of some particular orders from their collineation groups.

In section 2 we introduce some notation, definitions and preliminaries. In section 3 we discuss a particular *Planar Ternary Ring* (R,T) of order p^2 , p an odd prime, which gives rise to the non-desarguesian VW planes α , β and γ , of orders 5^2 , 7^2 and 11^2 , respectively. In section 4 we analyze the structure of the full collineation groups of α , β and γ . In Section 5 we discuss how to reconstruct these particular VW planes from their collineation groups.

2 Preliminaries

We assume the reader is familiar with the basics of finite projective planes and group theory. If G is a group acting on the set X, we denote by G|X the group action of G on X. If π is a projective plane, we denote by P_{π} and L_{π} , the sets of points and lines of π , respectively. We denote by (a) the set of points incident with $a \in L_{\pi}$ and by (A) the set of lines incident with $A \in P_{\pi}$. If $A, B \in P_{\pi}$ and $A \neq B$, we denote by AB the line in L_{π} incident with A and $A \in P_{\pi}$ and $A \in P_{\pi}$

Veblen-Wedderburn (VW) systems are algebraic systems used to coordinatize projective planes, and planes coordinatized by VW systems are called VW planes. A VW system $(R, +, \cdot)$ of elements with operations + and \cdot satisfies the following axioms:

- (i) (R, +) is commutative.
- (ii) $(R \setminus \{0\}, \cdot)$ is a loop.
- (iii) $(a+b)c = ac + bc, a, b, c \in R$.
- (iv) If $a \neq b$, xa = xb + c has a unique solution x.

See [4] for further information about VW systems.

A Planar Ternary Ring (PTR) is a structure (R,T), where R is a nonempty set containing distinct elements called 0 and 1, and $T: R^3 \to R$ satisfying the following:

- (i) $T(a, 0, b) = T(0, a, b) = b, \forall a, b \in R$.
- (ii) $T(1, a, 0) = T(a, 1, 0) = a, \forall a \in R$.
- (iii) For every $a, b, c \in R$, T(a, b, x) = c has a unique solution $x \in R$.
- (iv) For every $a,b,c,d\in R$, where $a\neq c$, T(x,a,b)=T(x,c,d) has a unique solution $x\in R$.
- (v) For every $a, b, c, d \in R$, where $a \neq c$, each of T(a, x, y) = b and T(c, x, y) = d has a unique solution $(x, y) \in R^2$.

Note that the fifth axiom is redundant if R is finite. For further information about PTR's see [3].

Given a certain PTR, the corresponding projective plane π , with points P_{π} , lines L_{π} and incidence $I \subset P_{\pi} \times L_{\pi}$, is constructed as follows:

- (i) $P_{\pi} = \{(x, y) : x, y \in R\} \cup \{(x) : x \in R\} \cup \{(\infty)\},\$
- (ii) $L_{\pi} = \{[a, b] : a, b \in R\} \cup \{[a] : a \in R\} \cup \{[\infty]\},$
- (iii) For all $a, b, x, y \in R$, (x, y) I [a, b] if and only if T(a, x, y) = b,
- (iv) (x, y) I [a], (x) I [a, b] if and only if x = a,
- (v) (x) I $[\infty]$, (∞) I [a], (∞) I $[\infty]$,
- (vi) (x,y) $I[\infty]$, (x) I[a], (∞) I[a,b].

3 A VW plane

Let \mathbb{F} be a finite field of order p^2 , p an odd prime, and R the set of elements of \mathbb{F} . Define $T: R^3 \to R$ as follows: T(a,b,c) = ab + c if b is a square in \mathbb{F} , and $T(a,b,c) = a^pb + c$ if b is not a square in \mathbb{F} .

Proposition 1 Let R and T be as described above. Then (R,T) is a PTR.

Proof: Let $a, b, c \in R$ and a be a square in R. Then T(a, 0, b) = a0 + b = b = 0a + b = T(0, a, b), T(a, 1, 0) = a1 + 0 = a = 1a + 0 = T(1, a, 0), and T(b, a, x) = ba + x = c has a unique solution $x \in R$. If a is not a square in R, then $T(a, 0, b) = a0 + b = b = 0^p a + b = T(0, a, b)$, $T(a, 1, 0) = a1 + 0 = a = 1^p a + 0 = T(1, a, 0)$, and $T(b, a, x) = b^p a + x = c$ has also a unique solution $x \in R$.

Now, let $a,b,c,d\in R$, where $a\neq c$ and $a,c\neq 0$. We have the following cases:

- (i) If a and c are both squares in R, then $T(x, a, b) = T(x, c, d) \Leftrightarrow xa + b = xc + d$ and xa + b = xc + d has a unique solution $x \in R$.
- (ii) If a is not a square and c is a square, then $T(x, a, b) = T(x, c, d) \Leftrightarrow x^p a + b = xc + d$. This equation has a unique solution $x \in R$. See [5] for a proof.

(iii) If neither a nor c is a square in R, then $T(x,a,b) = T(x,c,d) \Leftrightarrow x^p a + b = x^p c + d \Leftrightarrow x^p = (v/u)$, where $u = a - c \neq 0$ and v = d - b. But there exists $t' \in R$ such that $(t')^p = (v/u)$. Therefore, $x^p = (t')^p$. Hence there is a unique solution for T(x,a,b) = T(x,c,d).

Hence, (R,T) is a PTR. \square

In this study we use this particular *Planar Ternary Ring* (R,T) of order p^2 , p=5,7 or 11, to construct the non-desarguesian projective planes α , β , and γ of orders 5^2 , 7^2 and 11^2 , respectively. It follows easily from the definition that α , β , and γ are VW planes.

We compute the full collineation groups G_{α} , G_{β} and G_{γ} of the planes α , β , and γ , respectively. Then we ask the following question: "Is it possible to reconstruct the planes α , β , and γ by only using their collineation groups?".

4 Structure of G_{π}

Let π be one of the planes α , β , or γ . Since π is of order p^2 , p=5,7 or 11, we assume that $P_{\pi}=\{A_0,A_1,...,A_{p^4+p^2}\}$ and $L_{\pi}=\{a_0,a_1,...,a_{p^4+p^2}\}$ throughout the article. We observe that G_{π} is not transitive on points and lines. Furthermore, there are three orbits on points, namely Θ_1 , Θ_2 and Θ_3 , of lengths 1, $2p^2$ and p^4-p^2 , and three orbits on lines, namely Γ_1 , Γ_2 and Γ_3 , of lengths 2, p^2-1 and p^4 , respectively. Let $\Gamma_1=\{a_0,a_1\}$, where $(a_0)=\{A_0,A_1,...,A_{p^2}\}$ and $(a_1)=\{A_0,A_{p^2+1},...,A_{2p^2}\}$. Then we have that $\Gamma_2=(A_0)\setminus\Gamma_1$ and $\Gamma_3=L_{\pi}\setminus(A_0)$. Moreover, $\Theta_1=\{A_0\}$, $\Theta_2=((a_0)\cup(a_1))\setminus\{A_0\}$ and $\Theta_3=P_{\pi}\setminus((a_0)\cup(a_1))$. Furthermore, the actions $G_{\pi}\mid\Theta_2$ and $G_{\pi}\mid\Theta_3$ are faithful.

There is a subgroup $K \leq G_{\pi}$, of order p^2 (p^2-1) , and K is normal in a subgroup $H < G_{\pi}$, where [H:K]=2. See Figure 1. Furthermore, there is a cyclic subgroup C < K of order $(p^2-1)/2$. If $C = \langle x \rangle$, then there is an element $y \in K$ such that $y^2x^{(p^2-1)/4} = 1_{G_{\pi}}$ if $p \equiv 3$ (4), and $y^2x^{(p^2-1)/8} = 1_{G_{\pi}}$ if $p \equiv 1$ (4). Moreover, the Sylow p-Subgroup $Syl_p < K$ is of order p^2 and K is the split extension of Syl_p by the subgroup $\langle x,y \rangle$ generated by x and y. See the appendix for the presentations of K in G_{α} , G_{β} and G_{γ} . In addition, there is an involution m such that $H = \langle K, m \rangle$. The generators of the subgroup H, namely x, y, a, b and m, are represented as permutations on the subset $\{1, ..., p^2\}$. Further, there is an involution $u \in G_{\pi} \setminus H$ such that for $H' = u^{-1}Hu$, $H \cap H' = \langle m \rangle$ and $G_{\pi} = \langle H, u \rangle = \langle H, H', u \rangle$. See the appendix for the size and generators of the full collineation groups G_{α} , G_{β} and G_{γ} .

Figure 1: The full collineation group G_{π}

5 Reconstruction from G_{π}

Counting Principle. Let a_0 and a_1 (as described above) intersect each other at A_0 . A point A is said to be of type-I if $A \in (a_0) \cup (a_1)$, and of type-II, otherwise. Similarly, a line a is of type-I if $a = AA_0$, where $A \neq A_0$, and of type-II, otherwise. Let $A_i \neq A_j$, $A_r \neq A_s$ be points of type-I, where $A_i, A_j \in (a_0) \setminus \{A_0\}$ and $A_r, A_s \in (a_1) \setminus \{A_0\}$. Then it easily follows that $Q = \{A_i, A_j, A_r, A_s\}$ is a quadrangle in π and there are $\binom{p^2}{2}\binom{p^2}{2}$ such quadrangles constructed by the points of a_0 and a_1 .

Figure 2: Counting principle

The set of intersection points of lines passing through all pairs of the

points of Q is $\{A_i, A_j, A_r, A_s, A, B, A_0\}$, where A and B are distinct points of type-II. See Figure 2. Therefore, there are $2\binom{p^2}{2}\binom{p^2}{2}$ points of type-II determined by the quadrangles which are constructed as above. However, let A be any point of type-II, then there are $\binom{p^2}{2}$ different pairs of lines of type-II intersecting at A. Hence, there are $p^2(p^2-1)$ distinct points of type-II determined by such quadrangles. We also have that there are $2p^2+1$ distinct points of type-I. This leads to the following lemma.

Lemma 1 All points of π are determined by the quadrangles as described above.

Reconstruction. We define $S_{g,H} = \{h^{-1}gh \mid h \in H\}$ for any subgroup $H \leq G_{\pi}$ and $g \in G_{\pi}$. There is a cyclic subgroup $C' \leq K'$ of order $(p^2-1)/2$ such that $C' = u^{-1}Cu$, where $C \leq K$ is cyclic and u is the involution described above. See Figure 1. Since p is odd and C' is cyclic, C' contains exactly one involution which we call ι' .

Figure 3: Representing certain points and lines by involutions

Recall that K' is the split extension of Syl_p^t by the subgroup $\langle x',y'\rangle$ generated by x' and y', where $x'=u^{-1}xu$ and $y'=u^{-1}yu$. Now consider the set S_{ι',Syl_p^t} . Then it easily follows that $|S_{\iota',Syl_p^t}|=|Syl_p^t|=p^2$ i.e. S_{ι',Syl_p^t} contains exactly p^2 involutions. Our analysis of the elements in S_{ι',Syl_p^t} shows the following:

- (i) $\{A_{p^2+1}, \dots, A_{2p^2}, A_0\} \subset Fix(s)$ for each $s \in S_{\iota', Syl'_p}$.
- (ii) $(a_0) \cap Fix(s) = \{A_i, A_0\}$ for some $i, 1 \le i \le p^2$, and $s \in S_{\iota', Syl'_2}$.

(iii) $(a_0) \cap Fix(s_1) \neq (a_0) \cap Fix(s_2)$ for distinct elements $s_1, s_2 \in S_{\iota', Syl'_2}$.

Therefore, there is a one-to-one correspondence between the points in $(a_0)\setminus\{A_0\}$ and the involutions in S_{ι',Syl'_p} . Moreover, we can represent the points on a_0 , except A_0 , by the involutions in S_{ι',Syl'_p} . Hence, we write $S_{\iota',Syl'_p}=\{g_{A_1},\ldots,g_{A_{p^2}}\}$. Symmetrically, there is a single involution $\iota\in C$ and the points on a_1 , except A_0 , can be represented by the involutions in S_{ι,Syl_p} . Similarly, we write $S_{\iota,Syl_p}=\{g_{A_{p^2+1}},\ldots,g_{A_{2p^2}}\}$. See Figure 3.

Let $g_{A_i,A_j} = g_{A_i}g_{A_j}$ for some $A_i \in (a_0) \setminus \{A_0\}$ and $A_j \in (a_1) \setminus \{A_0\}$, then $g_{A_i,A_j} \in G_{\pi}$ is an involution such that $Fix(g_{A_i,A_j}) \cap ((a_0) \cup (a_1)) = \{A_i,A_j,A_0\}$. Therefore, the line through A_i and A_j can be represented by the involution g_{A_i,A_j} . See Figure 3. Hence, we can similarly represent the lines of type-II by some certain involutions.

Figure 4: Determining lines of type-I by certain group elements of order p

Let A be the intersection point of the lines represented by the involutions g_{A_i,A_r} and g_{A_j,A_s} , where $i \neq j, 1 \leq i,j \leq p^2$, and $r \neq s, p^2 + 1 \leq r,s \leq 2p^2$, respectively, and a the line of type-I passing through A_0 and A. Our computation shows that $Fix(g_{A_i,A_r}) \cap Fix(g_{A_j,A_s}) = \{A,A_0\}$ and $(a) = Fix(g_{A_i,A_r}g_{A_j,A_s})$, where $g_{A_i,A_r}g_{A_j,A_s} \in G_{\pi}$ is of order p. See Figure 4.

Proposition 2 Let π be one of the planes α , β , or γ . Then π can be reconstructed from G_{π} .

Proof: Let a be a line of type-II passing through A_i and A_j . Then $(a) = Fix(g_{A_i,A_j}) \setminus \{A_0\}$, where g_{A_i,A_j} is the involution representing a.

Figure 5: Determining lines of type-I by certain group elements of order p

Let A' and A be the intersection points of the line $g_{A_i,A_{p^2+1}}$ with lines g_{A_1,A_r} and g_{A_1,A_s} , where $r \neq s$, $p^2+2 \leq r, s \leq 2p^2$, and $2 \leq i \leq p^2$. It easily follows from the definition of a projective plane that A' and A are distinct points of type-II. See Figure 5. Let i=2, then we have that $\{(a) \mid a \in (A_0)\} = \{Fix(g_{A_2,A_{p^2+1}}g_{A_1,A_r}) \mid p^2+2 \leq r \leq 2p^2\} \cup \{(a_0),(a_1)\}.$

The lines of π can be determined by the sets S_{ι,Syl_p} and S_{ι',Syl'_p} as described above. Hence, π can be reconstructed from G_{π} . \square

6 Conclusion

"Is it always possible to construct projective planes from their collineation groups?". In [1] Brown shows how to construct both the Hughes plane of order q^2 and the Figueroa plane of order q^3 , q is an odd prime power, from the linear group GL(3,q). In our study we discuss a reconstruction method for a particular VW plane of order p^2 , p=5,7, or 11. We show how to reconstruct the non-desarguesian VW planes α , β and γ , of orders 25, 49 and 121, respectively, from their collineation groups.

Acknowledgement

We would like to thank Professors Ron Mullin and Lee Klingler for their contributions in Field Theory.

References

- [1] J.M.N. Brown, On Constructing Finite Projective Planes From Groups. Ars Combin. 16-A (1983), 61-85.
- [2] P. Dembowski, Finite Geometries (Springer-Verlag New York Inc., 1968).
- [3] Daniel R. Hughes and Fred C. Piper, Projective Planes (Springer-Verlag New York Inc., 1973).
- [4] Marshall Hall, *The Theory of Groups* (American Mathematical Society, Providence, 1976).
- [5] Rey Casse, Projective Geometry (Oxford University Press, Oxford, 2006).

Appendix

 G_{α}

- (i) $|G_{\alpha}| = 1,440,000 = 2^8 \ 3^2 \ 5^4$.
- (ii) K has the following presentation: $K = \langle x, y, a, b \mid x^{12}, a^5, b^5, aba^{-1}b^{-1}, y^2x^3, y^{-1}xy^3x^{10}, x^{-1}axb^2a^3, y^{-1}ayb^4a^2, x^{-1}bxa^3, y^{-1}byb^3a \rangle$.
- (iii) Generators of the collineation group G_{α} :

```
\begin{array}{l} x:\\ (27,47,44,28,43,32,30,35,38,29,39,50)(31,34,42,36,37,33,46,48,40,41,45,49)\\ y:\\ (27,40,29,33,30,42,28,49)(31,32,41,44,46,50,36,38)(34,39,45,35,48,43,37,47)\\ a:\\ (26,41,31,46,36)(27,42,32,47,37)(28,43,33,48,38)(29,44,34,49,39)\\ (30,45,35,50,40)\\ b:\\ (26,49,42,40,33)(27,50,43,36,34)(28,46,44,37,35)(29,47,45,38,31)\\ (30,48,41,39,32)\\ m:\\ (6,21)(7,22)(8,23)(9,24)(10,25)(11,16)(12,17)(13,18)(14,19)(15,20)(31,46)\\ (32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45)\\ u:\\ \prod_{v=1}^{25} (v,v+25). \end{array}
```

```
G_{\mathcal{B}}
```

```
(i) |G_{\beta}| = 22, 127, 616 = 2^{10} 3^2 7^4.
```

(ii) K has the following presentation: $K = \langle x, y, a, b \mid x^{24}, a^7, b^7, aba^{-1}b^{-1}, y^2x^{12}, y^{-1}xyx^{17}, x^{-1}axb^3a^2, y^{-1}ayb^6a^6, x^{-1}bxa^4, y^{-1}byba^2 \rangle.$

(iii) Generators of the collineation group G_{β} :

```
(51, 77, 57, 94, 53, 68, 71, 84, 52, 97, 64, 89, 56, 79, 92, 62, 54, 88, 78, 72, 55, 59, 85, 67)
 (58, 65, 60, 63, 74, 95, 73, 75, 66, 80, 70, 69, 98, 91, 96, 93, 82, 61, 83, 81, 90, 76, 86, 87)
y:
 (51, 69, 56, 87)(52, 81, 55, 75)(53, 93, 54, 63)(57, 65, 92, 91)(58, 84, 98, 72)
 (59, 96, 97, 60)(61, 71, 95, 78)(62, 90, 94, 66)(64, 80, 85, 76)(67, 74, 89, 82)
 (68, 86, 88, 70)(73, 77, 83, 79)
 (50, 84, 62, 89, 67, 94, 72)(51, 78, 63, 90, 68, 95, 73)(52, 79, 57, 91, 69, 96, 74)
 (53, 80, 58, 85, 70, 97, 75)(54, 81, 59, 86, 64, 98, 76)(55, 82, 60, 87, 65, 92, 77)
 (56, 83, 61, 88, 66, 93, 71)
 (50, 64, 78, 92, 57, 71, 85)(51, 65, 79, 93, 58, 72, 86)(52, 66, 80, 94, 59, 73, 87)
(53, 67, 81, 95, 60, 74, 88)(54, 68, 82, 96, 61, 75, 89)(55, 69, 83, 97, 62, 76, 90)
(56, 70, 84, 98, 63, 77, 91)
(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)(18,39)
(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)
(57, 92)(58, 93)(59, 94)(60, 95)(61, 96)(62, 97)(63, 98)(64, 85)(65, 86)(66, 87)
(67, 88)(68, 89)(69, 90)(70, 91)(71, 78)(72, 79)(73, 80)(74, 81)(75, 82)(76, 83)
(77, 84)
u: \prod_{v=1}^{49} (v, v+49).
```

 G_{γ}

- (i) $|G_{\gamma}| = 843,321,600 = 2^8 \ 3^2 \ 5^2 \ 11^4$.
- (ii) K has the following presentation: $K = \langle x, y, a, b \mid x^{60}, a^{11}, b^{11}, aba^{-1}b^{-1}, y^2x^{30}, y^{-1}xyx^{49}, x^{-1}axb^{-1}a^3, y^{-1}ayb^2a^{-1}, x^{-1}bxba^6, y^{-1}byba^{-1} \rangle.$

(iii) Generators of the collineation group G_{γ} :

```
x: (2,84,80,12,70,26,3,35,38,23,18,51,5,69,75,45,24,90,9,16,17,89,47,58,6,31,33,56,93,115,11,50,54,111,64,108,10,99,96,100,116,83,8,65,59,78,110,44,4,118,117,34,87,76,7,103,101,67,41,19)(13,32,105,14,104,63,25,52,88,27,86,114,49,92,43,53,39,106,97,62,74,94,77,79,61,112,15,66,21,36,121,102,29,120,30,71,109,82,46,107,48,20,85,42,91,81,95,28,37,72,60,40,57,55,73,22,119,68,113,98)

y: (2,22,11,112)(3,32,10,102)(4,42,9,92)(5,52,8,82)(6,62,7,72)(12,21,111,113)(13,31,121,103)(14,41,120,93)(15,51,119,83)(16,61,118,73)(17,71,117,63)
```

 $(2,22,11,112)(3,32,10,102)(4,42,9,92)(5,52,8,82)(6,62,7,72)(12,21,111,113)\\ (13,31,121,103)(14,41,120,93)(15,51,119,83)(16,61,118,73)(17,71,117,63)\\ (18,81,116,53)(19,91,115,43)(20,101,114,33)(23,30,100,104)(24,40,110,94)\\ (25,50,109,84)(26,60,108,74)(27,70,107,64)(28,80,106,54)(29,90,105,44)\\ (34,39,89,95)(35,49,99,85)(36,59,98,75)(37,69,97,65)(38,79,96,55)\\ (45,48,78,86)(46,58,88,76)(47,68,87,66)(56,57,67,77)$

 $\begin{array}{l} a:\\ (1,21,30,39,48,57,77,86,95,104,113)(2,22,31,40,49,58,67,87,96,105,114)\\ (3,12,32,41,50,59,68,88,97,106,115)(4,13,33,42,51,60,69,78,98,107,116)\\ (5,14,23,43,52,61,70,79,99,108,117)(6,15,24,44,53,62,71,80,89,109,118)\\ (7,16,25,34,54,63,72,81,90,110,119)(8,17,26,35,55,64,73,82,91,100,120)\\ (9,18,27,36,45,65,74,83,92,101,121)(10,19,28,37,46,66,75,84,93,102,111)\\ (11,20,29,38,47,56,76,85,94,103,112) \end{array}$

b: (1,5,9,2,6,10,3,7,11,4,8)(12,16,20,13,17,21,14,18,22,15,19)(23,27,31,24,28,32,25,29,33,26,30)(34,38,42,35,39,43,36,40,44,37,41)(45,49,53,46,50,54,47,51,55,48,52)(56,60,64,57,61,65,58,62,66,59,63)(67,71,75,68,72,76,69,73,77,70,74)(78,82,86,79,83,87,80,84,88,81,85)(89,93,97,90,94,98,91,95,99,92,96)(100,104,108,101,105,109,102,106,110,103,107)(111,115,119,112,116,120,113,117,121,114,118)

 $\begin{array}{l} m:\\ (12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)\\ (21,120)(22,121)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)\\ (30,107)(31,108)(32,109)(33,110)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)\\ (40,95)(41,96)(42,97)(43,98)(44,99)(45,78)(46,79)(47,80)(48,81)(49,82)\\ (50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,67)(57,68)(58,69)(59,70)\\ (60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77) \end{array}$

 $u: \prod_{v=1}^{121} (v, v+121).$