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Abstract

In this study we analyze the structure of the full collineation
group of certain Veblen-Wedderburn(VW) planes of orders 52, 72 and
112, We also discuss a reconstruction method using their collineation

groups.

1 Introduction

In (1] some group-theoretical methods for constructing both the Hughes
plane of order ¢ and the Figueroa plane of order ¢%, ¢ an odd prime
power, are discussed. The method is using the well-known linear group
GL(3,q). In this paper, we discuss a reconstruction method for certain non—
desarguesian VW planes of some particular orders from their collineation
groups.

In section 2 we introduce some notation, definitions and preliminaries.
In section 3 we discuss a particular Planar Ternary Ring (R,T) of order
p?, p an odd prime, which gives rise to the non-desarguesian VW planes
a, B and v, of orders 52, 72 and 112, respectively. In section 4 we analyze
the structure of the full collineation groups of o, 8 and 4. In Section
5 we discuss how to reconstruct these particular VW planes from their
collineation groups.
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2 Preliminaries

We assume the reader is familiar with the basics of finite projective planes
and group theory. If G is a group acting on the set X, we denote by G|X
the group action of G on X. If 7 is a projective plane, we denote by P,
and L, the sets of points and lines of m, respectively. We denote by (a) the
set of points incident with @ € L, and by (A) the set of lines incident with
A€ P,. If A,B € P, and A # B, we denote by AB the line in L, incident
with A and B. Symmetrically if a,b € L, a # b, ab denotes the point in
Py incident with a and b. By a quadrangle of a plane 7 we mean a set of
four points no three of which are collinear. A collineation of a projective
plane 7 of order n is a permutation of its points which maps lines onto
lines [2]. The set of all collineations of m forms a group under composition,
called the full collineation group G of m.

Veblen-Wedderburn (VW) systems are algebraic systems used to coor-
dinatize projective planes, and planes coordinatized by VW systems are
called VW planes. A VW system (R, +,-) of elements with operations +
and - satisfies the following axioms:

(i) (R,+) is commutative.
(ii) (R\ {0},") is a loop.
(iii) (a+b)c=ac+be, a,b,c€ R.

(iv) If a # b, za = zb + ¢ has a unique solution z.

See [4] for further information about VW systems.

A Planar Ternary Ring (PTR) is a structure (R,T), where R is a
nonempty set containing distinct elements called 0 and 1, and T : R® — R
satisfying the following:

(i) T(a,0,b) = T(0,a,b) =b, Va,b € R.
(i) T(1,e,0) =T(a,1,0) = a, Va € R.
(iii) For every a,b,c € R, T(a,b, ) = c has a unique solution z € R.

(iv) For every a,b,c,d € R, where a # ¢, T(z,a,b) = T(z,c,d) has a
unique solution z € R.

(v) For every a,b,c,d € R, where a # ¢, each of T(a,z,y) = b and
T(c,z,y) = d has a unique solution (z,y) € R2.
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Note that the fifth axiom is redundant if R is finite. For further infor-
mation about PTR’s see [3].

Given a certain PTR, the corresponding projective plane , with points
P,, lines L, and incidence I C P, x L, is constructed as follows:
(i) Pr = {(z,y) : 2,y € R}U{(z) : z € R} U {(0)},

(ii) Ly = {[a,b] : a,b € R}U{[a} : a € R} U {[o0]},

(iii) For all @,b,z,y € R, (z,y) I [a,b] if and only if T(a,z,y) =5,

(iv) (z,y) I [a], (z) I [a,b] if and only if z = a,

(v) (z) I{oo], (00)I[a], (00)I[od],

(vi) (z,9) X[oc], (z) Xla], (o00) [ [a,b].

3 A VW plane

Let I be a finite field of order p?, p an odd prime, and R the set of elements
of F. Define T : R3 — R as follows: T(a,b,c) = ab+ ¢ if b is a square in F,
and T'(a,b,c) = aPb + c if b is not a square in F.

Proposition 1 Let R and T be as described above. Then (R,T) is a PTR.

Proof: Let a,b,¢ € R and a be a square in R. Then T(a,0,b) = a0+ b =
b=0a+b=T(0,a,b), T(a,1,0) =al +0 =a = la + 0 = T(1,a,0), and
T(b,a,z) = ba + = = c has a unique solution z € R. If a is not a square in
R, then T'(a,0,b) = a0+ b=b=0Pa+b="T(0,a,b), T(a,1,0) =al+0=
a = 1Pa + 0 = T(1,4q,0), and T'(b,a,z) = bPa + z = c has also a unique
solution = € R.

Now, let a,b,c,d € R, where a # ¢ and a,c # 0 . We have the following
cases:

(i) If @ and c are both squares in R, then T'(z, a,b) = T(z, ¢, d) < za+b =
zc+ d and za + b = zc 4 d has a unique solution z € R.

(ii) If @ is not a square and c is a square, then T(z,a,b) = T(z,¢c,d) &
zPa + b = zc + d. This equation has a unique solution z € R. See [5]
for a proof.
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(iii) If neither a nor c is a square in R, then T(z,a,b) = T(z,c,d) &
zPa+b=2zPc+d & 2P = (v/u), whereu=a—-c#0andv=d—b.
But there exists t’ € R such that ()P = (v/u). Therefore, zP = (t')P.
Hence there is a unique solution for T'(z, a,b) = T'(z, ¢, d).

Hence, (R,T) is 2 PTR. O

In this study we use this particular Planar Ternary Ring (R, T) of order
p?, p = 5,7 or 11, to construct the non-desarguesian projective planes a,
B, and « of orders 52, 72 and 112, respectively. It follows easily from the
definition that &, 8, and v are VW planes.

We compute the full collineation groups G, Gg and G,, of the planes o,
B, and v, respectively. Then we ask the following question: “Is it possible to
reconstruct the planes o, 8, and v by only using their collineation groups?”.

4 Structure of G,

Let 7 be one of the planes a, B, or 7. Since  is of order p?, p = 5,7 or
11, we assume that Pr = {Ao, A1, ..., Apt4p2} and L = {ag,a1,...,8pe4p2}
throughout the article. We observe that G is not transitive on points and
lines. Furthermore, there are three orbits on points, namely ©;, ©, and
©3, of lengths 1, 2p? and p* — p?, and three orbits on lines, namely T';,
T2 and T3, of lengths 2, p?2 — 1 and p*, respectively. Let I'y = {ao,a1},
where (ag) = {Ao, A1, ..., A2} and (a1) = {Ao, Ap241, ..., Agp2}. Then we
have that I's = (Ag) \T; and I's = L, \ (Ag). Moreover, ©; = {Ag},
©2 = ((ao) U (21)) \ {Ao} and ©3 = P, \ {(ao) U (a;)). Furthermore, the
actions G, | ©2 and G, | O3 are faithful.

There is a subgroup K < Gy, of order p? (p? — 1), and K is normal
in a subgroup H < G, where [H : K] = 2. See Figure 1. Furthermore,
there is a cyclic subgroup C < K of order (p? —1)/2. If C = (z), then
there is an element y € K such that y2z®'-1/% = 15 _if p = 3 (4),
and y2z®*-1/8 = 15 if p = 1 (4). Moreover, the Sylow p-Subgroup
Syl, < K is of order p? and K is the split extension of Syl, by the subgroup
{z,y) generated by z and y. See the appendix for the presentations of
K in G,, Gg and G,. In addition, there is an involution m such that
H = (K, m). The generators of the subgroup H, namely z,y,a,b and m,
are represented as permutations on the subset {1, ..., p?}. Further, there is
an involution u € G \ H such that for H' = v~'Hu, H N H' = {m) and
Gr = (H,u) = (H, H',u). See the appendix for the size and generators of
the full collineation groups Go, Gg and G,.
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Figure 1: The full collineation group G

5 Reconstruction from G,

Counting Principle. Let ap and a; (as described above) intersect each other
at Ag. A point A is said to be of type~I if A € (ag) U (a1), and of type-II,
otherwise. Similarly, a line a is of type-I if a = AAg, where A # Ag, and
of type-1I, otherwise. Let A; # A;, Ar # A, be points of type-I, where
A, A; € (ao) \ {Ao} and A,, A; € (a1) \ {Ao}. Then it easily follows
that Q = {A:, Aj, A, A,} is a quadrangle in 7 and there are (’.’; )(1‘;,2 ) such
quadrangles constructed by the points of ag and a;.

Figure 2: Counting principle

The set of intersection points of lines passing through all pairs of the
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points of Q is {Ai, A;, Ay, As, A, B, A}, where A and B are distinct points

of type-Il. See Figure 2. Therefore, there are 2("’22 ) (”; ) points of type-II
determined by the quadrangles which are constructed as above. However,
let A be any point of type-II, then there are (”; different pairs of lines
of type-II intersecting at A. Hence, there are p*(p? — 1) distinct points
of type-II determined by such quadrangles. We also have that there are

2p? + 1 distinct points of type-I. This leads to the following lemma.

Lemma 1 All points of © are determined by the quadrangles as described
above.

Reconstruction. We define Sgy = {h~'gh | h € H} for any subgroup
H £ G and g € G. There is a cyclic subgroup C’ < K’ of order (p?—1)/2
such that ¢’ = u~1Cu, where C < K is cyclic and u is the involution
described above. See Figure 1. Since p is odd and C’ is cyclic, C’ contains
exactly one involution which we call ¢/

Figure 3: Representing certain points and lines by involutions

Recall that K’ is the split extension of Syl, by the subgroup (z’,3')
generated by =’ and v/, where ' = u~!zu and ¥’ = u~!yu. Now consider
the set Sy sy . Then it easily follows that |S,,:,syz;| = |Syly| = p? ie.
Sv,syl;, contains exactly p? involutions. Our analysis of the elements in
Su,Syz;, shows the following :

(i) {Ap2+1,-..,A2p2, Ao} C Fiz(s) for each s € Sy syiz -

(i) (ao) N Fiz(s) = {Ai, Ao} for some i, 1 <i < p? and s € Sy sy17.
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(iii) (ao) N Fiz(s1) # (ao) N Fiz(sg) for distinct elements s;,s2 € Su syt

Therefore, there is a one-to—one correspondence between the points in
(a0) \ {Ao} and the involutions in S,,sy;,. Moreover, we can represent
the points on ag, except Ao, by the involutions in S,/ s,-. Hence, we write
.S'u,syz; ={g4,y---, 94,2 }. Symmetrically, there is a singie involution: € C
and the points on a;, except Ag, can be represented by the involutions in
S.,sy,- Similarly, we write S, s,1, = {gAp2 s 1945 }. See Figure 3.

Let ga,,4; = 9a.94; for some A; € (ao) \ {Ao} and A; € (a1) \ {Ao},
then ga, 4, € Gr is an involution such that Fiz(ga,,4,) N ((a0) U (a1)) =
{A:, Aj, Ao}. Therefore, the line through A; and A; can be represented by
the involution g4, 4,. See Figure 3. Hence, we can similarly represent the
lines of type-II by some certain involutions.

Figure 4: Determining lines of type-I by certain group elements of order p

Let A be the intersection point of the lines represented by the involutions
9. ond ga,4,, Where i # j, 1 S 4,5 < p? and 7 # 8, p2 +1 <
r,s < 2p?, respectively, and a the line of type-I passing through A, and
A. Our computation shows that Fiz(ga,,a,) N Fiz(ga; 4,) = {A, Ao} and
(a) = Fiz(ga,,A,94,,4,), Where ga, a.94;,4, € Gr is of order p. See Figure
4.

Proposition 2 Let © be one of the planes a, B, or v. Then 7 can be
reconstructed from Gy.

Proof: Let a be a line of type-II passing through A; and A;. Then (a) =
Fiz(ga,,a;) \ {Ao}, where g4, 4, is the involution representing a.
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Figure 5: Determining lines of type-I by certain group elements of order p

Let A’ and A be the intersection points of the line ga,,4,,,, With lines
9A,.4, and ga, a,, Wwhere 7 # s, p? +2 < 1,5 < 2p%, and 2 < i < p2.
It easily follows from the definition of a projective plane that A’ and A
are distinct points of type-Il. See Figure 5. Let i = 2, then we have that
{(a) | @ € (Ao)} = {Fiz(9az,4,5,,94,.4,) | P*+2 < 7 < 2p°}U{(00), (a1)}-

The lines of m can be determined by the sets S, sy, and Sy sy as
described above. Hence, m can be reconstructed from G.. O

6 Conclusion

“Is it always possible to construct projective planes from their collineation
groups?”. In [1] Brown shows how to construct both the Hughes plane of
order g2 and the Figueroa plane of order ¢%, g is an odd prime power, from
the linear group GL(3, ¢). In our study we discuss a reconstruction method
for a particular VW plane of order p?, p = 5,7, or 11. We show how to
reconstruct the non—-desarguesian VW planes a;, 8 and ~, of orders 25, 49
and 121, respectively, from their collineation groups.
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Appendix

G

(i) |Gal = 1,440,000 = 28 32 5¢,
(ii) K has the following presentation:
K = (z,9,a,b | £!2,a5,8%,aba—1b~1, 223, y~12y3210, 2~ Laxb?a?, y~laybta?,
z~1bzad, y~byba).
(iii) Generators of the collineation group Ga:

z:
(27,47, 44, 28, 43, 32, 30, 35, 38, 29, 39, 50)(31, 34, 42, 36, 37, 33, 46, 48, 40, 41, 45, 49)

y:
(27,40, 29, 33, 30, 42, 28, 49)(31, 32, 41, 44, 46, 50, 36, 38) (34, 39, 45, 35, 48, 43, 37, 47)
a.

(26,41, 31, 46, 36)(27, 42, 32, 47, 37)(28, 43, 33, 48, 38)(29, 44, 34, 49, 39)
(30,45, 35, 50, 40)

b .

(26,49, 42, 40, 33)(27, 50, 43, 36, 34) (28, 46, 44, 37, 35)(29, 47, 45, 38, 31)
(30,48, 41, 39, 32)

ZZ,'zl)(-/, 22)(8, 23)(9, 24)(10, 25)(11, 16)(12, 17)(13, 18)(14, 19)(15, 20)(31, 46)
(32,47)(33, 48)(34, 49)(35, 50)(36, 41)(37, 42)(38, 43)(39, 44)(40, 45)

u: 311 (v,v + 25).
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Gg

®
(if)

(iii)

®
(ii)

IG5l = 22,127,616 = 210 32 74,

K has the following presentation:

K = (z,y,a,b | 224,a7,b7,aba~ 161, y2212, y~Lzyz!?, 2~ 1azb3a?, y—laybSal,
z=1bzat, y~ 1byba?).

Generators of the collineation group Gg:

T:
(51,77,57,94, 53, 68,71, 84, 52,97, 64, 89, 56, 79, 92, 62, 54, 88, 78, 72, 55, 59, 85, 67)
(58, 65, 60, 63, 74, 95, 73, 75, 66, 80, 70, 69, 98, 91, 96, 93, 82, 61, 83, 81, 90, 76, 86, 87)

y:

(51,69, 56,87)(52, 81, 55, 75)(53, 93, 54,63) (57, 65, 92, 91)(58, 84, 98, 72)
(59,96,97,60)(61, 71, 95, 78)(62, 80, 94, 66)(64, 80, 85, 76)(67, 74, 89, 82)
(68,86, 88, 70)(73, 77, 83, 79)

a:
(50,84, 6

2,89, 67,94, 72)(51, 78, 63, 90, 68, 95, 73)(52, 79, 57, 91, 69, 96, 74)
(53,80, 58, 85, 70, 97, 75)(54, 81, 59, 86, 64, 98, 76)(55, 82, 60, 87, 65,92, 77)
(56,83, 61,88, 66,93, 71)
b .

(50,64, 78,92, 57, 71, 85)(51, 65, 79, 93, 58, 72, 86) (52, 66, 80, 94, 59, 73, 87)

(53, 67,81,95, 60, 74, 88)(54, 68, 82, 96, 61, 75, 89) (55, 69, 83, 97, 62, 76, 90)
(56,70, 84,98, 63, 77,91)

m:

(8,43)(9,44)(10, 45)(11,46)(12, 47)(13, 48)(14, 49)(15, 36) (16, 37)(17, 38)(18, 39)
(19,40)(20, 41)(21, 42)(22, 29) (23, 30)(24, 31) (25, 32)(26, 33)(27, 34)(28, 35)
(57,92)(58,93)(59, 94)(60, 95)(61, 96)(62, 97)(63, 98)(64, 85)(65, 86)(66, 87)
(67,88)(68, 89)(69, 90)(70, 91)(71, 78)(72, 79)(73, 80)(74, 81)(75, 82)(76, 83)
(77,84)

u: [1%9, (v,v +49).

|G| = 843,321,600 = 28 32 52 114,

K has the following presentation:

K = (z,y,a,b | 280, a!1,b!,aba=2b"1, 92230, y~1gyzi® x-lazb—1a3,
vy~ layb?a—1, z~ 1bzba®,y—lbyba=1).
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(iii) Generators of the collineation group G:

X

(2, 84,80, 12, 70, 26, 3, 35, 38, 23, 18, 51, 5, 69, 75, 45, 24, 90, 9, 16, 17, 89, 47, 58,
8,31, 33, 56, 93, 115, 11, 50, 54, 111, 64, 108, 10, 99, 86, 100, 116, 83, 8, 65, 59, 78,
110,44, 4, 118, 117, 34, 87, 76, 7, 103, 101, 67, 41, 19)(13, 32, 105, 14, 104, 63, 25, 52,
88,27, 86, 114, 49, 92, 43, 53, 39, 106, 97, 62, 74,94, 77, 79, 61, 112, 15, 66, 21, 36,
121,102, 29, 120, 30, 71, 109, 82, 46, 107, 48, 20, 85, 42, 91, 81, 95, 28, 37, 72, 60, 40,
57,55, 73,22, 119, 68,113, 98)

y:
(2,22,11,112)(8, 32, 10, 102)(4, 42, 9, 92)(5, 52, 8, 82)(6, 62, 7, 72)(12, 21, 111, 113)
(13,31,121,103)(14, 41,120, 93)(15, 51, 119, 83)(16, 61, 118, 73)(17, 71, 117, 63)
(18,81,116, 53)(19,91, 115, 43)(20, 101, 114, 33)(23, 30, 100, 104)(24, 40, 110, 94)
(25,50, 109, 84)(26, 60, 108, 74)(27, 70, 107, 64)(28, 80, 106, 54)(29, 90, 105, 44)
(34, 39, 89, 95)(35, 49, 99, 85)(36, 59, 98, 75)(37, 69, 97, 65)(38, 79, 96, 55)

(45,48, 78, 86)(46, 58, 88, 76)(47, 68, 87, 66)(56, 57, 67, 77)

a:

(1,21, 30, 39,48, 57,77, 86, 95, 104, 113)(2, 22, 31, 40, 49, 58, 67, 87, 96, 105, 114)
(8,12, 32,41, 50, 59, 68, 88, 97, 106, 115)(4, 13, 33, 42, 51, 60, 69, 78, 98, 107, 116)
(5,14, 23, 43,52, 61,70, 79, 99, 108, 117)(6, 15, 24, 44, 53, 62, 71, 80, 89, 109, 118)
(7,16, 25, 34,54, 63,72, 81,90, 110, 119)(8, 17, 26, 35, 55, 64, 73, 82, 91, 100, 120)
(9,18, 27, 36, 45, 65, 74, 83, 92, 101, 121)(10, 19, 28, 37, 46, 66, 75, 84, 93, 102, 111)
(11,20, 29, 38, 47, 56, 76, 85, 94, 103, 112)

b:
(1,5,9,2,6,10,3,7,11,4, 8)(12, 16,20, 13, 17,21, 14, 18, 22, 15, 19)(23, 27, 31, 24,
28, 32, 25, 29, 33, 26, 30)(34, 38, 42, 35, 39, 43, 36, 40, 44, 37, 41)(45, 49, 53, 46, 50,
54,47, 51, 55, 48, 52)(586, 60, 64, 57, 61, 65, 58, 62, 66, 59, 63)(67, 71, 75, 68, 72, 76,
69,73, 77, 70, 74)(78, 82, 86, 79, 83, 87, 80, 84, 88, 81, 85)(89, 93, 97, 90, 94, 98, 91,
95,99, 92, 96)(100, 104, 108, 101, 105, 109, 102, 106, 110, 103, 107)(111, 115, 119,

112,116,120, 113,117,121, 114, 118)

m:

(12,111)(13, 112)(14, 113)(15, 114)(16, 115)(17, 116)(18, 117)(19, 118)(20, 119)
(21,120)(22, 121)(23, 160)(24, 101)(25, 102)(26, 103)(27, 104)(28, 105)(29, 106)
(30, 107)(31, 108)(32, 109)(33, 110)(34, 89)(35, 80)(36, 91)(37, 92)(38, 93)(39, 94)
(40,95)(41, 96)(42, 97) (43, 98) (44, 99)(45, 78)(48, 79)(47, 80)(48, 81)(49, 82)
(50,83)(51, 84)(52, 85)(53, 86)(54, 87)(55, 88)(56, 67)(57, 68)(58, 69)(59, 70)
(60,71)(61,72)(62, 73)(63, 74)(64, 75)(65, 76)(66, 77)

u: [132 (v,v 4 121).

v=1
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