On Hamiltonian Labelings of Graphs

Willem Renzema ! and Ping Zhang

Department of Mathematics

Western Michigan University

willem.a.renzema@wmich.edu
ping.zhang@wmich.edu

ABSTRACT

For a connected graph G of order n, the detour distance D(u, v)
between two vertices u and v in G is the length of a longest
u — v path in G. A Hamiltonian labeling of G is a function
¢: V(G) — N such that

|e(u) — c(v)] + D(u,v) > n

for every two distinct vertices u and v of G. The value hn(c) of
a Hamiltonian labeling ¢ of G is the maximum label (functional
value) assigned to a vertex of G by ¢; while the Hamiltonian
labeling number hn(G) of G is the minimum value of a Hamil-
tonian labeling of G. We present several sharp upper and lower
bounds for the Hamiltonian labeling number of a connected
graph in terms of its order and other distance parameters.
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1 Introduction

The distance d(u,v) between two vertices u and v in a connected graph G
is the length of a shortest path between these two vertices. The eccentricity
e(v) of a vertex v in G is the maximum distance from v to a vertex of G.
The radius rad(G) of G is the minimum eccentricity among the vertices of
G, while the diameter diam(G) of G is the maximum eccentricity among
the vertices of G. A vertex v with e(v) = rad(G) is called a central vertez
of G. If d(u,v) = diam(G), then u and v are antipodal vertices of G.
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For a connected graph G with diameter d, an antipodal coloring of a
connected graph G is defined in [2] as an assignment ¢ : V(G) — N of
colors to the vertices of G such that

le(u) — e(v)| + d(u,v) > d

for every two distinct vertices » and v of G. In the case of paths of order
n 2 2, this gives

le(u) — e(v)| + d(u,v) 2 n—1.

Antipodal colorings of paths gave rise to the more general Hamiltonian
colorings of graphs defined in terms of another distance parameter.

The detour distance D(u,v) between two vertices » and v in a connected
graph G is the length of a longest path between these two vertices. Thus if
G is a connected graph of order n, then d(u,v) < D(u,v) < n—1 for every
two vertices u and v in G and D(u,v) = n — 1 if and only if G contains
a Hamiltonian » — v path. Furthermore d(u,v) = D(u,v) for every two
vertices u and v in G if and only if G is a tree. As with standard distance,
the detour distance is a metric on the vertex set of a connected graph.

A Hamiltonian coloring of a connected graph G of order n is a coloring
¢: V(G) — N of G such that

le(w) — ¢(v)| + D(u,v) 2 -1

for every two distinct vertices u and v of G. Consequently, if « and v are
distinct vertices such that |c{u) — ¢(v)| = k for some Hamiltonian coloring
c of G, then there is a u — v path in G missing at most k vertices of G. The
value he(c) of a Hamiltonian coloring c of G is the maximum color assigned
to a vertex of G. The Hamiltonian chromatic number of G is the minimum
value of a Hamiltonian coloring of G. Hamiltonian colorings of graphs have
been studied in [3, 4, 5, 7, 8] for example.

For a connected graph G with diameter d, a radio labeling of G is defined
in [1] as an assignment ¢ : V(G) — N of labels to the vertices of G such
that

le(u) — e(v)| + d(u,v) 2d +1

for every two distinct vertices u and v of G. Thus for a radio labeling of a
graph, colors assigned to adjacent vertices of G must differ by at least d,
colors assigned to two vertices at distance 2 must differ by at least d — 1,
and so on, up to two vertices at distance d (that is, antipodal vertices),
whose colors are only required to differ. The value rn(c) of a radio labeling
c of G is the maximum color assigned to a vertex of G. The radio number
of G is the minimum value of a radio labeling of G. In the case of paths of
order n > 2, this gives

le(u) — e(v)] + d(u, v) 2 n.
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In a similar manner, radio labelings of paths and detour distance in graphs
give rise to a related labeling,.

A Hamiltonian labeling of a connected graph G of order n is defined in
[9] as an assignment ¢ : V(G) — N of labels to the vertices of G such that

le(u) — e(v)] + D(v,v) 2 n

for every two distinct vertices u and v of G. Therefore, in a Hamiltonian
labeling of G, every two vertices are assigned distinct labels and two ver-
tices © and v can be assigned consecutive labels in G only if G contains a
Hamiltonian © — v path. We can assume that every Hamiltonian labeling
of a graph uses the integer 1 as one of its labels. The value hn(c) of a
Hamiltonian labeling ¢ of G is the maximum label assigned to a vertex of
G by c, that is,
hn(c) = max{c(v) : v € V(G)}.

The Hamiltonian labeling number hn(G) of G is defined in [9] as the mini-
mum value of a Hamiltonian labeling of G, that is,

hn(G) = min{hn(c)},

where the minimum is taken over all Hamiltonian labelings ¢ of G. A
Hamiltonian labeling c of G with value hn(c) = hn(G) is called a minimum
Hamiltonian labeling of G. Therefore, hn(G) > n for every connected graph
G of order n. Among the results obtained in [9] are the following.

Theorem 1.1 (9] Every connected graph of order n > 3 with Hamiltonian
labeling number 7 is 2-connected.

Theorem 1.2 [9] If G is a Hamiltonian graph of order n > 3, then
hn(G) =n.

It was observed in [9] that the converse of Proposition 1.2 is not true. For
example, the Petersen graph P is a non-Hamiltonian graph of order 10 but
hn(P) = 10. By Theorem 1.2, if G = K, or G = C,, where n > 3, then
hn(G) = n. Hamiltonian labeling numbers of complete bipartite graphs
were determined.

Theorem 1.3 [9] For integers r and s with 1 <r < s,

r+s ifr=s
ha(Krs) = { (s—1)2+s+1 ifr=1ends>2
(s=12-(r-1)2%+r+s—1 if2<r<s.

Bounds for the Hamiltonian labeling number of a connected graph were
established in terms of its order and Hamiltonian chromatic number.

145



Theorem 1.4 [9] For every connected graph G of order n > 3,
he(G) +2 < hn(G) < he(G) + (n - 1).

Furthermore, for each pair k,n of integers with 2 < k < n — 1, there exists
8 Hamiltonian graph G of order n such that hn(G) = he(G) + k.

In this work, we establish several sharp upper and lower bound for the
Hamiltonian labeling number of a connected graph in terms of its order,
diameter, and other distance parameters. We refer to the book [6] for graph
theory notation and terminology not described in this paper.

2 Upper Bounds

In this section, we investigate how large the Hamiltonian labeling number
of a connected graph of order n can be. In [3, 4] two upper bounds for the
Hamiltonian chromatic number of a connected graph were established in
terms of its order.

Theorem 2.1 [4] If G is a nontrivial connected graph of order n, then
he(G) £ 14 (n - 2)2
Furthermore hc(G) = 1 + (n — 2)? if and only if G is a star.

Theorem 2.2 [4] Let G be a connected graph oforder n > 4. If vy, va,..., v
is any ordering of the vertices of G, then

n—1
he(G) < (n—1)?+ 1= ) _ min{D(vi41,%),n/2}.

i=1

Theorems 1.4, 2.1, and 2.2 provide the correspondent upper bounds for
the Hamiltonian labeling number of a connected graph in terms of its order.

Corollary 2.3 If G is a nontrivial connected graph of order n, then
hn(G) < n+ (n-2)>%
PFurthermore, hn(G) = n + (n — 2)? if and only if G is a star.

Corollary 2.4 Let G be a connected graph of ordern > 4. Ifvy,vo,...,0pn
is any ordering of the vertices of G, then

n-1
hn(G) < n(n—1)+ 1= min{D(vi41,v),n/2}.

i=1
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The upper bound in Corollary 2.4 is sharp. For example, let G = Ky
for some integer n > 4, and consider the ordering v;,vs,--: ,v, of the
vertices of G, where v; is the central vertex of G. Thus d(v2,v1) = 1
and d(vit1,v;) = 2 for all 2 < i < n—1. Since n > 4, it follows that
min{D(vi4+1,v:),n/2} = D(vig1,v;) for 1 <i<n—1andso

n—1 n-1
> min{D(vi41,v%:),7/2} = Y D(vig1,v:) =1+ 2(n - 2) = 2n - 3.

=1 i=1

Thus
n—1
hn(Kipn-1) = n(n—-1)+1- E D(viy1,w%)
t=1

= nn—1)+1-(2n-3)=n+(n-2)>2%

In order to establish an improved upper bound for the Hamiltonian
labeling number of a connected graph, we first present some preliminary
results. Let G be a connected graph containing an edge e that is not a
bridge. Then G — e is connected. For every two distinct vertices v and v
in G — e, the length of a longest u — v path in G — e does not exceed the
length of a longest © — v path in G. Thus every Hamiltonian labeling of
G - e is a Hamiltonian labeling of G. This observation yields the following
useful lemma.

Lemma 2.5 [9] If e is an edge of a connected graph G that is not a bridge,

then
hn(G) < hn(G —e).

The following is an immediate consequence of Lemma 2.5.
Corollary 2.6 IfT is a spanning tree of a connected graph G, then
hn(G) < hn(T).

By Corollary 2.6, it will be useful to know how large the Hamiltonian
labeling number of a tree of order n can be. It is convenient to introduce
some notation. For a Hamiltonian labeling ¢ of a graph G, an ordering
U3, ug, ..., un Of the vertices of G is called the c-ordering of G if

1 =c(u1) < ¢(u2) < -+ < ¢(un) = hn(c).

Next, we present an upper bound for the Hamiltonian labeling number of
a nontrivial tree in terms of its order and diameter.
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Theorem 2.7 Let T be a tree of order n > 3 with diam (T') = d and

o ([452] 222

Then
b (T) < n2—3n+4+§d—%+k2—kd—k if d is even
T \n?-8n+3i+d—%+k2—kd  ifdisodd.

Proof. Let R:vg, v, -, va beapathoflengthdinT andlet h = | 45|,
If d is even, then vy is the only central vertex of T on R and let v, = vy,
while if d is odd, then v,—; and v, are two central vertices of T" on R and
let v; = vp—1. Let T} and T, be two components of T — v;vc41 such that
ve+1 € V(T1) and v, € V(T2), where then vg € V(T1) and vg € V(T3). For
each i with 1 <i < h, let

Vig = {ueV(Th)-V(R)| D(vc,u) =1}
Vo, = {ueV(Tp)-V(R)| D(ve,u) =i}.

Note that V;; = 0. Suppose that |V} ;] = n1; > 0 and |V2;| = na; > 0.
For each ¢ with 1 <1 < h, let

Vii = {uinui2,...,%in, )}

Vz.i = {ui.m.i+la Uing ;42100 ui,m.i-l-ﬂz.s}'

That is, we label the vertices in V; ; by u;s, where 1 < s < n;; and label
the vertices in V2 ; by u;;, where n1; +1 <t < n3; + ng ;. For example,
consider the trees T' and T” of order n = 13 in Figure 1, where the vertices
of R are solid and the edges of the subtree T} in each of T and T” are drawn
in bold. Since the diameter of T is 6, the only central vertex of T is v, = v3.
In the tree T, V1,1 = 0, Vo1 = {w11}, Va2 = {uz1,u22}, Vo2 = {uz3},
W1,3 = {us,1} and V33 = {u32}. Since the diameter of T is 5, the central
vertices of T’ are vy and v3. In this case, let v = vo. Then V;; = 0,
V2q = {u11}, Vi2 = {uz1,u22}, Va2 = {ues,uzq,ues}, Vis = {usa}
and Vo3 = 0.
For each i with 1 < i < h, let

¢; =min(2i,2k) for 1 <i < h.

We now define a labeling c as follows:

1 ifi=1
c(vei) = {c(vc_(i_l)) +[n-(2i-1)] f2<i<h W
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U2,1
u32 2,2 3.1
T: 411
| - *— S °
Yo (41 ] Ve = U3 Uop1 = V4 Us Vs
U2,3
U2,1
U2.4 u2,2 ’ U
U5 ’ w1 31
T /
——————====== °
Yo v Ve = V2 Vel = U3 U4 Us

Figure 1: Illustrating the labeling of the vertices of T' and T"

c(ti,) = e(veqs) +8(n —2) for 1 < s <y
c(veri) +(n—;) ift=1landVi;=0
c(uit) = c(ui,n,,,.) +(n-48) ift=n;;+1and Vi;#0
c(uig—1)+(rn—-2) ifn; +2<t<n;+mng,;

vy = {0t + (=8 V=0
- c(uiz) +(n—2) fz=nz;>0
c(w)+(n—h) ifdiseven
c(ve) = c(vg) +(n—h) ifdisoddand Vi, =0
c(upz) +(n—h) ifdisodd and z =n,, > 0.
Therefore,
Q:x1,22,...,Ty

is the c-ordering of the vertices of . Then when d is even,

Q: Ve+1s ",2,l$ Ve—1, Ve+2, VI,Z’ ‘/2,2v Ve—2;Ve43y++ 4y Vi,h) ‘/2,’1’ Vec—h, Ve

while when d is odd, then necessarily V2,4 = @, and so

Q: Ve+1, V-2,1r Ve—-1y Ve+2, V'l,2s V‘2,2’ Ve—2, Vo435 -+ Vl,h, Ve
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64 Tr

zn Zg Ts Z10
101 12 O x5 55 /44 94
112 75 23 122 1 33 83
.- & — —§===c== ®
Z12 g 3 Ve = T13 Vbl =Z1 24 T9

g

g 75 T12
86 116
o
T10 x3 Ve = T13 Vel =T T4 z1

Figure 2: Illustrating the labeling ¢ of the vertices of T

For each of the trees T and T” of Figure 1, such a coloring ¢ is shown in
Figure 2 together with the c-ordering zi,zo,...,z13 of the vertices of the
tree.

‘We now show that c is a Hamiltonian labeling, that is, we show for every
pair u, v of distinct vertices of T that

le(w) = e(v)| + D(u,v) 2 n. )

We begin with u,v € V(T) — {v.}. First assume that « and v are two
consecutive vertices in the c-ordering Q in (6). If {u,v} C V(R) — {v.},
then either (i) u = v._(;—1) and v = ve4, for 2 < ¢ < h, or (ii) v = ve—; and
¥ = Ucyi, Wherenow 1 < ¢ < h. If (i) occurs, then D(ve_(i-1), Veti) = 2i—1
and |e(ve—(i—1)) — €(Vesi)] = n —2¢ + 1 by (1); while if (i) occurs, then
D(ve—i, veti) = 2t and |e(ve—i) — ¢(Veti)| 2 7 — € 2 n — 2i by (4). On the
other hand, if {u,v} € V(R), then either D(u,v) > 2 and |c(u) — c(v)] 2
n -2 or D(u,v) > 2¢ and je(u) — e(v)] = n — & > n — 2i by (2)-(4), for
1 <4 < h. Thus (7) holds in each case.

Next, we assume that u and v are not two consecutive vertices in (6).
We show in this case that

le(w) - e(v)[ 2 n -1, (8)
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which will imply that (7) holds. By (1)-(4) we see that
le(u) — c(w)| 2 [n — (2h = 1)] + (n — &)
>9n—2h+1-2k (9)
(since £, < 2k). We now consider two cases.

Case 1. [451] < | 2=g+l|. Since

d-1 [d—1]<|-n—d+1an—d+l

2 s 2 2 2

it follows that n > 2d — 2 > 2d — 1 and so n — 2d > —1. By (9),

le(w) —c(v)] = 2n-2 (212'_1) +1-2 (g)

= 2n—d-14+1-d=2n-2d>n-1.

Case 2. [451] > | 2=g+1|. Again by (9),

le() — e(v)] 2 2n—2(fi_;_1) +1_2(n—;l+1)

= 2m—-d-14+1-n+d-1=n-1.

Therefore, (7) holds if u,v € V(T') — {v.} and u # v.

Finally, we consider those pairs u,v of vertices of T where u = v, and
v € V(T) — {vc}. Note that v, = z, in the c-ordering 2 in (6) and
v =z; for some j with 1 <j <n—1. If j < n -3, then |c(zs) — c(z;)| =
c(zn) —c(z;) 2 e(Tn-1)—c(z;) 2 n—1by (8) and so (7) holds. If j =n—1,
then |e(zn) — c(z;)| + D(zn,z;) = (n — h) + h = n. Thus we may assume
that j =n — 2. If d is even, then D(vc,v) = h. It then follows by (4) and
(5) that

(m=h)+(n—2y)+h
2n — &, > n.

le(ve) = e(v)| + D(ve, v)

v v

If d is odd, then D(v,v) > h — 1. It then follows by (1) and (5) that

le(ve) — c(v)] + D(ve,v) 2 (m—h)+[n—(2h-1)]+(h—1)
2 2n-2h>2n—-(d+1)>n.

Therefore, ¢ is a Hamiltonian labeling, as claimed. It remains to d

e-
termine the value hn(c) of ¢. First, assume that d is even. Then h = g-
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and
hn(e) =

In

+

4+ + 0

c(ve) = c(vn)

h k
1+ [n— (2= 1]+ ) (n—2i)

i=2 i=1
(h—k)(n—2k)+ (n—h)+ (n—2h —1)(n - 2)
1+ (nh — h(h+1) + k) — (n = 1) + (nk — k(k + 1))
(nh — 2hk — nk + 2k%) + (n — h)
(n? —2n - 2nh+4h —n+2)
n? —3n+4+3h—h?—2hk—k+ k2

n2—3n+4+gd—§—dk—k+k2.

Next, assume that d is odd. Then h = ¢! and

hn(e) =

IN

+

W+ + 0

c(ve) = c(vn-1)

h k
1+ [n- (2 - 1))+ ) (n—2)

=2 i=1
(h=1—-k)(n—2k)+(n—=h)+(n—2R)(n—-2)
14 (nh—h(h+1)+h)—(n—1)+ (nk — k(k+1))
(nh — 2hk — n + 2k — nk + 2k%) + (n — h)
(n? — 2n — 2nh + 4h)
n2—3n+2+3h—h?—-2hk+k+k?
n?-3n+2+ (§d+g) - (%2-+g+§)
k(d+1) + k + k?

n2—3n+3%+d—§—kd+k2.

This completes the proof.

If T is a nontrivial tree of order » and diameter 2, then hn(T) < n +
(n — 2)? by Theorem 2.7. On the other hand, T is a star and so hn(T') =
n + (n — 2)%2 by Theorem 1.3. Thus the upper bound in Theorem 2.7
is attainable for d = 2 and for all » > 3. In fact, the upper bound in
Theorem 2.7 is also attainable for d = 3 and for all n > 4. A tree of
diameter 3 is referred to as a double star. Thus a double star T has exactly
two non-end-vertices called the central vertices of T'. The double star whose
central vertices have degrees a and b, respectively, is denoted by S, . We

now determine the Hamiltonian labeling of all double stars.
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Theorem 2.8 If Sy is a double star of order n = a+b where a < b, then
hn (Sap) =n 4+ (n —2)2 - 2(a - 1).

Proof. It is easy to see that Sz 2 = P4 and hn(S,2) = 6, we may assume
that n > 5. Let uj,v; € V(S,,) be the central vertices of S, 5, where
degu; = a and degv; = band let N(u1) = {v1,u2,us,...,us} and N(v;) =
{u1,v2,vs,...,u}. We first show that hn (S, ) > n+ (n —2)2 — 2(a - 1).
Observe that
(a) D(u,v)=3ifand only if {u,v} = {ui,v;} for2<i<aand2<j<b
(b) D(vy,z) =2ifandonlyifz=u; for2<i<a.

Let ¢ be a minimum Hamiltonian labeling of S, and let wy,wy,...,w,
be the c-ordering of the vertices of S;5. Then v; = w; for some i with
1<i<n LetS={j: Dwjwjy1)=3and1<j<n-1}. It then
follows by (a) that |S| < 2(a — 1). We now consider two cases.

Case 1. {wi—1,wi+1} N N(u1) # 0. Then |S| < 2(a—-1) —1 by (a) and
SO

hn(e) 2 1+(n—-3)(2a-3)+(n—2)(n—(2a-3)-1)

= 1+ (2na—3n—6a+9)+ (n?—2na+2n—2n+4a — 4)

n?—3n—-2a+6=n+(n-22%-2a-1).

Case 2. {wi—1,wi4+1} N N(u1) = 0. Then |S| < 2(a—1) by (a) and (b).
Since D(w;, z) = 1 for each z € {w;—1, wi41}, it follows that |c(w;)—c(z)| >
n — 1. Hence

hn(e) > 1+(n-3)(2a-2)+(m—1)+(n-2)(n-(2a-2+1+1))
1+ (2na —2n —6a+6) + (n — 1) + (n? - 2na — 2n + 4a)
n?—3n-2a+6=n+(n-22-2a-1).

Therefore, hn (S,,5) = hn(c) > n + (n — 2)2 - 2(a — 1).

To show that hn (S, ) < 7+ (n — 2)? —2(a — 1), we define a labeling
co by

nwv

c(nn) = 1

co(ug) = 1+(n—2)

co(vs) = co(ui)+(n—3) for2<i<a
co(uj) = co(vj-1)+(n—3) for3<j<a
co(ve) = co(vg-1)+(n—-2) fora+1<k<b

co(u1) = co(w)+(n—2).
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Then if Q : z1,22,...,Z, is the co-ordering of S, 3, then

Q:z; = vy, U2,V2,U3,03,. .., Ua, Va, Vgl - - - Uby Y1 = T,
where
co(z1) = 1
co(z2) = 1+(n-2)
co(z;) = co(zi—1)+(n-3)for3<i<2a—1
co(z;) = co(rj—1)+(n—2)for2e<i< n.

Let z;,z; € V(S,) with 1 << j <n. If j > i+ 2, then ¢(z;) — c(z;) 2
2(n—3) = 2n—6 > n—1; while if j = i+1, then ¢(z;)-c(z;) = n—D(z;, z;).
Thus ¢ is a Hamiltonian labeling of S, 3. Furthermore, the value of ¢ is

hn(co) < co(ur) =1+ (n-3)a—-14+a-2)+(n-2)(n—-(2a-3)—-1)
=1+(n-3)2a-3)+(n—-2)(n—-2a+2)
=14 (2na—3n—-6a+9)+ (n? —2na+2n—2n+4a—4)
=n?-3n—2a+6=n+n-2)°2—-2a-1).

Therefore, hn (S, 5) =n + (n — 2)2 — 2(a — 1). n

If T is a double star of order n > 4, then hn(T') < n+ (n — 2)%2 — 2 by
Theorem 2.7. On the other hand, if T = Sz ,—2 for n > 4, then hn(T') =
n+ (n —2)2 — 2 by Theorem 2.8. Thus the upper bound in Theorem 2.7 is
attainable for d = 3 and for all n > 4, as claimed.

As a consequence of Corollary 2.6 and Theorem 2.7, we obtain an upper
bound for the Hamiltonian labeling number of a connected graph in terms
of its order and diameter.

Corollary 2.9 Let G be a connected graph of order n > 3 with diam (G) =

d and
k = min d-1 n—d+1
- 2 ! 2 )
Then
2_3n+4+3d-L +k2—kd—k ifdi
hn(G) < {", Ttk i d is even
n—3n+3;+d—- G +k*—kd if d is odd.

3 Lower Bounds

We have already mentioned that a connected graph G of order n has Hamil-
tonian labeling number n if G is Hamiltonian. Furthermore, hn(G) > n
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for every nontrivial connected graph G of order n. Next, we provide an
improved lower bound for the Hamiltonian labeling number of a nontrivial
connected graph in terms of its order. Let G be a connected graph of order
n 2 5. For an ordering s : v;,vs,- - , vy of the vertices of G, define

n—1
D(s)=Y_ D(vi,vi41)
i=1

and
D(G) = max{D(s) : s is an ordering of V(G)}.

We now establish a lower bound for the Hamiltonian labeling number of a
connected graph G in terms of its order and D(G).

Theorem 3.1  For a connected graph G of order n > 5
hn(G) > n(n-1)— D(G) + 1.

Proof. Let ¢ be a minimum Hamiltonian labeling of G and let vy, va,...,v,
be the c-ordering of the vertices of G. Certainly,

n—1
> D(vs,vi41) < D(G).
i=1
Since c is a Hamiltonian labeling of G, it follows that
le(v:) = e(vit1)] = c(vis1) — e(vi) 2 n — D(vi, vit1)

for 1 <i<n-—1. Hence

n—1 n—1
D (i1} = c(ws)) = Y le(ws) = c(viga)|

hn(c)-1 =
=1 i=1
n—1
> n(n—1)= Y D(®;,vi41) 2 n(n—1) - D(G).
=1
Therefore, hn(G) = hn(c) > n(n - 1) - D(G) + 1. =

The lower bound in Theorem 3.1 is sharp. For example, if G = K} n_;
for n > 5, then D(G) = 2n-3, if G = S2,n_2 for n > 4, then D(G) = 2n—1,
and if G = S3n_3 for n > 6, then D(G) = 2n + 1 (see [3]). Thus in each
case, hn(G) = n(n — 1) — D(G) + 1 by Theorems 1.3 and 2.8.

We now present a lower bound for Hamiltonian labeling number of a
tree in terms of its order and diameter.
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Theorem 3.2 Let T be a tree of order n > 3 with diam(T) = d. Then

n? —n(d+1)+ 2 ifd is odd

hn(T) >
o )—{nz—n(d+1)+d—zgﬁ if d is even.

Proof. Let ¢ be a Hamiltonian labeling of G' with hn(c) = hn(T'). Since
diam(T’) = d, it follows that d(u,v) = D(u,v) < d for every two distinct
vertices u and v in T and so

le(uw) —c(v)| 2 n —d. (10)

Let R: v, vy, -+ ,vq be a path of length d in T' and let r = rad(T") = I_g-_]
If d is odd, then v, and v,4; are the central vertices of T'; while if d is even,
then v, is the only central vertex of T'. Define a function w on the set V(T')
by
w(w) = min(d(xu, v),d(u,vq)) if u € V(R)
0 if u e V(T) - V(R).

Thus 0 < w(u) < r and w(u) = r if and only if u is a central vertex of T.
Furthermore,

2(Si, i) =r(r+1) ifdisodd

Y ww= 3 w(u)'={ 2 (o (1)

weV(T) wEV(R) i) +r=r® ifdiseven.
We claim that
le(u) = c(v)] = (n — d) + w(u) + w(v) (12)

for every pair u,v of distinct vertices of T. If u,v € V(T) — V(R), then
w(u) = w(v) = 0 and (12) holds by (10). Thus we may assume at least one
of u and v in V(R), say u € V(R) and u = v, for some s with 0 < s < d.
There are two cases, according to whether v € V(R) or v ¢ V(R).

Case 1. v € V(R). We may assume, without loss of generality, that
v = v;, where 0 < s < t < d. There are two subcases.

Subcase 1.1. The vp — vs subpath of R has length w(u) and the vo — v,
subpath of R has length w(v) or the v,—vq subpath of R has length w(u) and
the vy — vg subpath of R has length w(v), say the latter. Then w(u) > w(v)
and D(u,v) = |w(u) — w(v)] = w(u) — w(v). Since 2w(u) < 2r < d, it
follows that

le(u) = c(v)] = n-—D(u,v)=n-—w(u)+w()
= n-—d+(d-2w(u)) + w(u) + wv)
> n—d+w(u)+w).
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Subcase 1.2. The vg — v, subpath of R has length w(u) and the v, — vy
subpath of R has length w(v). Then D(u,v) = d — w(u) — w(v) and so
le(u) — e(v)] = n — D(u,v) =n — d + w(u) + w(v).

Case 2. v ¢ V(R). Thus w(v) = 0. We may assume, without loss of

generality, that 0 £ s < » = rad(T"). Therefore, D(vp,u) = w(u). There
are two subcases.

Subcase 2.1. The edge sets of the u — v path and the vo — u path are
disjoint. Then

D(u,v) + w(u) = D(u,v) + D(vo,u) < d

and so D(v,u) < d — w(u) = d — w(u) — w(v). Therefore, |c(u) — c(v)] =
n— D(u,v) =n — d+ w(v) + w(v).

Subcase 2.2. The edge sets of the v — v path and the vq — u path are
disjoint. Then

D(vq,v) = D(vg,u) + D(u,v) = (d — w(u)) + D(u,v) < d.
As such, D(u,v) < w(u) < §. Therefore, D(u,v) + w(u) < d and so
D(u,v) £ d=w(u) =d—w(u) —w(v). Then, |e(v)—c(v)| 2 n—D(u,v) =
n—d+ w(w) + w(v).
Therefore, (12) holds, as claimed. With the aid of (12), we now present

a lower bound for the value of ¢. Let u;,us,...,u, be the c-ordering of the
vertices of T'. Then

hn(c) > 1+ z_:(c(ui+1 - c(wi))
1

n-1

14 ) (n— d+ w(us) + wluis))
1

v

n-1 n—1
1+(n-1)(n-d)+ Y wlw)+ Y w(ur)
1 1

1+4(n-1)(n-d)+2 [Z w(u,-)] —w(uy) — w(uy).
1

If d is odd, then d = 2r + 1 and w(u;) + w(u,) < 2r. By (11),

hn(c) 2 1+(n-1)(n—-d)+2r(r+1)-2r
(d-1)
= 1+(n-1)(n—-d)+ 5

= n —n(d+1)+#
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while if d is even, then d = 2r and w(u;) + w(u,) < 2r — 1. By (11),

hn(e) > 1+(n-1)(n—d)+2r2-2r+1

2+(n—1)(n—d)+§—d

= nz—n(d+l)+£;-—4.

This completes the proof. [

If T is a nontrivial tree of order n and diameter 2, then hn(T) > n +
(n—2)? by Theorem 3.2. In this case, hn(T) = n+ (n—2)? by Theorem 1.3
and so the lower bound in Theorem 3.2 is attainable for d = 2 and for all
n 2> 3. Furthermore, the lower bound in Theorem 3.2 is also attainable
for d = 3 and for all » > 4. In this case, hn(T) > (n — 2)2 + 2 by
Theorem 3.2. On the other hand, if T is a nontrivial tree of order n > 4
and diameter 3, then T is a double star and so T = S, 5 for some integers
a,b> 2 and a < b. By Theorem 2.8, hn(S,3) = n+ (n — 2)2 — 2(a — 1).
Thus hn (Sg,3) = (n — 2)? + 2 for each even integer n > 4. Therefore, the
lower bound in Theorem 3.2 is attainable for d = 3 and for all n > 4.
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