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Abstract

Let G = K, 5, where a, b are even or G = K4, — Maq, wherea > 1 is
an odd integer and Ma, is a perfect matching in K, 6. It has been shown
((3,4]) that G is arbitrarily decomposable into closed trails. Billington
asked if the graph K,, — F, where s, are odd and F is a (smallest
possible) spanning subgraph of odd degree, is arbitrarily decomposable

into closed trails ([2]).
In this article we answer the question in the affirmative.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We use
standard terminology and notation of graph theory. Consider a graph G, whose
number of edges we call the size of G and denote by ||G||. Write V(G) for the
vertex set and E(G) for the edge set of graph G.

As in [4] we denote by Lct(G) the set of all integers ! such that there is a closed
trail of length I in G. A sequence 7 = (t1,...,1p) of integers is called admissible
for graph G if it adds up to ||G|| and ¢; € Let(G) for all i € {1,...,p}. Moreover,
if 7 = (t1,%2,...,1p) is an admissible sequence for G and G can be edge-disjointly
decomposed into closed trails Ty, ..., Tp of lengths t,, . .., t,, respectively, then 7
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is called realizable in G and the sequence (T3, ..., Ty) is said to be a G-realization
of T or a realization of T in G.

If for each admissible sequence 7 for a graph G there is a realization of 7 in
G, then we say that G is arbitrarily decomposable into closed trails.

There are some families of graphs that are known to be arbitrarily decom-
posable into closed trails. The first result on this topic is due to P.N. Balister,
who proved that if G = K, for n odd or G = K,, — M,,, where M, is a perfect
matching in K, for n even, then G is arbitrarily decomposable into closed trails
(1)). In [4] M. Horidk, M. Wozniak proved an analogous theorem for complete
bipartite graphs.

Theorem 1 (M. Horiidk, M. Wozniak) If a, b are positive even integers,
then the bipartite graph K. 1s arbitrarily decomposable into closed trails.

E.J. Billington has put the following open problem in [2]:

Problem 2 (E.J. Billington) Show that the graf K, ; — F', where s,r are odd
and F is a (smallest possible) spanning subgraph in which every vertez has odd
degree, is arbitrarily decomposable into closed trails.

This problem is partially solved in [3]. It is shown there that if a > 1 is an
odd integer and My, is a perfect matching in K, 4, then the graph K, , ~ Mo,
is arbitrarily decomposable into closed trails.

Theorem 3 (S. Cichacz, M. Horidk) If a is an odd integer, a > 1, then
the graph K , = Koo — My, is arbitrarily decomposable into closed trails.

If a and b are odd, then let K ;, = K, — F, where F is a (smallest possible)
spanning subgraphs with all vertxc&s of odd degrees. Notice that K, is an
Eulerian graph. The main goal of our paper is to show that the graph k",,b for
any odd a and b is arbitrarily decomposable into closed trails.

If a, b are odd integers with b > a + 4 > 7, then a smallest (with respect to
size) spanning subgraph of K, with all vertices of odd degrees is not unique.
Such graphs are of the form U,_.l K, 5, whereb,,...,b, are odd posmve integers
with 3°7_, b; = b. For o = 3 we are dealing with the case b; > |¥31), whereas
fora.>5weassumethatb—lforz-l ..,r—1and b, = b+1—r

2 Decomposition of K, into closed trails

Here and subsequently, a closed trail T of length n is regarded as an Eulerian
graph (or subgraph) of size n. However, it will be identified with any sequence
(vo,v1,...,YUn-1,Vn) Of vertices of T such that v;v;41 are distinct edges of T’
fori =0,1,...,n — 1. Notice that we do not require the v; to be distinct and
certainly vp = vp.
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Moreover, as in [1] given two edge-disjoint graphs G;, G, which are not
disjoint on vertices, we shall write G; - G2 for their union. Observe that if T}
and T are closed trails, then T} - T3 is a closed trail as well.

As in [3] pick disjoint sets X7 = {z:i€{1,...,n}}, j = 1,2, and let

X}, = (zi:ie{pp+1,...,q}} forpq e {1,...,n}. In this paper the
complete bipartite graph Ka,b will have the bipartition {X. {'Q,X f’b} and M,
will be the perfect matching in K, o consisting of {z},z?} for 1 < i <a.

Denote by Ng(z) the vertex set of all neighbors of the vertex « in a graph G.

The basic idea of our proof is to consider a graph G = K, — F as the
edge disjoint union G - G of two graphs, and given a sequence T = (ty,...,1p)
which is admissible for G, divide it into two sequences 1y = (¢,...,%), 2 =
(ti+1,...,tp) admissible for Gy, G2, respectively, and then decompose these two
graphs separately. It is however obvious that we cannot always simply divide 7
into 7, and 7; as described above. Therefore, we split ¢; = t] + ¢/ at times and
search for realizations of 7§ = (t1,...,ti—1,%) and 73 = (t/,ti41,...,%,) in Gy
and G, respectively, and finally glue together closed trails of lengths t] and ¢
to form the one of length ¢;.

Notice that, if a and b are positive integers, then clearly

Let(Kop) = {4i:4=1,2,... -%— } if bis even,
Let(Kap) = {26:4=2,3,...,5(ab—4)} U {ab} if a,b>4, a,bareeven.

Let 7 = (t1,...,%,) be an admissible sequence for a graph G. We shall write
(23*,...,t}*) for the sequence (t1,..., 81, r try ooy br)-

Leta > 5 be odd and the graph G5 bea subgraph of K; 442 with the bipar-
tition {Xl 3 X2 3 a42) defined as follows: Let G® = K,_; 4 have the blpa.rtxtlon
{Xl,a-vxa-l at2}r then E(Gas) = (E(G®) U {z}_122 5, zla2_p,zla2_1})\ |
{xl_,z2_,}. Before we prove the main result we will need the following lemma.

Lemma 4 If 7 = (t1,...,% ) s an admissible sequence for G, 5 and i € {a —
3,a—2}, there is a G, s-realization of T with a closed trail T\ of length t; passing
through z}. Moreover, if T = (t +2,t""!), t > 10, t = 2 (mod4), a = 1 (mod?¢)
and (i,j) € {(1,e —3),(1,a — 1), (a — 2,a)}, there ezists a G, 5-realization of T
with a closed trail Ty of length t + 2 having a subpath of length 4 that joins z}
to z}.

Proof. Notice that ||G, 5| = 4(a—1)+2, so obviously there exists t,, = 2(mod 4).
Let tj, = t, —2 2 4. The sequence 7/ = (t1,...,tw—1,t0, twsls--.,br) I8
admissible for G* = K,_;4 and by Theorem 1 there exists a G®-realization
(Th,.. s Tw-1,T.,, Toy41,. - ., I7) of 7/. One can check that we can permute the
set of vertices of the graph G° in such a way that {z!_,z2_,} c E(T)).
Let us define the T, so that V(T\,) = V(T,) U {z!,22_,} and E(Ty,) =
(E(Ty) U {z3_122 g, 2iad_o,ziz2_1}) \ {zi_12%_,}, then T, is a closed trail
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of length t,, and we obtain a G, s-realization of 7.

Notice that V(T)N{z},...,zl_,} # @ for any closed trail T in G, 5. There-
fore, the first part of the lemma follows from the fact that {z},...,zl_,} is one
of the similarity classes of the graph G, 5.

Assume now that 7 = (¢t + 2,t""1), ¢t > 10, t = 2(mod 4) and a = 1(mod ).
Let 7/ = (t},t5,t5,t4,t5,...,¢r) and ¢} =t —4 > 6 fori =1,2,3,4 and t; = ¢ for
i 2> 5. Notice that for @ = £ + 1 we consider 1" = (t},15,5,t;). Then by Theo-
rem 1 we can find a K,_5 4-realization (77, 73,T3,T},T5, ..., T}), where Kg_5 4
has the bipartition {X3 a—lea—l a2} Smce t = 2(mod 4), ITINX3, 1|23
and [T/ N X,';’_1 atzl 2 3 for all 5. 'As above we can permute the set of vertlces
of K,—5,4 in such a way that {a:a_lzﬁ_l, zl_yx2,zl_o22} CE(T))and zl_g €

V(Ty). Letubea vertex in Ny (x}_3). Let now K4 ¢ be the bipartite graph with
the bipartition {X{ 4, X2_, a+2} and 'r” (t7,t4,¢4,t]) = (4%). By Theorem 1
there exists a K, s-realization (Y, 18,73, T/ ) of 'r” We may permute the set
of vertices of Kj 4 such that {x},zé, a-n'“} C V(T{'). Let us define now T}
s thet B(T}) = (E(T}) U E(TY) U {al 122 _y, sk aba?_,})\ {ol_sa2_,}.
Obviously Tj is a closed trail of length ¢ + 2 and we have paths of length 4
between vertices z1_s and z1, z!_, and z}, and z} and z}_, in the trail 7).

Notice that for 7 = 2, 3, 4 the trails T} and T} have also at least one common
vertex in the set X2_, ,.,. Therefore, we can take T,=T{-T!fori=2,3,4.1

Theorem 5 Let a,b be odd. There exists a (smallest possible) spanning sub-
graph F of K, p in which every vertez has odd degree such that G = Ko p — F
is arbitrarily decomposable into closed trails.

Proof. There is no loss of generality in assuming that a < b for the graph K.
Assume first that a = b. It can be easily seen that for a = b we have F = Mza
Graph G = K, o — M, is arbitrarily decomposable by Theorem 3.

From now on, let us assume that a < b. Notice that b = a + c and ¢ is even.
Let 7 = (t1,...,tp) be an admissible sequence for G. We show that there exists
a G-realization of 7. We consider the following cases:

Case 1: a=3.
Case 1.1: b= 3 (mod6). Then b = 3k for some odd integer k. Let
E(F) = {z}mf, $éx%i z..'l’.xgt z{mz’z;zgxxézga ves s-""%“’gk—m x%zgk—lixéwgk}'

We can consider now the graph G as an edge disjoint union of graphs Hy, ..., H,
where H, = K33z — Ms = Cg and H, has the bipartition sets Xl 3 and
Xa(,_l) +1,3(r—1)+3 for 1 <7 <k Ift; = 0 (mod6) for every i, then one
may check easi y that there exists a G-realization of 7.

Suppose now that there exist ¢;,1s,...,ty, such that ¢; # 0(mod6) for 1 <
i € w. Since ||G|| = 2b = 0 (mod6), we have } ;. t; = 0 (mod 6). Let now
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ti=t;i—4, t/=4 for t;=4(mod6),
ti=t;—8, t!=8 for t;=2(mod§6).

Figure 1: Decomposition of H; U H; into three cycles Cy.

Let I, = Y t!. Since t! = 0 (mod4) for any i, l, = 0 (mod12). As
above we can easﬂy obtain a G-realization (L., T3,..., Ty, Twt1,..., Tp) of a
sequence (ly,t],...,t,, twt1,.--,tp). Notice that a closed trail L,, is isomor-
phic to H, U...U Hy, where each H; is isomorphic to Cs and the number g
of the cycles is even. There is shown a decomposition of H; U H; into three
cycles Cy in Figure 1. Since any two closed trails in G have always a common
vertex in X{ ,, there exists a decomposxtlon of the closed trail L,, into closed
trails TY{',...,T,, of lengths ¢{,..., 1y, respectively. Observe that X{ 3 C V(T)
for any 1 € i €< w. In this case T’ and T} (for 1 € i € w) have two common
vertices in Xm It implies that we can denote TitobeT! - T! (for1 i w)
and we obtain a G-realization of 7.

Case 1.2: b=5 (mod6). Then b = 3k + 2 for some odd integer k. Let

E(F) = {Z}Z%’ x%‘”%» xéxg’ [RRS} z{xgk—m x%zgk—lx z.%z%k» m§z§k+l: Z;z§k+2}'
Since ||G|| = 2b = 4 (mod6), we may suppose without loss of generality
tp # 6. Let t;, = t, — 4. Notice that we can consider G as a union of graphs
G =Kszp_o— F' and T,’,’ K32 (Tp = Kz for tp, = 4), with bipartition sets
{X13: X{,_ o} and {X{,, X2 b}, respectively. The spanning subgraph F' of
the graph Ky ois defined in the same way as in Case 1.1. It implies that a se-

quence 7' = (t1,-..,tp-1, tp) (or 7/ = (t1,...,8p—1) for ¢, = 4) is G’'-realizable.
Since T, and T/ have at least one common vertex in X{j,let T, =T, - T} and

we obtain a G-realization of .
Case 1.8: b=1 (mod6). Then b = 3k + 4 for some odd integer k. Let

— 1.2 1.2 1.2 1.2 1.2 1,.2 1,2 1.2
E(F) = {2127, 723, T3%3, - - - , T1%3k—2s T3T3k-11 T3T3k> T3Z3k415 - - - » T3T 344}
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In this we can consider G as a union of graphs G' = Ksp-4 — F' and
T, = Kz4, with bipartition sets {X], X?,_,} and {)(12,X,,_3 b}, respec-
tlvely

As in Case 1.2 we can assume that t, # 6. If t, # 4 and ¢, # 10, then
analogously as in Case 1.2 we obtain a G-realization of T (teking ¢, = t, — 8).
Suppose now that t, € {4,10}. Since |G| = 2b = 2 (mod6), we may suppose
without loss of generality that ¢,_; < ¢, and ¢t,_; € {4,10}. Let t!/_;, = t, =4
and t,_; = ty—1 —4 and &}, = tp, — 4, then a sequence 72 = (t1,...,tp2,t,_1,1,)
is G’-reahzable By Theorem 1 we obta.m & Ky 4-realization of 73 = (tp_1stp)-
Taking Tp—1 = Ty T;_y (Tp-1 =T, forty_y =4) and Tp = T,- T} (T T”
for t, = 4) we obtain a G—rea.hzatxon of 7.

We assume from now on that the sequence 7 is nondecreasing, i.e., t; <
oLt
S

Case 2: a > 5 and c > 4.
Let F be a subgraph of Ka.p with V(F) X1aU X2, and with E(F) =
{z}z}, z3=3,... zlz2, 2} zf,,,.l, .xia? |, zlz2}. Notice tha.t F is an edge dis-
Jjoint union of graphs M>, and K . and obviously F is a smallest possible span-
ning subgraphs with all vertices of odd degrees in Ka.b. Observe that the graph
G = K, — F can be viewed as an edge disjoint umon of graphs G; = K, ¢
and Gp = Kg,q — Ma, with bipartitions {X{,_;, X2, ,} and {X],, X} ,}, re-
spectively. Moreover, the graphs G; and Gz are arbltra.nly decomposa.ble into
closed trails by Theorems 1 and 3.

Let s; =t +to+...4+t,1=1,2,...,p

Case 2.1: For some i, 8; = ||G1|| = (a — 1)c. Then we can find a realization of
= (t1,...,%) in G; by Theorem 1 and then decompose G2 into closed trails
of lengths ti41,...,t, by Theorem 3.

Case 2.2: For some i, 8;_; € (a—1)c—4 and s; 2 (e — 1)c + 4 (take
so =0ifi =1). Let 1, = (t3,...,t-1,t}) and 72 = (t{,ti41,...,tp), Where
ti=(a—1)c—8i—1 2 4and t] =t; — t; 2 4. By Theorem 1, we may decom-
pose Gy = K, into closed trails T3,... ,1}_1,T‘! of lengths ty,...,t;—1,t,
respectively. Then we may also find a Ga-realization (T, Ti41,.. T,,) of 3 by
Theorem 3. Since t] > 4, we have V(T/)NX{,_; #0. It follows that we may
carry out these decompositions of G; and G, in such a way that T! and T/
have a common vertex. If we denote T; to be T} - T} then (T3, T3,...,Tp) is a
G-realization of T.

Case 2.5: For some i, s; = (a — l)c + 2. Since (a — 1)c = 0(mod4) and 7
is nondecreasing, ¢; > 6. Denote t; = t; — 2, t;,; = t;41 + 2. Then, since
t; > 4, tiy, > 6, we may find a Gl-rea]lzatlon of iy = (t1,...,ti—1,t}) from
Theorem 1 and a Ga-realization of 75 = (8., ti42,...,tp) from Theorem 3.
Recall that G, = Ka—l,c and G, = Ku,a — M, Let (Tl, Ts, ...,1}-1,7}-’) and
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(T{1, Tiv2,s ..., Tp) be Gy and G-realizations of 71 and Ty, respectively, such
that |T;|| = t' and ITiall =ty

Observe that Go & K, , — M, is symmetric with respect to parts of its bi-
partition. It is easy to verify that we may write Tj,; as (v1,..., %, +1) With
v € X1 o—1 and v5 € X[, (it is enough to permute the vertices of X},
and X7 ) and v; # vg (even ifti,, = 0(mod4)) We may also write T} as
(wy, .. ,wy.,.l) with wy € X},_, and w3 € X} a-1- Notice that without loos-
ing generahty we may choose the realization of 79 in such a way that w; = 1
and w3 = vs. In such a case, if we denote T; = (v1, v2,v3,v4, s, Wa, - - , Wey41)
and T4y = (v, we, vs, . ’”t'+1+!)' then T; and T;4; are closed trails of lengths
t; and tiy1, respectively (see Figure 2), and the sequence (T3,...,T}) is a G-
reslization of 7.

Case 2.4: For some i, 8; = (a — 1)c — 2. It follows ¢; > 6. Let us introduce

WL =V

-

-
G,

Figure 2: Intersecting closed trails.

té =t +228, t;, =lp=-224 Let (Th---:Ti-l;Ti,) and (Tiyq,.. p_1,T )
be G, and Ga-realizations of 7, = (t1,...,ti—1,t;) and 72 = (ti41,.. t,,..l,tp),
respectively, such that ||T}|| = ¢; and {|T3]| =+¢,.

Assume first that we can write T} as (wi,...,wy41) with wy,ws € X},
and wy # ws. We write T as (vy,.. ,vg:+1) with vy,v3 € Xi a-1- As
above we can choose the reahzatlon of 1 in such a way that w; = v; and
ws = v3. In such a case, if we denote T; = (vy,v2,v3,ws,...,we41) and

= (v, w2, w3, Wy, V3, . ,v¢:+1), then T; and T}, are closed trails of lengths t;
and t,.

Suppose now that we cannot write T/ in such a way. It follows that t! =
0(mod4) and wy = ws, ws = wy. Ifnow t, > 8 (t, > 6), then as in Case 2 3
we may write Ty as (v1,...,v41) with v1,v5 € Xl a—1 and v; # vs. More-
over, since we can permute the vertices of K,_; ,c» We may assume w; = v
and w7 = vs. In such a case, if we denote T; = (vl,vg,va,v4,v5,w8, ) Werg1)
and T}, = (v1, w2, w3, wq, W5, We, Vs, - - -, Vs +1), then T; and T, are closed trails
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of lengths t; and ¢,. If ¢, = 6 (it follows that i1, = 6) and t; = 4, then
s;i —t; = (a—1)c— 6, s;41 — t1 = (e — 1)c and we continue the proof the same
way as in Case 2.1 (we build up a G-realization of 7 from a G-realization of
(t2,...,ti+1) and a Ga-realization of (21,ti42,...,¢p)). The last missing case is
ty =... =t, =6, but then (a — 1)c = 2(mod 6), (a — 1)(a + ¢) = 0(mod 6) and
a(a — 1) = 4(mod 6), a contradiction.

Case 3: a > 5 and ¢ = 2. Notice that there exists a unique F in K, .42 and
E(F) = {zlxl,z2:c2, xiel,zlal, ) 2la L)

Let K.',,a+2 = Kgo42 — ((a — 1) K2 U K3 3).

Assume first that ¢; = 0 (mod 4) for all j, it follows that there exists ¢ such
that s;_1 < 2(a—1)—4 (sg=0) and 5; = 2(a — 1) or 8; > 2(a — 1) + 4. Let
71 = (t1,...,ti-1,t;) and 72 = (¢, ti41,...,tp), Where t; = 2(a — 1) —8;_1 > 4
and t! = t;—t}. Notice that ti,t! =0 (mod 4). Let us consnder now G as a union
of Gy = Ka_l 2 and Ga = K, o — M2, with bipartitions {X],_, X2, ..} and
{X1a Xiah respectively. Now using the same arguments as in Case 2.1 (¢} = 0)
or 2.2 (/"> 4) we obtain a G-realization of 7.

Suppose now that there exists j with ¢; = 2(mod 4). Notice that we can
consider the graph G also as a. union of graphs G’1 =Gasand G2 = K;_,,
with the bipartitions {X] ;, XZ_, ...} and {X},, X} ,_,}, respectively. We will
argue now by the induction hypothuls By Case 1 the graph Kj 5 is arbitrarily
decomposable into closed trails. Let a > 5 and consider the following subcases:

Case 8.1: For some i, s; = ||Gy|| = 4(a—1) + 2. Then we can find a realization
of 1 = (t1,...,%) in G, by Lemma 4 and then decompose G into closed trails
of lengths ¢;41,...,t, by the induction hypothesis.

Case 8.2: For some ¢, 8;_1 € 4(a—1) -2 and s; 2> 4(a — 1) + 6 (3o = 0). Let
71=(t1,...,ti-1, t:) and 75 = (t:-', bitlyeres tp), where t: = 2(0.—1)4-2—8,'_1 =4
and t! = t; — t; > 4. Then we may find a Gp-realization (T}, Ti41,...,Tp) of 72
by induction. Notice that if there exists a vertex v € V(T}’) such that v € X} _, ,
then we can permute the set of vertices of G2 such that v = z!_,, whereas if
v € X} ,_3, then we permute the set of vertices of G2 such that v = z}_,.

Now by Lemma 4 we decompose G; into closed trails T1i,.. T,-;,T' of
lengths t1,...,ti—1,t; so that we determine if either z}_, € V(T) orzl ;€
V(T}). Lettmg T; =T - T{ we obtain a G-realization of 7.

Case 8.8: For some i, s; = 4(a— 1) +4. Assume first that ¢; = 4, then obviously
t;—1 = 4 and there exists r with t, = 2 (mod 4). It follows that s;_o = 4(a—1)—4
and s;-2 +t = 4(a—1)+2 or s;_o + ¢, > 4(a — 1) + 6 and we continue the
proof the same way as in Case 3.1 or Case 3.2, respectively.

Suppose t; > 6. If t, > t; then s;_1 + tp 2 4(a — 1) + 6 and we can use
similar arguments as in Case 3.2. From now on we consider the case where
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ti = =1t, =t = 2(mod4) (recall that not all ¢;’s are divisible by 4). If
thereis l € {1,...,i—1} with 6 < ; <t —2,thens; — 4 < 4(a—1) -2 and
8i+1 — t; 2 4(a — 1) + 6. Henceforth we assume that ¢x € {4,t} for k =1,.
Suppose first that ¢ = 4. If t = 6, then Z;;Is ty =4(a—1)+2. If £t > 10, then
itk = 4(a—1)—4 < 4(a—1)-2and Z:Lla tx = 4(a—1)+6. In the remaining
case we have t2 = t, t; € {4,t} and there is d € {0,4} such that 4a = d (mod)
and (a —1)(a +2) = a? + a — 2 = d(modt). Consequently, 4 = d + ot and
a? +a -2 = d+ Bt for some o, € Z, (d+ at)? + 4(d + at) — 32 = 16(d + £t),
t(a?t + 20d + 4a — 168) = 32 + 12d — d? € {32,64} and t|32 in contradiction
with t = 2 (mod 4).

Case 3.4: For some i, s; = 4(a—1). Let t = ¢;. If t, > t + 6, then
8;i—t; = 4(a—1)—t < 4(a—1)—2 and s;—t1+¢, > 4(a—1)+6. Suppose therefore
tp S t+4. Ifthereis! € {1,...,i} with t; = t,—2, then s; —t;+1t, = 4(a—1)+2.
If thereis! € {i+1,...,p} with t; = t+2, then s; —t;+¢; = 4(a—1)+2. Hence-
forth we assume that ¢ € {¢,t + 4} for any k and, consequently, ¢ = 2 (mod 4).
Ifto=tandt,; =t+4,thens; -ty —t2+tp—; =8, —t+4<4a—-1)-2
and s; —t1 —ta +tpy +tp =4(a—1)+8 2 4(a — 1) + 6. Thus, we are left with
the cases 7 = (¢, (t +4)P~!), 7= (tP",t +4) and 7 = (t?). If 7 = (tP~1,t + 4),
then 4(a — 1) = 0 (modt), (a — 1)(e + 2) =4 (modt), t = 2(2¢ + 1) with g € Z,
(2¢+1)|(a—1)|(a—1)(a+2), (2¢+1)|t|[(a—1)(a+2) — 4] and (2g+1)|4, a con-
t.radlctlon If 7 = (¢, (t + 4)P~1), then 4(a — 1) = ¢t (mod t + 4), (e - 1){(a+2) =

2+ a—2 = t(modt + 4), there are a,8 € Z with da = (a + 1)(t + 4),

+a+2 = (B+1)(t+4), [(a+1)(t+4)]2+4(a+ 1)(t+4)+32 = 16(8+1)(t+4),
(t+4)[16(ﬂ+ 1) — (e +1)%(t +4) —4(a+1)] = 32 and (¢ +4)[32 in contradiction
with t = 2 (mod 4).

For 13 = (tP) we obtain a = 1 (mod ).

Assume first that ¢ > 10. Let us introduce t; = ¢t + 2, ti,; =t — 2. Let
(T,.. T,_I,T) and (T7,;,Ti42,...,T;) be Gy and Ga-realizations of 1, =
(t1,---ytim1,t;) and 7 = (t1+lat1+l “rtp).

We can write T, as (vy,.. ,W“+1) with v;,v3 € X{,. Notice that
we can permute the set of vertices of G such that if v;,v3 € X;_,, then
vy = x}_,,v3 = x}, if v;,v3 € X], 3 then v; = z!_3,v3 = =}, if v; €
X], 3 and v3 € Xa-za then v; = z},u3 = zl_;,. By Lemma 4 we can
write T} as (wy,.. ,w,'.H) with wy,ws € XI o W1 # ws and wy = vy, ws =
vs. In such a case, if we denote T; = ('vl,vz,vg,ws, - Wy41) and Tiyy =
(v1, wo, w3, wy, va, . -+ Ve, +1), then T; and T;, are closed trails of lengths ¢.

If t = 6, then the sequence T = (6°) is realizable in K7 g, see Figure 3.

For ¢ > 13 we can consider the graph G = K .., as an edge disjoint
union of graphs G3 = K79: Gs =K, 60—, G5 = Ka—78 and Gg = Ke a7
with the blpa.l‘tlthl’lS {Xa—ﬁ a’X -6 n+2} {Xl,a—ssxl,o—s} {Xl,a—71 a—5 ,a+2}
and {X2_¢ ,a,Xl a7} respecmvely Graphs G4, Gs, Gg are decomposable into
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Figure 3: The K} g-realization of T = (6°).

closed trails of lengths 6 (by Theorems 1 or 3) so the sequence 7 = (6) is G-
realizable. |
Notice that the Theorem 5 is not generally true for all smallest spanning sub-
graphs with all degrees odd. For instance, consider G = K3p — F with 4 > 9
odd, where E(F) = {z}z2,z}z2} U {ziz? : i = 3,4,...,n}. Then |G| = 2n and
the sequence T = (6, 6, 2n — 12) is admissible for G, but is not realizable in G.

Problem 6 Characterize all spanning subgraphs F with all degrees odd for
which Kgp — F is arbitrarily decomposable into closed trails.
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