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Abstract

Recently four new vertex colorings of graphs (in which adja-
cent vertices may be colored the same) were introduced for the
purpose of distinguishing every pair of adjacent vertices. For
each graph and for each of these four colorings, the minimum
number of required colors never exceeds the chromatic number
of the graph. In this paper, we summarize some of the results
obtained on these colorings and introduce some relationships
among them.
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1 Introduction

The subject of graph colorings goes back to 1852 when the young British
mathematician Francis Guthrie observed that the counties in a map of Eng-
land could be colored with four colors so that every two adjacent counties
are colored differently. This led to the Four Color Problem of determining
whether the regions of every plane map could be colored with four or fewer
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colors in such a way that every two adjacent regions are colored differently.
Of course, the Four Color Problem has an affirmative solution, as was an-
nounced in 1976 by Kenneth Appel and Wolfgang Haken. As a consequence
of the resulting Four Color Theorem, it is possible to distinguish every two
adjacent regions of every plane map M by coloring the regions of M with
at most four colors.

For example, consider the map M of Figure 1(a). By the Four Color
Theorem, there is a proper coloring of the regions of M with four colors,
say 1, 2, 3, 4, that is, adjacent regions are colored differently. Such a
coloring is shown in Figure 1(b). Therefore, every proper coloring of a
map distinguishes every pair of adjacent regions. A different coloring of
M is given in Figure 1(c), using the colors 1, 2, 3. Here too every two
adjacent regions of M are distinguished from each other. In this case, the
sets of colors of the neighboring regions of every two adjacent regions of
M are different. A third coloring of M is given in Figure 1(d), using the
colors 1 and 2. In this case as well, every two adjacent regions of M are
distinguished from each other, where here the sums of the colors of the
neighboring regions of every two adjacent regions of M are different.

2 /a3 1
1 4 2 4
2 1
(@) M (b) proper
Lo /N 1/\1 4
A®2 /(033 AN® /e\ @ 1
1
1
{1,3} {1,2,3} X{1,2}
{1,2,3} 1 ® ® ®
{1,2} {1,3} @
3|2 1]2
(c) set (d) sum

Figure 1: Three colorings of the regions of a map M

Figure 1 therefore shows that it is possible to color the regions of a
map M with fewer colors than that required of a proper coloring and still
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distinguish every two adjacent regions. As a second example, consider the
map M shown in Figure 2(a). Here, as well, the regions of M can be properly
colored with four colors, as shown in Figure 2(b), but with no fewer colors.
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(a) M (b) proper
3 g 3 21,0
2 ; 4 'L 3
1 1
4 2,4} (0,1,1) 2
{2.3,4} (2,0,1)
{1,3,4} {1,2,3,4} (1,0,1) (1,1,0)
(c) set (d) metric
2 2 {1,1,2} | D) 2 ) 1
1 2 1
1 1,2} ® ®
{1,2,2}
11,2 | (L1,2,2 ® | ®
(e) multiset (f) sum

Figure 2: Four colorings of the regions of a map M

While there exists a 4-coloring of the regions of M shown in Figure 2(c)
so that the sets of colors of the neighboring regions of every two adjacent
regions of M are different, there is no such 3-coloring and consequently
there is no improvement in the number of colors needed for this map. On
the other hand, there is a 3-coloring of the regions of M (using the colors
1, 2, 3), as shown in Figure 2(d), such that for every two adjacent regions
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of M, their distances to a nearest region of some color are not the same.
Each region of M is labeled with a triple (i, az, ag), wherea; (1 <7< 3)is
the distance from that region to a nearest region colored . Thus adjacent
regions can be distinguished by this coloring. There is no such 2-coloring
that accomplishes this however. On the other hand, there does exist a 2-
coloring of the regions of M with the colors 1 and 2, as shown in Figure 2(e),
so that the multisets of the colors of the neighboring regions of every two
adjacent regions of M are different. If the colors of the neighboring regions
were summed, then we do not distinguish every two adjacent regions of M
by this coloring. However, if we were to replace the color 1 by 2 in the
centermost region, then the sums of the colors of the neighboring regions
are different for every two adjacent regions of M and once again adjacent
regions of M are distinguished by this coloring.

The four types of colorings of the regions of a map that we have just
described can be used to distinguish every pair of adjacent regions. These
colorings give rise to four vertex colorings of graphs that can be used to
distinguish every pair of adjacent vertices, that is, all four vertex colorings
are neighbor-distinguishing. These four vertex colorings are described in the
four succeeding sections where previous results on them are summarized
and new results comparing these parameters are presented.

2 Set Colorings

Before discussing the first of the four neighbor-distinguishing vertex col-
orings described in the introduction, it is convenient to introduce some
additional notation. Let N denote the set of natural numbers (positive
integers) and for a positive integer k, let

N ={1,2,...,k}.

For a vertex coloring ¢ : V(G) — N of a graph G and a set S C V(G),
define ¢(S) as the set of colors assigned to the vertices of S by ¢, that is,

e(S) = {c(v): ve S}

We refer to the book [6] for graph theory notation and terminology not
described in this paper.

For a nontrivial connected graph G, let ¢ : V(G) — N be a vertex
coloring of G where adjacent vertices may be assigned the same color. For
a vertex v in a graph G, let N(v) be the neighborhood of v (the set of all
vertices adjacent to v in G). The neighborhood color set NC(v) = ¢(N(v))
is the set of colors of the neighbors of v. The coloring c is called a set
coloring if NC(u) # NC(v) for every pair u,v of adjacent vertices of G.
The minimum number of colors required of such a coloring is called the
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set chromatic number of G and is denoted by x,(G). These concepts were
introduced and studied in (2] and studied further in [7, 8). For example,
consider the graph G of Figure 3, where a set 3-coloring of G is also shown
together with the neighborhood color set of each vertex of G. While the
chromatic number of G is 4, its set chromatic number is 3.

{1}

{1,2} @ (D {1,3}

{1,3}@ @ {1,2}
Figure 3: A 4-chromatic graph G with set chromatic number 3

Let ¢ be a proper k-coloring of a k-chromatic graph G. Suppose that u
and v are adjacent vertices of G. Since c¢(u) € NC(v) and c¢(u) ¢ NC(u), it
follows that NC(u) # NC(v). Hence every proper k-coloring of G is also a
set k-coloring of G. Therefore, for every connected graph G of order n,

1< x5(G) £ x(G) <. (1)
Among the results obtained in [2] is the following.

Theorem 2.1 [2] A graph G has set chromatic number 2 if and only if G
is bipartite.

An immediate consequence of Theorem 2.1 is stated next.
Theorem 2.2 [2] If G is a 3-chromatic graph, then x,(G) = 3.

Of course, every complete k-partite graph has chromatic number k. This
is also true for the set chromatic number.

Theorem 2.3 [2] For every complete k-partite graph G, x,(G) = k.

By Theorem 2.3, the complete k-partite graph K 1 .. 1 n—(k—1) has set
chromatic number k. Thus every pair k,n of integers with 2 < k < n
can be realized as the set chromatic number and the order, respectively,
of some connected graph. Furthermore, x;(G) =1 if and only if G = K.
Therefore, we have the following.
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Theorem 2.4 For positive integers k and n, there is a connected graph G
of order n with x,(G) =k ifand only ifk=n=10r2<k <n.

For a k-chromatic graph G of order n, there are certain values of k£ which
also imply that x,(G) = k as well.

Theorem 2.5 [2] If G is a connected graph of order n such that x(G) €
{1,2,3,n — 1,n}, then x:(G) = x(G).

The cligue number w(G) of a graph G is the order of a largest clique
(complete subgraph) in G. While the clique number of G is a lower bound
for the chromatic number of G, this is not the case for the set chromatic

number.
Theorem 2.6 (2] For every graph G,
xs(G) 2 1+ [logy w(G)].

The lower bound given in Theorem 2.6 for the set chromatic number
of a graph was shown to be sharp in [2]. Figure 4 shows a graph G with
w(G) = 4 and x,;(G) = 3, and so x,(G) =3 =1+ [logy 4].

{2,3} {3}

Figure 4: A graph G with x,(G) = 1 + [logy w(G)].

It is well known that if v is a vertex of a nontrivial graph G, then either
x(G —v) = x(G) or x(G — v) = x(G) — 1, which is also the case when an
edge is deleted from a nonempty graph G. For the set chromatic number,
a much different situation can occur.

Theorem 2.7 [2] If v is a verter of a nontrivial graph G, then

XB(G) -1< Xs(G - ‘U) < Xa(G) + degv.
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Figure 5: A graph G with a vertex v such that x,(G — v) = x;(G) + degv

The upper and lower bounds for the set chromatic number of a graph
in Theorem 2.7 are both sharp. Figure 5 shows a graph G with x,(G) =5
and having a vertex v of degree 3 such that x,(G —v) = 8 = x,(G) +degv.

Theorem 2.8 [2] If e is an edge of a nonempty graph G, then
IXs(G) — xs(G —€)| < 2.

In the case of Theorem 2.8, however, it is not known if there is a graph
G and an edge e of G such that |x;(G) — xs(G — €)| = 2. However if e = uv
is not a bridge in G such that the distance between u and v in G — e is at
least 4, then
|X3(G) - Xa(G - e)l <1

Figure 6 shows a 5-chromatic graph G with x,(G) = 4 and three edges e_;,
ep, and e; such that x,(G — e;) = x5(G) +i for i € {~1,0,1}.

Figure 6: A graph G with x+(G — &) = xs(G) +1 for i € {~1,0,1}

While it is not known whether there is a graph G with x,(G) = a
and x(G) = b for all pairs a,b of integers with 2 < a < b, it is known if
a > 1+ logy b. Should there exist a graph G with x,(G) = a and x(G) = b
where @ > 3 and a < 1 + logyb, then it follows by Theorem 2.6 that

w(G) <b.

Theorem 2.9 (7| For each pair a,b of integers with 2 < a < b < 2971,
there ezists a connected graph G with xs(G) = a and x(G) = b.
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3 Metric Colorings

The distance d(u,v) between two vertices v and v in a connected graph G
is the length of a shortest © — v path. For a set S C V(G) and a vertex v
of G, the distance d(v,S) between v and S is defined as

d(v, S) = min{d(v,z) : = € S}.

Then 0 < d(v,S) < diam(G), where d(v,S) = 0 if and only if v € S.
Suppose that ¢ : V(G) — Ny is a k-coloring of G for some positive integer
k where adjacent vertices may be colored the same and let V;,V5,...,Vi
be the resulting color classes. A k-vector called the metric color code can
be associated with each vertex v of G, which is denoted by code,(v) and
defined by

code, (v) = (a1,a2, -+ ,ak) = @142 * * Gk,

where for each integer i with 1 < i < &, a; = d(v,Vi). If code,(u) #
code,(v) for every two adjacent vertices u and v of G, then c is called a
metric coloring of G. The minimum k for which G has a metric k-coloring
is called the metric chromatic number of G and is denoted by p(G). These
concepts were introduced and studied in [4]. For example, the graph G of
Figure 7 has chromatic number 4 and metric chromatic number 3. A metric
3-coloring of G is shown in Figure 7 together with the metric color code of
each vertex of G.

012 o1l 110

1 (1) 3
G:

2 0)! 1

102 101 011

Figure 7: A 4-chromatic graph G with p(G) =3

Let ¢ be a proper k-coloring of a nontrivial connected graph G with
resulting color classes V}, V,.. ., Vi and let u and v be two adjacent vertices
of G. Then v € V; and v € V; for some 4,5 € {1,2,...,k} with ¢ # j.
Suppose that code,(u) = (a1,a2, -+ ,ax) and code,(v) = (by, b2, -- ,bk).
Then a; = b; = 0 and a; = b; = 1. Thus code,(u) # code,(v) and so c is
also a metric coloring of G. Consequently,

2<u(G)=x(G)<n (2)
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for every nontrivial connected graph G of order n. We now describe a
number of the results presented in [4]. As is the case with proper colorings,
only bipartite graphs have metric 2-colorings.

Theorem 3.1 [4] A nontrivial connected graph G has metric chromatic
number 2 if and only if G is bipartite.

The following is an immediate consequence of Theorem 3.1.

Corollary 3.2 [4] Let G be a connected graph. If x(G) = 3, then p(G) =
3.

The complete multipartite graphs also have equal chromatic number
and metric chromatic number of a graph.

Theorem 3.3 4] For every complete k-partite graph G where k > 2,
wG) = k.

The clique number is also not a lower bound for the metric chromatic
number of a graph.

Theorem 3.4 [4] For every nontrivial connected graph G,
#(G) 2 1+ [logaw(G)].

The lower bound for the metric chromatic number of a graph in The-
orem 3.4 is sharp. Consider the graph G of order 11 shown in Figure 8
consisting of a complete subgraph H of order 8, where

V(H) = {'Uijk t4,5,k€ {0’1}}’

and three additional vertices z, y, and 2, where z is adjacent to v if
and only if ¢ = 1, y is adjacent to v if and only if j = 1, and 2 is
adjacent to v if and only if k = 1. (Many edges of G belonging to the
subgraph H have been omitted in Figure 8.) By Theorem 3.4, u(G) >
1+ [log,w(G)] = 4. Since the 4-coloring defined by c(z) = 1, ¢(y) = 2,
c(z) = 3, and c(vijx) = 4 for all i, 4, k € {0, 1} is a metric coloring, it follows
that u(G) = 4.

While the removal of a vertex from a given graph can never result in a
graph with a larger chromatic number than that of the given graph, this is
not the case for the metric chromatic number.

Theorem 3.5 [4] If v is a vertex that is not a cut-vertez of a connected

graph G, then
(G —v) £ p(G) + degw.
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Figure 8: An 8-chromatic graph G with u(G) =1 + [log, w(G)] =4

Figure 9: A graph G and a vertex v of G with (G — v) = u(G) + degv

The upper bound for u(G — v) in Theorem 3.5 is sharp. For example,
Figure 9 shows a graph G and a vertex v with deg v = 3 such that u(G) =5
and p(G — v) = 8 = u(G) + degv. A metric 5-coloring of G is shown in
Figure 9 as well.

Similar to Theorem 2.9 for set colorings, each pair a, b of integers with
2 < a < b can be realized as the metric chromatic number and chromatic
number, respectively, of a connected graph under some restrictions for 4 in
terms of a.

Theorem 3.6 [4] For each pair a,b of integers with 2 < a < b < 2971,
there exists a connected graph G with u(G) = a and x(G) = b.

Here too, it is not known if there is a graph G with u(G) = e and
x(G) = b where @ > 3 and b > 2°~1. If such a graph G exists, then it
follows by Theorem 3.4 that w(G) < b. In particular, it is not known if
there is a 5-chromatic graph whose metric chromatic number is 3.

If ¢ is a set k-coloring of a connected graph G, then NC(z) # NC(y) for
every two adjacent vertices = and y of G. Thus there is some color i that
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belongs to exactly one of NC(z) and NC(y). This implies that code,(z) and
code,(y) differ in the i-th coordinate and so code,(z) # code,(y). Thus ¢
is also a metric coloring and so

u(G) £ xs(G). (8)

Therefore, if G is a bipartite graph or a complete graph, then p(G) = x,:(G).
We next describe an infinite class of graphs G for which p(G) < xs(G).
For two graphs F and H, the composition G = F[H] of F and H is
obtained from F and H by replacing each vertex v of F by a copy H, of H
such that if z and y are two adjacent vertices in F, then each vertex in H; is
adjacent to every vertex in H, in G. We now compute the metric chromatic
numbers of all such graphs, where F' is a cycle and H is a complete graph.

Theorem 3.7 For G = Cy[K,], wherep >3 and g > 1,

2 ifpisevenandg=1
_) 3 ifpisoddandgq=1
MG =Y 3 ifp=3
g+2 otherwise

Proof. If ¢ = 1, then G = Cp; while if p = 3, then G = K3;. Hence we
may assume that p > 4 and ¢ > 2. Let Cp : uy,ug,...,up, Ups1 = uy be
a p-cycle and let Hy, Ha,..., H, be vertex-disjoint graphs, where H; = K,
and V(H;) = Vi = {vi,1,v3,2,...,vi,¢} for 1 < i < p. The graph G = C,p[K,]
is constructed from Hy, Hy, ..., Hp by joining v;, j, and vy, j, if and only if
ui, Uy, € E(Cp).

We show that u(G) < g + 2 by defining a metric (g + 2)-coloring on
G. First consider the g-coloring ¢ : V(G) — Ny given by c(v; ;) = j for
1<i<pand1<j<gq. Let ¢y : V(G) = Ngy2 be a coloring such that for
v # Up.a»

g+2 ifv=vp_ 141

g+1 ifve {vp_29,v-1,4}
c (v) =
c(v) otherwise

and 1 if 4
_J g+ p=
(V) = { g+2 ifp>5.
Figure 10 shows the coloring ¢, for C4[K4] and Cs[K}]. Observe that ¢, is
a metric coloring of G and so u(G) < ¢+ 2.
We next show that p(G) > g+2. If ¢: V(G) — N is a metric coloring,
then no two vertices in V; can be colored the same for 1 < i < p. Hence
k > q. Since w(G) = 2q and ¢ > 2, it follows that

x(G)22¢>q+1.
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Figure 10: Metric colorings of Cy[K4) and Cs[K,]

Hence if k < g+ 1, then there exists a pair of adjacent vertices that are
assigned the same color, say ¢(v;,) = ¢(v2,1) = 1. Furthermore, we may
assume, without loss of generality, that ¢(V1) = N;. If k = g, then ¢(V2) =
Ny and

code,(vy,1) = code,(ve,1) = (0,1,1,---,1),
which is a contradiction. On the other hand, if k = ¢ + 1, then V; # N, for
some i > 2 and so we may assume that Vo = Ng4; — {g}. However then,

code,(vy,1) = codey(vq,1) = (0,1,1,---,1),

which is again a contradiction. Therefore, k > ¢ + 2 for every metric k-
coloring of G. .

We now determine the set chromatic numbers of the graphs G = Cy[K,)
for even integers p.
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Theorem 3.8 For G = Cp[K,| where p >4 is even and ¢ > 1,
xs(G) = x(G) = 2q.

Proof. First assume that G has been constructed as described in the
proof of Theorem 3.7. Since w(G) = 2g, it follows that x(G) > 2q. Since
any coloring ¢ of G for which

[ N, if ¢ is odd
c(V;) = { Ng, —N, ifiiseven

is a proper 2g-coloring, x(G) = 2q.

Now assume, to the contrary, that x,(G) = k < 2g and let ¢: V(G) —
Ni be a set k-coloring. No two vertices belonging to V; (1 < 7 < p) can
be assigned the same color. Without loss of generality, let ¢(V1) = N,.
Since c is not a proper coloring, we may assume that ¢(v1,1) = c(v2,1) = 1.
Note that |c(V1) Ne(V2)| < 1, for otherwise, assume that c(v1,2) = c(va,2).
Then NC(vy,1) = NC(vy,2) (and NC(v2,1) = NC(vz,2)), a contradiction.
Since |e(V1) Ne(V2)| < 1 and k < 2g, it follows that ¥ = 2¢ — 1 and
c(V1 UV;) = Ngy_;. However, this implies that

NC(v1,1) = NC(vz,1) = Nag-1,
which is a contradiction. Therefore, 2¢ < x5(G) < x(G) = 2¢ and we
obtain the desired result. [
The following result is a consequence of Theorems 3.7 and 3.8.

Corollary 3.9 For each nonnegative integer £, there ezists a connected
graph G such that x,(G) — u(G) = ¢.

‘We now describe an infinite class of graphs G for which u(G) < x,(G) <
x(G).

Theorem 3.10 For each integer k > 3, there exists a connected graph G
such that

#G) =k, xs(G)=2"2+k-1, and x(G)=2+"1.

Proof. Let H = Kji-: with V(H) = UUW, where U = {uy,uz,...,upk-2}
and W = {w;,wa, ..., wox-2}. Let S, S2,..., Sox-2 be the 25~2 subsets of
Ni_2, where S; = 0. A graph G is constructed from H by adding k — 2
new vertices vy, vz, ..., vk-2 to H and joining v; to u; and w; if and only if
i€S;jfor1 <i<k-2and2<j< 2% 2 (see Figure 11 for k = 4). Hence
G is a graph of order 25~ 4 k — 2 with w(G@) = x(G) = 2¥1.
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Figure 11: The graph G for k =4

We first show that x(G) = k. That u(G) > & follows by Theorem 3.4.
Since the k-coloring ¢, : V(G) — Ny given by

i ifz=v;(1<i<k-2)
culz) =¢ k-1 ifzeU
k ifzeW

is a metric coloring (see Figure 12 for k = 4), it follows that u(G) = k.

) 0211 2011

3o 4o 3c( 4L 3c/ 4(!%3\43 <— Ks

2201 2210 1201 1210 2101 2110 1101 1110

Figure 12: A metric 4-coloring of the graph G for k =4

It remains to show that x,(G) = 2¥~2 4+ k — 1. Since the (2¥~2+k—1)-
coloring ¢, : V(G) — Nok-2,,_; defined by

i ifr=v(1<i<k-2)
c(z)=¢ k-1 ifzeU
k—1+1i ifz=w; (1<i<252)

is a set coloring, it follows that x,(G) < 22 + k — 1 (see Figure 13 for
k=4).

Assume, to the contrary, that there exists a set ¢-coloring of G using the
colors in Ny, where ¢ < 2¥=24k—2. Permuting the colors in N, if necessary,
we can obtain a set ¢-coloring ¢ : V(G) — N; such that ¢(V(H)) = Ng for
some ¢’ < £. Since 282 4+ k — 2 < 2*-1 for k > 3, it follows that ¢ is not a
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Figure 13: A set 7-coloring of the graph G for k = 4

proper coloring. Because the remaining £ — ¢ colors are used for the k — 2
vertices vy, vs,...,VUk~2, it follows that 0 < £ — ¢ < k—2. Let X be the
subset of V/(H) such that for every z € X there exists a vertex y € X — {z}
for which ¢(y) = ¢(z). Then

IX|22k 1412 >25 141 (2524 k-2)> 253,

Since Ny C NC(z) for every z € X and there are 2¢=¢ subsets of N; that
contain Ny as a subset, it follows that

23 < |X| <27 < 2+2

andso & =0 —k+2 < (252 + k- 2) — k + 2 = 2%¥=2, This, however,

implies that
2F-2 1 1<9k 110 <X <252,

which is a contradiction. Hence x5(G) = 22 + k — 1 and so x,(G) =
262k —1. (]

4 Multiset Colorings

For a connected graph G, let ¢: V(G) — Ni, where k is a positive integer,
be a coloring of the vertices of G where adjacent vertices may be colored
the same. The coloring ¢ is called a multiset coloring if the multisets of
colors of the neighbors of every two adjacent vertices of G are different,
that is, for every two adjacent vertices v and v, there exists a color i such
that the number of neighbors of u colored ¢ and the number of neighbors
of v colored i are not the same. For a vertex v of G, the multiset M(v) of
colors of the neighbors of v can be represented by a k-vector. The multiset
color code of v is the k-vector

COdem(v) = (a'la az, - aak) =aiaz--- ek,
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where a; is the number of occurrences of ¢ in M(v), that is, the number of
vertices adjacent to v that are colored i for 1 < ¢ < k. Therefore,

k
Z a; = degv.

i=1

Thus a vertex coloring of G is a multiset coloring if every two adjacent
vertices have distinct multiset color codes. Hence every multiset coloring
of a graph G is neighbor-distinguishing. The multiset chromatic number
xm(G) of G is the minimum positive integer k for which G has a multiset
k-coloring. These concepts were introduced and studied in [3]. For the 4-
chromatic graph G of Figure 7, we saw that its metric chromatic number of
G is 3. In fact, the multiset chromatic number of this graph is 2. Figure 14
shows a multiset 2-coloring of G together with the multiset color code of
each vertex of G.

21 31 30
1 (1)
G:
€) 1
30 41 20

Figure 14: A multiset 2-coloring of a 4-chromatic graph G

Suppose that ¢ is a proper vertex k-coloring of a graph G. If v is a
vertex of G and c(u) = ¢ for some integer ¢ (1 < ¢ < k), then the i-th
coordinate of the color code of u is 0. On the other hand, if v is a neighbor
of u, then the i-th coordinate of the color code of v is at least 1, implying
that code,,(u) # coden (v). Hence every proper coloring of G is a multiset
coloring. Therefore, for every graph G of order n,

1< xm(G) £ x(G) £ n. 4)

If u and v are vertices (adjacent or not) of a graph G such that degu #
degv, then necessarily coden,(u) # codem(v). On the other hand, if G
contains two adjacent vertices u and v with degu = degw, then in order
for ¢ to be a multiset coloring, ¢ must assign at least two distinct colors to
the neighbors of © and v. Thus we have the following observation from (3].

Observation 4.1 [3] The multiset chromatic number of a graph G is 1 if
and only if every two adjacent vertices of G have distinct degrees.
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The multiset chromatic number of every complete multipartite graph
was also determined in [3]. If every partite set of a complete k-partite
graph G has n vertices, then we write G = Kj(), where then K,(;) = K,
and Ky ) = K. For t distinct positive integers ny, ns, ..., ns, the complete
multipartite graph containing k; partite sets of cardinality n; for 1 <i <t
is denoted by K, (n,),ka(n2),....ke(ne) FOT POsitive integers £ and n,

sem=("7E01)

is then the number of n-element multisubsets of an ¢-element set.

Theorem 4.2 [3] For positive integers k and n, the multiset chromatic
number of the regular complete k-partite graph Ky (y) is the unique positive
integer £ for which

fe-1,n) <k < f(e,n).

Corollary 4.3 If G = K (n,),k2(n2),....ke(n;)s Where ny,na,...,ny are t
distinct positive integers, then

xm(G) = max{Xm(Kk;(m)) 1 1<i<t)

We have already observed that xm(G) < x(G) for every graph G. In
fact, every pair a, b of positive integers with a < b can be realized as the
multiset chromatic number and chromatic number, respectively, of some

graph.

Theorem 4.4 [3] For each pair a,b of positive integers with a < b, there
exists a connected graph G such that xm(G) = a and x(G) = b.

Since every vertex coloring of a graph G results in every two adjacent
vertices with different degrees having distinct multiset color codes, it follows
that determining the multiset chromatic number of a graph is of greatest
interest and most challenging when the graph in question has many pairs
of adjacent vertices having the same degree. For this reason, the greatest
emphasis has been placed on studying the multiset chromatic numbers of
regular graphs. A familiar class of regular graphs are powers of cycles. In
particular, for a connected graph G of order n and a positive integer k, the
k-th power G* of G is that graph whose vertex set is that of G and where
two vertices u and v are adjacent in G* if 1 < dg(u,v) < k. Thus G! = G
and G* = K,, if k > diam(G). The following result is a consequence of
Theorem 4.2.

Theorem 4.5 [3] For each integer k > 2,

- ~14++v8k+1
xm(Cﬁk 1) = [—2_] .
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Theorem 4.6 (3] Let p > 2 be an integer. If (3p) | n and n > 6p, then
Xm (Cﬁ) <3
for2p—1<k< |32

Conjecture 4.7 [3] For every integer k > 3, there exists an integer f(k)
such that x;m(Ck) = 3 for alln > f(k).

While f(k) = 2k + 2 for k = 3,4, we believe that f(k) > 2k + 2 for
sufficiently large k.

For nearly every pair k,n of positive integers with k < n, there is a
connected graph G of order n having multiset chromatic number k.

Theorem 4.8 (3] Let k and n be integers with 1 < k < n. Then there
ezxists a connected graph G of order n with xm(G) = k if and only if k #
n—1.

Since a set coloring of a connected graph G is a multiset coloring of G,

it follows that
xm(G) £ x5(G).

Next we show that every pair a,b of positive integers with a < b can be
realized as the multiset chromatic number and set chromatic number, re-
spectively, of some connected graph.

Theorem 4.9 For each pair a,b of positive integers with a < b, there
exists a connected graph G such that x;m(G) = a and x,(G) = b.

Proof. If a = b, then the complete graph K, has the desired property.
Thus, we may assume that a < b. We consider two cases, according to
whethera=1o0ra > 2.

Case 1. a = 1. Then b > 2. We show that there is a graph H
such that xm(H) = 1 and x,(H) = b > 2. We begin by construct-
ing a graph F. Let S;,S2,...,S80-1 be the 2°~! subsets of Ny_;, where
|S1] € |S2| £ -+ < |Sa-1|. Hence Sy = @ and Sp-1 = Ny—;. Then the
graph F is obtained from Kas—1 with V(Kgs-1) = U = {u1,u2,...,ug-1}
by adding pairwise disjoint sets Wp, W3,..., Wos-1 to K1, where W; =
{wi1, wi2,...,wis,}, and joining each vertex in W; to u; for each ¢ with
2 <4< 21 Since |S;)] < i—1forl1l < i < 2°-1, we can add more
pendant edges at each vertex u;, if necessary, to obtain the graph H such
that degg u; = 2°~1 — 2+ for 1 < i < 2°-1. Figure 15 shows the graph
H for b= 4. Let X = V(H) — V(F). For b = 4, the set X consists of the
solid vertices shown in Figure 15, while the vertex set V(F') of F' consists
of all hollow vertices.
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Figure 15: The graph H in Case 1 fora=1and b=4
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Since every two adjacent vertices in H have different degrees, xm(H) =
1 by Observation 4.1. It remains only to show that x,(H) = b. Because
w(H) = 241, it follows by Theorem 2.6 that x,(H) > b. On the other
hand, consider the coloring ¢; : V(H) — N, of H that assigns (i) the color
b to each vertex in U U X and (ii) the colors in S; to the |S;| end-vertices
in W; for 2 < i < 2", Figure 15 shows such a coloring for b = 4. Then
NC(w;) = S;U{b} for 1 < i < 2%~1. Since |[NC(u;)| > 2for2 < i < 2°~! and
| NC(z)| = 1 for each end-vertex in H, it follows that ¢, is a set b-coloring.
Therefore, xs(H) = b.

Case2. a 2> 2. Then b > 3. We now construct a graph G from the graph
H in Case 1 and the complete graph K, with V(K,;) =Y = {y1,¥2,...,¥a}
by joining each vertex y; to the vertex wo,;1 in H for 1 < 7 < a (see Figure 16
for a = 3 and b = 4). Observe that two vertices are adjacent and have
the same degree if and only if both vertices belong to Y. Therefore, no
multiset coloring can assign the same color to two distinct vertices in ¥V
and 80 xm(G) 2 |Y| = a. Since a coloring that assigns (i) the color i to the
vertex ¥; in Y for 1 £ ¢ < a and (ii) the color 1 to the remaining vertices
is a multiset a-coloring, it then follows that x,,(G) = a. To verify that
Xs(G) = b, observe first that x,(G) = b again by Theorem 2.6. On the
other hand, the coloring ¢z : V(G) — N, such that ¢ restricted to V(H)
is the coloring ¢; mentioned above and cz2(y;) =i for 1 < i < a is a set
b-coloring of G. Figure 16 shows such a coloring for @ = 3 and b = 4. Thus
Xs(G) = b, as desired. "

For every connected graph G, we know that

xm(G) < x5(G) < x(G) and p(G) < x4(G) < x(G).

However, there is still the question of the relationship between x(G) and
Xm(G).

The multiset chromatic number of the Petersen graph P is 2. A mul-
tiset 2-coloring of P is shown in Figure 17(a). Since x(P) = 3, the met-
ric chromatic number of P is either 2 or 3 and, in fact, u(P) = 3. A
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Figure 16: The graph G in Case 2 of the proof of Theorem 4.9 for a = 3
andb=4

metric 3-coloring of P is shown in Figure 17(b). To see that u(P) = 3,
assume, to the contrary, that there is a metric 2-coloring ¢ of P using
the colors 1 and 2. Then every vertex of P colored 1 has metric color
code (0,1) or (0,2). Let C : v;,vo,...,vs5,91 be a 5-cycle of P. At
least three vertices of C' are colored the same, say 1. If all five ver-
tices of C are colored 1, then two consecutive vertices of C must have
the same metric color code, a contradiction. If exactly four vertices of
C are colored 1, say c(vs) = 2, then code,(v2) = codeu(vs) = (0,1),
implying that code,(v;) = code,(vs) = (0,2), a contradiction. Hence
exactly three vertices of C are colored 1. If ¢(v1) = c(vs) = 2, then
code,(v1) = code,(vs) = (1,0), a contradiction. If c(v2) = c(vs4) = 2, then
code,(v) = code,(vs) = (0,1), another contradiction. Thus p(P) =

The Petersen graph is not the only graph whose metric chromatic num-
ber exceeds its multiset chromatic number. For example, for each integer
n>3,

#(K1n-1) =2 = Xm(K1,n-1) + 1,
while
G =n—-1=xn(G)+1

for G € {K, — e,(Kn—2U K1) + K1 }.

In fact, u(G) — xm(G) can be arbitrary large. For a graph G, its corona
_cor(G) is that graph obtained from G by adding a pendant edge at each

vertex of G. It was shown in [2] and [9] that

Xm(cor(Ka)) = [ﬁ@]

and
xs(cor(K,)) = x(cor(K,)) =n.
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Figure 17: A multiset 2-coloring and a metric
3-coloring of the Petersen graph P

‘We now determine the metric chromatic number of cor(K,,). Observe that
p(cor(K1)) = u(K2) = 2.

Proposition 4.10 Forn > 2,
pleor(Ky)) = [2v/n ] - 1.

Proof. Let G = cor(K,), u(G) = k, and consider a metric k-coloring
¢ : V(G) — Ni such that ¢(V(K,)) = Ng. Since x,(G) = x(G) = n, it
follows that 1 << k < n.

There are at least [n/£] vertices in K, that are assigned the same color,
implying that at least [n/¢] — 1 colors not in N, are needed for the end-
vertices of G so that each vertex belonging to K, has a distinct code. Hence

k>min{f+[n/f]l—1: 1<£€<n}.
Let f be a function from [1, 7] (as a subset of R) to R defined by
f@)=z+2-1

and observe that f is continuous on [1,7] and attains its global minimum
at v/n. Hence 4

k2 [f(vn)]=[2vn]-1
We now consider two cases.

Case 1. \/n € Z. Then k > 2\/n — 1. Construct G from K,, with

V(Kn) = {ui,j :1<4,5< \/7-1’}
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by adding n end-vertices. Label the end-vertex joined to the vertex u; ; by
w; ;. Then the coloring ¢; : V(G) — N, 5_; given by

J if z=u;;
a(z) = \/_+z ifz=w;;andi# /n
fr=ws;

is a metric (2y/n — 1)-coloring of G (see Figure 18 for n = 9). Hence
k=2/n—1.

02233
w11 W2 w3 wz) W22 w23 W31 W32 w33

rrrrerrrrr
EEEEREEER

u1,1 1,2 u1,3  u2,1 u2 U23 U3l u32 U33
ol112 10112 1101z 01121 10121 11021 01122 10122 11022

Ko

Figure 18: A set 5-coloring of the graph cor(Kjy)

Case 2. yn¢Z. Let p= |y/n). Thenp? +1<n < (p+1)? - 1. Also,
k>[2vn]-122/n-1>2-1,

that is,
k2> [2v/n]-122p.

We consider two subcases.

Subcase 2.1. p? +1 < n < p(p+1). Write n =p? + 7, where 1 < r < p.
Construct G from K,, with

V(Ka) ={uij: 124, <p}U{upn,j: 1<}

by adding n end-vertices. Label the end-vertex joined to the vertex u; ; by
w; ;. Then the coloring ¢z : V(G) — Na, given by

J ifz=1u;
c2(z) =< p+i fz=w;;andi#p+1
1 ifz= Wp41,5

is a metric (2p)-coloring of G (see Figure 19 for n = 11). Hence
2p<[2v/n]-1<k<2p
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022333
w1 w2 wyg w21 W22 W23 W31 W32 w33 W41 w42

rrrrrrrrrr ey
IR I IR I R fE e

u1,1  u1,2 u1,3 U211  ug2 U2,3 U3, uz,2 U333 u4,1
011122 101122 110122 011212 101212 110212 011221 101221 110221 011222 101§22

Kn

Figure 19: A set 6-coloring of the graph cor(Kj;)

and so k = [2y/n] — 1.

Subcase 2.2. plp+1)+1<n<(p+1)2-1. Writen =p(p+1) +r,
where 1 < r < p. Construct G from K, with

V(Kn)={uij: 1<i<p,1<j<p+1}U{upp;: 1<j<}
by adding » end-vertices. Label the end-vertex joined to the vertex u; ; by
w;, ;. Then the coloring c3 : V(G) — Ngpy1 given by
J ifz=u;
cs(z)=< p+1+i ifr=w;jandi#p+1
1 ifz= Wp+1,5
is a metric (2p + 1)-coloring of G (see Figure 20 for n = 15). Hence

2p<[2v/n] -1<k<2p+1.

= O—p—o-—@
OO—1—0
@ O—1—®w
A O—t— un
- O0—t—-eo
» O—f——oo
wO——eo
HhO——eo
= O0—1—0
WO——e
©wO——o
O
~O—1—@
woO—"1t—o
WO——0 ~

K5
Figure 20: A set 7-coloring of the graph cor(Ks)

We now show that [2/n] —1> 2p. Let /n—p=a. Then0 < a <1 and
plp+1)+1<n=(p+a)
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Hence
0<1-a?<(2a—-1)p

and since p > 1, it follows that 2o > 1. Then
[2vn] -122/n-1=2(p+a)—-1>2p.

Therefore,
2p+1< [2v/n]-1<k<2p+1

and so k = [2y/n] — 1. .

On the other hand, not every metric coloring is a multiset coloring. For
example, for the path P; : vy, v,, v3, v4, vs of order 5, the 2-coloring ¢ with
¢(v1) = e(v2) = ¢(v3) = ¢(v4) = 1 and ¢(vs) = 2 is a metric coloring which is
not a multiset coloring. Of course, this does not imply that u(Ps) < xm(Ps)
and, in fact, xm(Ps) = u(Ps) = 2 since P; is bipartite.

While we have seen graphs G for which u(G) = xm(G) and graphs G
for which u(G) > xm(G) (indeed for which x(G) is considerably larger than
Xm(G)), we do not know if these are the only possibilities.

Problem 4.11 Does there exist a graph G for which u(G) < xm(G)?

5 Sigma Colorings

For a nontrivial connected graph G, let ¢ : V(G) — N be a vertex coloring of
G where adjacent vertices may be colored the same. For a set S of integers,
let o(S) denote the sum of all elements in S. The color sum o(v) of v is the
sum of the colors of the vertices in N(v), that is, o(v) = o(M(v)), where
M ((v) is the multiset of colors of the neighbors of v (as defined in Section 4).
If o(z) # o(y) for every two adjacent vertices z and y of G, then c is called
a sigma coloring of G. The minimum number of colors required in a sigma
coloring of a graph G is called the sigma chromatic number of G and is
denoted by o(G). These concepts were introduced and studied in [5].

A graph G with chromatic number 3 is shown in Figure 21(a) along with
a proper coloring of G using the colors 1, 2, 3. Since o(u) = o(v) = o(y) =
5, this coloring is not a sigma coloring. However, if we were to interchange
the colors 2 and 3 (see Figure 21(b)), a sigma coloring results.

While, as we have seen, not every proper coloring of a graph is a sigma
coloring, it is the case that some proper coloring of a graph G using x(G)
colors is a sigma coloring. From this, it follows that (G) < x(G) for every
nontrivial connected graph G. In fact, the sigma chromatic number equals
the multiset chromatic number for every nontrivial connected graph. To
see this, the following lemma is useful.
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1 1 1 1

(a) (b)

Figure 21: A non-sigma coloring and a sigma coloring of a graph

Lemma 5.1 [5] For integers k > 1 and N > 1, let Ay = {ay,a,...,ax}
be a set of k positive integers such that a;1y 2 Na; +1 for1<i<k-—1.
Then for every two distinct multisets X and Y of cardinality at most N
whose elements belong to Uy, o(X) # o(Y).

Theorem 5.2 For every nontrivial connected graph G, xm(G) = o(G).

Proof. Since every sigma coloring of G is a multiset coloring of G, it fol-
lows that xm(G) < ¢(G). It only remains therefore to show that x,(G) >
o(G). Suppose that xn(G) = k and A(G) = A. Let ¢ be a multiset k-
coloring of G using the colors 1,2,...,k. Now let % = {a1,02,...,0x} be
a set of k integers, where the elements a; (1 < ¢ < k) are defined recursively
by (i) a1 2 1 and (ii) once a;_; is defined for an integer ¢ with 2 < i < k,
a; is an integer such that a; > Aa;—1 +1. Thus a; < a3 < -+ < ax. Define
a k-coloring ¢’ of G by

cd(v) =acy) forveV(G)and 1<i<k.

We show that ¢’ is a sigma coloring of G. Let = and y be two adjacent
vertices of G. Then M(z) # M(y). Let S, be the multisubsets of 2y
obtained from M(z) by replacing each element 7 € M(z) by a;. Similarly,
Sy is the multisubset of 2 obtained from M(y) by replacing each element
i € M(z) by a;. Thus S; and S, are two distinct multisubsets of . Since
|Sz| < A and |Sy| < A, it follows by Lemma 5.1 that ¢(Sz) # 0(Sy). =

While 6(G) = xm(G) for every graph G, there are major differences
between these two colorings. In any multiset coloring of a graph G, it is
not important which colors are used; that is, if ¢ is a multiset k-coloring of
a graph G, then any k positive integers can be used for the colors. As we
saw in Figure 21, this is not the case for a sigma k-coloring of G, however.
For example, if G = Kjq(3), then 0(G) = xm(G) = 3 by Theorem 4.2. Of
course, there is a multiset 3-coloring of G using the colors 1, 2, 3. There
is, however, no such sigma 3-coloring. In fact, there is no sigma 3-coloring
that uses any three of the four colors of the set {1,2,3,4}. On the other
hand, there is a sigma 3-coloring of G using the colors 1, 2, 5.
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By Theorem 4.2, 0(Kj5(3)) = 3 and (K3(3)) = 2 and so by Corollary 4.3,
o(Ks(2),3(3)) = 3. In Figure 22, a sigma 3-coloring of the complete 8-partite
graph Kp(2),3(3) is given using the colors 1, 2, 3, where the color sums of
the vertices in each partite set are given as well. The colors assigned to
the vertices in this coloring are not interchangeable, however, as every non-
identity permutation ¢ of the colors 1, 2, 3 produces a 3-coloring that is
not a sigma coloring, as is also shown in Figure 22.

33 223 233 333

K@) : @ @ @ ? @ @ @®

13 23 223 113

6=(12)3) (D=8 CO—=CDs
12 223 221
¢ = (13)(2) @-»@27 @D =D
12 13 33 22
=31 D —=0(ds D — C
11 22 23 31
i DO O -0

12 31 33

22
=) D—-Du D@ s

Figure 22: 3-Colorings of K5(2),3(3)

For a nontrivial connected graph G with ¢(G) = k and a sigma k-
coloring ¢ of G, let min(c) be the smallest color assigned by c to a vertex of
G and max(c) the largest such color. It was shown in [5] that if o0(G) =
then there is always some sigma k-coloring ¢ of G such that min(c) = 1. A
question of interest concerns the minimum value of max(c) over all sigma
k-colorings ¢ of G for which ¢(G) = k. This minimum value is called the
sigma value v(G) of G. That is, for a connected graph G with ¢(G) =

¥(G) = min{max(c)},

where the minimum is taken over all sigma k-colorings ¢ of G. Thus, v(G) >
o(G) for every nontrivial connected graph G. For example, if G = Kjq(3),
then o(G) = 3 and ¥(G) =5.

A nontrivial connected graph G is called sigma continuous if v(G) =
o(G), that is, if 0(G) = k, then there is a sigma k-coloring of G using the
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colors in Ng. Thus G = Kjq(s) is. not sigma continuous. It was shown in
[5] that there are several well-known classes of sigma continuous graphs,
including cycles.

If G is a bipartite graph, then ¢(G) < 2. Whether every such graph is
sigma continuous is not known, however.

Problem 5.3 [5] Is every bipartite graph sigma continuous?

It has been shown that there is an important class of sigma continuous
bipartite graphs, however.

Theorem 5.4 (5] Every tree is sigma continuous.

By Theorem 5.4, there are infinitely many connected sigma continuous
graphs with sigma chromatic number 2. In fact, even more can be said.

Theorem 5.5 [5] For each integer k > 2, there is a connected sigma
continuous graph with sigma chromatic number k.

As a consequence of Theorem 4.3, for integers n; and n; where 1 <
nmp<npand k; =n; +1 (1. = 1,2), ifG = ka(ﬂn).’ﬂz(ﬂz)! then O‘(G) = 2.
The admissible sigma 2-colorings of G were established in [5].

Theorem 5.6 [5| For integers ny endng with1 < ny < ng and k; = n;+1
(¢ = 1,2), let G = Ki,(n,),ka(ng). For positive integers a and b, there
exists a sigma 2-coloring of G using the colors a and a + b if and only if
(a +b)n1 < ang or a(ng —n1) £0 (mod d).

By Theorem 5.6, there exist connected graphs with sigma chromatic
number 2 that is not sigma continuous. In fact, more can be said.

Theorem 5.7 [5] For each integer k > 2, there is a connected graph with
sigma chromatic number k that is not sigma continuous.

Another parameter of interest was introduced in [5]. For a sigma color-
ing c of G, the sigma range p(G) of G is defined by

p(G) = min{max(c)}

over all sigma colorings ¢ of G. Hence the sigma range of G is the smallest
positive integer k for which there exists a sigma coloring of G using colors
from the set N, while the sigma value of G is the smallest positive integer
k for which there exists a sigma coloring of G using o(G) colors from the
set Ni. Therefore, for every graph G,

o(G) < p(G) < ¥(G). (5)
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As an example, consider G = Kjq(3). We saw that ¢(G) = 3 and v(G) =
5. We now show that p(G) = 4. Since there is no sigma coloring using
the colors 1, 2, 3, it follows that p(G) > 4. To show that p(G) < 4,
let V1,V5,...,Vio be the partite sets of G and let A;, As,..., Ao be the
following 3-element multisubsets of {1,2,3,4}:

{11 1) 1}’ {13 1, 2}’ {1’ 1,3}’ {1, 1’4}’ {1’2’ 4})
{1,3,4}, {1,4,43}, {2,4,4}, {3,4,4}, {4,4, 4}.

Since 0(A;) # g(A4;) for 1 < i < j < 10, the 4-coloring of G that assigns
the three colors in A; to the three vertices in V; for each i with1 < i < 10s
a sigma coloring of G using the colors 1,2, 3,4. Thus p(G) = 4. Therefore,
if G = Kjo(3), then o(G) =3, p(G) = 4, and v(G) = 5.

It was shown in [5] that ¥(G) — p(G) can be arbitrarily large for some
connected graphs G. Such is also the case for p(G) — o(G). The following
problem appears in [5].

Problem 5.8 [5] Which ordered triples of positive integers can be realized
as (¢(G), p(G),¥(G)) for some graph G?

6 Epilogue
We have seen that for each of the four neighbor-distinguishing vertex col-
orings

set colorings, metric colorings, multiset colorings, sigma colorings,

the number of colors required to color the vertices of a graph need never
exceed the chromatic number of the graph. Thus we have the following.
Four Four Color Theorems Let G be a nontrivial connected graph.

(1) If G is planar, then x(G) < 4.
(2) If G is planar, then x,(G) < 4.
(3) If G is planar, then u(G) < 4.
(4) If G is planar, then xn(G) < 4.

From what we saw in Section 5, statement (4) can be replaced by
(4') If G is planar, then o(G) < 4.

Of course, statements (2), (3), and (4) (and (4')) are all corollaries
of statement (1) (the Four Color Theorem). We therefore close with the
following.

Problem Does there exist a proof of any of the statements (2), (3), (4),
or (4'), that does not use the original Four Color Theorem and that is not
computer-aided?
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