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ABSTRACT. We consider the placement of detection devices at the
vertices of a graph G, where a detection device at vertex v has three
possible outputs: there is an intruder at v; there is an intruder at
one of the vertices in the open neighborhood N(v), the set of ver-
tices adjacent to v, but which vertex in N(v) can not be determined;
or there is no intruder in N[v] = N(v) U {v}. We introduce the 1-
step locating-dominating problem of placing the minimum possible
number of such detection devices in V(G) so that the presence of an
intruder in V(G) can be detected, and the exact location of the in-
truder can be identified, either immediately or when the intruder has
moved to an adjacent vertex. Some related problems are introduced.

1. INTRODUCTION

A graph G = (V, E) might be used to model a facility with each ver-
tex in V(G) representing an area of the facility such as a room, hallway
or ventilation duct. Edges of G could link vertices representing adjacent
areas of the facility. A facility area will be identified with the vertex that
represents it. These facilities are subject to having an “intruder” such as a
thief, saboteur or fire that must be detected and have its location precisely
identified. It is assumed here that the possible locations for the intruder
are all the vertices in V(G).

The neighborhood of a vertex v € V(G) is the set of vertices adjacent
to it, N(v) = {z € V(G) : vz € E(G)}, and the closed neighborhood is
N[v] = N(v)u{v}. It is assumed that a detection device placed at a vertex
v can detect the presence of an intruder precisely when the intruder is in
N[v]. Thus, to be able to determine if there is an intruder in the system
one needs to place detection devices at a dominating set D C V(G), a
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set with UyepN[v] = V(G). When a detection device at vertex v can
distinguish between there being an intruder at v or at a vertex in N(v),
but which vertex in N(v) can not be pinpointed, then one is interested in
having a locating-dominating set. Locating sets were introduced in Slater
[44] and subsequently by Harary and Melter [18] where they were called
metric bases. The concepts of locating and dominating were merged in
(45, 46]. Further studies of locating-dominating sets include [6, 11, 13, 14,
15, 17, 23, 27, 32, 33, 41, 47, 48]. When only the presence of an intruder
in N[v] can be detected, with no information as to which vertex in N|[v]
contains the intruder, one is interested in identifying-codes as introduced
in [35] and further studied in [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 16, 26, 28, 29, 30,
31, 34, 36, 37, 38, 39, 40, 42, 43).

Our model involves locating-dominating sets. A detection device placed
at a vertex v is assumed to transmit one of three possible outcomes in each
time period: O if there is no intruder in N[v]; 1 if there is an intruder in
N(v); and 2 if the intruder is at v. (We assume here that there is at most
one intruder.) As noted, a dominating set D has U,epN[v] = V(G). The
domination number v(G) is the minimum cardinality of a dominating set
D C V(G). See Haynes, Hedetniemi and Slater (19, 20]. For example,
for path P, = v1,v2,3,...,V, We can select every third vertex and let
D = {v;,vs,vs,...} (along with v, if » = 3k + 1). Note, for example,
that if the detection device at vs outputs a 1, then the intruder’s location
is not determined because it is either v4 or vg. A dominating set D is a
locating-dominating set if our three-state detection devices placed at the
vertices in D can precisely identify the location of any intruder. Equiva-
lently, UyepN[v] = V(G) and if u,z ¢ D then N(u) N D # N(z) N D. The
locating-dominating number LD(G) or v, p(G) is the minimum cardinal-
ity of a locating-dominating set D C V(G). For path P, (with n = 5k)
let D = {v2,v4,v7,v9,V12,V14,-..,Vsk—3,Vsk—1}, and D is easily seen to
be a 7Lp(G)-set. Thus, ¥(P,) ~ % and vop(P) ~ 4. Because every
locating-dominating set must dominate, we always have v(G) < v.p(G).

In this paper we introduce the 1-step locating-dominating set problem of
placing the minimum possible number of our three-state detection devices
in V(G) so that the presence of an intruder in V(G) can be detected, and
the exact location of the intruder can be identified either immediately (at
time zero) or when the intruder has moved to an adjacent vertex (at time
one). We will call a dominating set D with this capability a 1-step locating-
dominating set, and the I-step-locating-domination number vrp(1)(G) is
the minimum possible cardinality of such a set. In the last section, Section
4, we define 1-step identifying codes and several k-step parameters.

Because every locating-dominating set is a 1-step locating-dominating
set (locating-dominating sets identify the exact location of an intruder im-
mediately), we have the first theorem.
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(a) vy V2 U3

s

Uy U2 U3

(b) w1 vy v3 w4 Vs U

Uy U2 Uz Uq4 Us U U7

(c) vy V2 vz U

FIGURE 1. For the “long” ladder L of order |V(L)| =n =
2k the dark shaded vertices show (a) a dominating set,
(b) a 1-step locating-dominating set, and (c) a locating-
dominating set. In each case, the repeating pattern is out-
lined.

Uy Uz Uz U4 Us

Theorem 1.1. For every graph G we have ¥(G) < v.p(1)(G) < 1Lp(G).

Consider the “long” ladder L of order |V(L)| = n = 2k illustrated in
Figure 1. Each vertex can dominate at most four vertices (that is, |[N[v]| < 4
for each v € V(L)), so 7(L) > %, and Figure 1(a) shows that y(L) ~ 2.

Now consider a locating-dominating set of L. Let S be the set of shaded
vertices in Figure 1(a). Notice that S does not form a locating-dominating
set of L. In particular, each vertex z in N(u;) has N[z]N S = {u;}. Now
let S be the shaded vertices in Figure 1(c) and consider the eight vertices in
the first boxed region. v;, ug, and vs are in S and so are located. Vertices
v4 and ug4 are the distinct vertices whose neighborhoods’ intersections with
S are {vs} and {us}, respectively. Likewise, u; and u3 are the distinct
vertices whose intersection with S are {v1,u2} and {uz,vs}, respectively.
Finally, v is the distinct vertex whose intersection with S is {vy,u2,v3}.
Each boxed region has a similar characteristic. Hence, approximately -332
vertices suffice for 1-step locating-dominating.
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To improve on this upper bound for 4.p(L), S must contain just two
vertices of some group of eight vertices in V/(L). Suppose just two vertices
of {uy,ug, us, u4, v1,v2,vs,v4} are in S. Since S must dominate, our choices
are limited to four cases, depicted in Figure 1. If the dark vertices of Fig-
ures 1(a) or 1(b) are the only vertices in S N {u1,u2, us, uq, v1,v2,v3,v4},
then the gray vertices in these figures are not located. For Figures 1(c)
and 1(d), we see that the two dark vertices are sufficient, but in each case
at least three vertices are required to be in S for each group of eight ver-
tices on either side of {u),us,us,uq,v1,v2,v3,v4}. To see this, consider
Figure 1(c). Here, u3 and v4 are not located by just v and vs. So, wvg
must be in S to distinguish the locations of v4 and u3. Also, ug must be
in S to dominate u4. Given this, the locations of u4 and ug are not dis-
tinguished. We can use uy to both distinguish the locations of u4 and ue,
and to dominate v7. A similar argument shows that this pattern of three
vertices must repeat in every subsequent group of eight vertices on both
sides of {u, ug,us, ug, v1,v2,v3,v4} in Figure 1(c) either indefinitely or un-
til we reach a group of eight vertices, some four of which are in S. Likewise,
there must be three vertices in every group of eight vertices on both sides
of {uy,u2,us, u4, v1,v2,vs3,v4} in Figure 1(d) extending either indefinitely
or until a group of eight vertices is reached, some four of which are in S.
Thus, we have y.p(L) ~ 32.

When shifting from dominating sets to 1-step locating-dominating sets
for the “long” ladder, we can not use as few as § |V(L)| vertices. This can
be seen by considering the following three ‘moves’ in Figure 1(a). (i) An
intruder is at v; at time zero and at v, at time one. (ii) An intruder is at
ug at time zero and at v at time one. (iii) an intruder is at u2 at time zero
and at uz at time one. With all three moves, the intruder starts at some
vertex in N(u;) and ends at some vertex in N(v3). Hence, if S is the set
of dark vertices in Figure 1(a), then S is not a 1-step locating-dominating
set.

We can, however, use fewer than the § |V(L)| vertices required for a
locating-dominating set of L by relaxing the requirement that we immedi-
ately locate every intruder (locating-domination) to the requirement that
we locate either immediately or after the intruder has moved to an adjacent
vertex (1-step locating-domination). In particular, if S C V(L) is the set
of dark vertices in Figure 1(b), then S uses only 3 |V(L)| vertices and is
a l-step locating-dominating set. To see this, note first that each vertex
z in S is immediately located. Also, the gray vertices in Figure 1(b) are
immediately located since, for example, v and vs are the private neighbors
of vy and vg, respectively. While v4 is not immediately located, an intruder
" at vgq at time zero must move to a vertex that is immediately located by
S. Hence, such an intruder is located at time one. Likewise, an intruder
at uy at time zero is not immediately located since N[ug] NS = N[v;]N S.
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(a) (b)

(c) Vi U2 U3 U4 Vs Vg V7 Vg

Uy Uz U3 U4 Us U UT Ug

(d) Vi VY2 V3 V4 Us Us U7 Us

U1 U2 U3 U4 Us Us U7 U

FIGURE 2. To improve on the upper bound of y;p(L) <
3% a locating-dominating set § C V(L) must contain just
two vertices of some group of eight vertices in V/(L). These
four cases show the consequences of such.

However, such an intruder can only move to either a vertex that is imme-
diately located by S or to us. Even though u3 is not immediately located
by S, we know that the intruder has moved from a vertex in N(u;) NN (vz)
to a vertex in N(u4). Thus, the intruder must be at uz after this move.
That is, the intruder’s location is known to be uz at time one. A similar
argument can be used to show that a move from ug to up, us to ug, or ug
to us results in the intruder being located at time one.

To improve on this upper bound for yzp(1)(L), S would have to contain
just two vertices of some group of ten vertices in V(L). Suppose just two
vertices in some group of ten vertices in V(L) are in S. Since S must
dominate, our choices are limited to two cases, depicted in Figure 3. If the
dark vertices of Figures 3(a) or 3(b) are the only vertices of the depicted
group of ten vertices that are in S, then the moves indicated by directed
arcs are not distinguished by S. Hence, S must contain at least 735 V(L))

vertices and vz pq1)(L) = 3.

Proposition 1.2. For the “long” ladder of order |V(L)] = n = 2k, we

have ¥(L) = %, vLpq)(L) = 3% and yp(L) ~ 32.
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(b)
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FIGURE 3. To improve on the upper bound of vz p(1)(L) <
3n s . .

%, a l-step locating-dominating set S C V(L) must con-
tain just two vertices of some group of ten vertices in V' (L).
These two cases show the impossibility of such.

The following two lemmas deal with twins in a graph and are gener-
ally useful when working with locating-dominating sets or 1-step locating-
dominating sets. Two vertices u and v in V(G) are twins if N(u) = N(v)
and are identical twins if N{u] = N[v].

Lemma 1.3. If N[u] = N{v] and S is a yLp(1)(G)-set, then SN {u,v} # ¢.

Lemma 1.4. If N[u] = N[v] or N(u) = N(v), then S is locating-dominating
implies S N {u,v} # ¢.

Theorem 1.5. Ifn; > n2, then v,p)(Kn,,n,) = n2. Also, given integers
ny>ng > ... 2> ny > 2 with ng > 2, for the complete t-partite graph G =

Kn;,...,n,',l,....l (where t> t andt > 3), 'YLD(I)(G) = (Z:=2 ni) — (t’ — 1).

Proof. In the complete bipartite case, notice that if S C V(Kj, »,) contains
the ng vertices in the smaller partite set, then S 1-step locating-dominates.
If there are vertices u and v in the same partite set, then by Lemma 1.4
either {u,v} NS # ¢ or u and v are not located at time 0. It follows that
YLD(1) (Knyyna) = n2.

For the complete t-partite case, construct set S as follows. For each
partite set S; of G corresponding to index n;, 2 < ¢ < t/, place n; — 1
vertices of S; in S. For each singleton partite set S; of G (corresponding to
index n;, t' + 1 < 7 < t), place the vertex of S; in S.

We claim that S is a 1-step locating-dominating set of G. Consider an
intruder at some vertex v in S;, 2 < i < t, at time 0. Either the intruder
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is located at time 0 because v € S, or v is the only vertex in S; such that
v € S. In the latter case, the intruder is still located at time O since v is
the only location in G such that v € N(s) for each s € $—S; and v & N(s)
for each s € SN S;.

Now consider an intruder at some vertex v in S;. Clearly, the intruder
is not located at time 0 since n; > 2. But u is located at time 0 for each

u € N(v), as shown above, so the intruder is located at time 1. Thus,

1oy (G) S Thmg(ns — 1)+ (t = ¢)(1) = (Thog i) = (¢ = 1),

To show the opposite inequality, let S be any v p(1)(G)-set and take i, j
such that 1 <7 < j < t. Suppose (S; US;)NS = ¢. Given v; € S; and
vj; € S;, the following are indistinguishable by S. (i) The intruder is at
v; at time O and at v; at time 1. (ii) The intruder is at v; at time 0 and
at v; at time 1. Hence, S is not a I-step locating-dominating set of G, a
contradiction. Hence, we have the following,

(1) (SiuS;)NS#pfor1<i<j<t

Now take S; and S; to be partite sets of G such that there are vertices v,
and vz in S; N S and there are vertices ujand ug in S; N S. Note that none
of vy, v, u1, u2 are located at time 0. The following are indistinguishable
by S. (i) The intruder is at v; at time 0 and at u; at time 1. (ii) The
intruder is at v, at time 0 and at u2 at time 1. Hence, S is not a 1-step
locating-dominating set of G, a contradiction. Hence, we have (2).

2) |Sin 8| >2 for at most one partite set of G.

From (1) and (2) we see that at most one S; satisfies S; NS = ¢, and
at most one S; can fail to have two or more of its vertices in S. It follows

that v.p(1)(G) 2 (Z§=2 n,) —(t'-1). )

2. BOUNDS ON vzp(1)

We first show that (v(G), 7rp(1)(G), 7Lp(G)) can be any triple of values
satisfying Theorem 1.1.

Theorem 2.1. Given any positive integers a, b and ¢ with a < b < c, there
ezists a graph G such that v(G) = a, 7Lp1)(G) = b and v.(G) =c.

Proof. Given integers a, b and ¢ with @ < b < ¢, construct graph G as
follows. Let V(G) = {u1,uz,...,%a—1,V1,V2, ..., Upp1, W1, W2, + + » , Wembtl}s
and let E(G) = {u;v;,1 <i<a-1}U{vv;,1 <i<j<b+1}U{vw;,1 <
i<e—-b+1}.

Note that each dominating set for G must contain either u; or v;, 1 <
i < a — 1, and either w; or v,. Hence, {v,vs,...,v,} is & ¥(G)-set and
v(G) =a.
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Let S be a 7, p(1)(G)-set. Because S is a dominating set, we have SN
{ui,vi} #dfor 1 <i<a-land SN{w,va} #¢. fb+1>a+2
and a+1 <i<j<b+1,then N[v;] = Nfvj]. Thus, S contains b — a of
the vertices in {va41,...,vs+1} by Lemma 1.3. In particular, |S| > b. Let
S = {v1,v2,...,v}. Toseethat S is a 1-step locating-dominating set, note
that an intruder at any v € S is immediately located (at time zero). For
any v € V(G) — S we have N(v) C S, so any intruder at vertex v at time
zero will be located at a vertex in S at time one. Hence, {v,vs,..., v} is
a 1-step locating-dominating set and y.p(1)(G) = b.

For a = b = 1, we can let G be Ki.. So, assume b > 2. S =
{v1,v2,...,Va,Vat1,. .., Vp, W1, Wa,...,W—p} is easily seen to be a locating-
dominating set. So, 7L(G) < c. Let S be a7 (G)-set. Then SN{u;,v;} # ¢
for 1 < i < a—1 because S dominates. Also, |SN {Vat1,Vat2s-+-,Vs4+1}] =
b—a by Lemma 1.4. If v, € S, then {w),wa,...,we—p41} € S because
S dominates, and |S N {w;,ws,...,we-p+1}] = ¢ — b by Lemma 1.4. So,
|S N {vg, w1, wa, ..., We—pt+1}| 2 c=b+1. Thus, |[S|2(a-1)+(b—a)+
(¢—b+1) =c. Hence, 7,(G) =c. O

We let IL(0) and IL(1) denote the intruder’s vertex location at times 0
and 1, respectively. Note that {IL(0), IL(1)} must be an edge in F(G). For
each v € D we let v(0) and v(1) denote the output (0, 1, or 2) transmitted
from v in times 0 and 1, respectively. For example, w(0) = 1 and w(1) =0
means that IL(0) € N(w) and IL(1) ¢ N[w], and w(0) = 2 means that
IL(0) = w.

The girth of G, the length of a shortest cycle, is denoted by g(G).
Acyclic graphs are assumed to have infinite girth. The next theorem gives
a sufficient condition for the “strong equality” of 7(G) and y.p(1)(G) in
the sense of Haynes and Slater (25, 24] and Haynes, Henning and Slater
(21, 22], namely, ¥(G) and v p(1)(G) are strongly equal, denoted v(G) =
vLp(1)(G), when not only is ¥(G) = yLp(1)(G) but every 7(G)-set is actu-
ally a yLp() (G)-set.

Theorem 2.2. Let G be a graph with girth g(G) = 7. Then, ¥v(G) and
YLp)(G) are strongly egqual, ¥(G) = vLp)(G)-

Proof. Let D C V(G) be a dominating set of G. If IL(0) = v € D, then D
locates the intruder at time zero. If IL(0) = v ¢ D, then there is a vertex
w in DN N(v). Suppose IL(1) = z € N(v). If z € D, then D locates
the intruder at time one. So, suppose z ¢ D. Note that z ¢ N(w) since
G does not contain any triangles. Let u € D N N(z). Then, uv € E(G),
again because G does not contain any triangles. We have w(0) = 1,4(0) =
0,w(1l) = 0, and u(1) = 1. So, it is known that the intruder has moved from
N(w) to N(u). Suppose the intruder moves from z € N(w) at time zero
to y € N(u) at time one where y # z. Then v & N(y) or else v,z,u,y is a
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4-cycle. So, z # v. But, then w,v,z,u,y, 2 is a 6-cycle. Since, g(G) > 7,
no such y exists. Thus, the intruder is located at = at time one. Hence,
D is a 1-step locating-dominating set. In particular, every y(G)-set D is a

YLp(1)(G)-set, so v(G) = vLp(1)(G) a
Corollary 2.3. For every tree T, we have ¥(T') = vppq1)(T). In particular,
Yoy(Pr) = [§].

For (v(G),7Lp(1)(G),7Lp(G)) = (a,b,c), does having girth g(G) > 7
bound either ¢ — b or -z- in any way? To see that the answer is no, consider
the following construction. Attach c vertices to a path P, on a = b vertices
such that each new vertex is attached to just one vertex on the path and
each vertex on the path has at least one new vertex attached to it. Note
that for a = b = 1 we have a star and for ¢ = b = 2 we have a double
star. This graph is a tree and so has girth greater than 7. Thus, even when
restricted to trees, ¢ — b can be arbitrarily large or small and % can be any
rational number in (0, 1].

Vertex set S C V(G) is independent if no two vertices in S are adja-
cent, and the independence number B(G) is the maximum cardinality of
an independent set. Note that S is independent if and only if its com-
plement V(G) — S = R is a cover, that is, for every edge {u,v} € E(G)
we have {u,v} N R # ¢. The cover number of G, denoted a(G), is the
minimum cardinality of a cover. A theorem of Gallai states, in part, that
o(G) + B(G) =n =|V(G)|.

Theorem 2.4. For graph G with minimum degree 5(G) > 1, 7. p1)(G) <
a(G) = [V(G)] - B(G).

Proof. Let S be a B(G)-set and R = V(G) — S. We claim that R is a
1-step locating-dominating set. If IL(0) = v € R, then the intruder is
located at time zero with v(0) = 2. If IL(0) = v ¢ R, then N(v) C R,
and so IL(1) € R and the intruder is located at time one. In particular,
Yep()(G) £ |R| = a(G). o

Recall that distinct vertices u and v are twins if N(u) = N(v). The final
result in this section tells us how large n = |V(G)| can be, for twin-free
graph G, given the size of a minimum 1-step locating-dominating set for G.

Theorem 2.5. If v.p1)(G) = h, n = |V(G)| and G is twin-free, then
n<h+2k—14(2k-1)(2"-2).

Proof. Let S be a y,p(1)(G)-set with |S| = h and R = {z € V(G) — S such
that N(z) C S}. Since G is twin-free, each = € R has a distinct, nonempty
N(z)Nn S, so |R| < 2* — 1. Now, consider z € T = V(G) — (SUR).
Define S; = N(z) NS and let N(z) — S = {y1,¥2,...,%}. Also define
Sz(ﬁ = N(yt) NS,1< i<t SinceSisa 7LD(1)(G)"Set’ Sz # Sz(i)
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forl1 <i<t and Sy # Sey forl <i<j<t IFAKT>) 2>
2, select z such that deg(z) > 2 and construct G* from G by replacing
< {z,y1,¥2,...,¥:} > with the vertices {z,z2,...,%¢,¥1,¥2,...,%} and
edges {z;y:,1 < ¢ < t}. Then connect each z; to every vertex in S; and each
y; to every vertex in S;(;). Then T = V(G*)—-(SUR), A(< T* >) > 1 and
IV(G)| < [V(G*)|. If A(< T* >) > 2, construct G** from G* in the same
way. Continue this process until A(< T*** >) = 1. Then |T| < [T***|
and |T***| < (2% — 1)(2" — 2) - the number of ways to choose two distinct
subsets of S. Thus, n < |S|+|R|+|T|<h+2" -1+ (2" -1)(2"-2) DO

3. NP-COMPLETENESS

The decision problem of deciding if v,p(G) < k is shown to be NP-
complete by Colbourn, Slater and Stewart in [11]. We conclude by showing
that the following decision problem associated with parameter y;p(;) is
NP-complete.

1-Step Locating-Dominating (1SLD)

INSTANCE: Graph G = (V(G), E(G)), positive integer k£ < |V(G)|.
QUESTION: Is there a 1-step locating-dominating set of size k or less for
G, that is, a subset S C V(G) with |S| < & such that S is a 1-step locating-
dominating set?

To do so we reduce the Vertex Cover problem to 1SLD.

Vertex Cover (VC)

INSTANCE: Graph H = (V(H), E(H)), positive integer j < |V(H)|.
QUESTION: Is there a vertex cover of size j or less for H, that is, a subset
T C V(H) with |T| < j such that for each edge uv in E(H) at least one of
u and v belongs to T'?

Theorem 3.1. The decision problem 1SLD is NP-complete.

Proof. Given a graph H and integer j, an instance of VC, we construct an
instance of 1SLD as follows. Take k = j+|V(H)|, V(G) = {ui,u},uf 1 u; €
V(H)} U {u,-,,- = Uji | Uil; = UjU; € E(H)} and E(G) = {uiu,-,_,-,u,-,juj :
uiv; € E(H)}U {usug, uju! : u; € V(H)}. This construction is equivalent
to first subdividing each edge of H and then attaching a P> to each vertex
of H in the resulting graph. For example, if H is the House graph shown
in Figure 4(a), then G is the graph shown in Figure 4(b).

Suppose we have a vertex cover T' C V(H) of H with |T'| < j. Our first
claim is that S = TU{u! : u; € V(H)} is a 1-step locating-dominating set of
G with |S| < k. Clearly, |S| = |T|+|{u} : u; € V(H)}| < j+|V(H)| =k. To
see the rest, first note that an intruder at any vertex in S is immediately
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FIGURE 4. Starting with (a) the House graph H, we con-
struct (b) G by first subdividing each edge of H and then
attaching a P, to each vertex of H in the resulting graph.

located. However, an intruder at some u! € V(G) may or may not be
immediately located. If not, such an intruder can only move to u} € S
at which point the intruder is located at time one. An intruder at some
u; € V(G) — S is in N(u}). Moving to u] locates the intruder at time
one since u; € S, while moving to some u; ; also locates the intruder at
time one. To see this, recall that T is a vertex cover of H. Thus, for each
u;; € V(G) one of u; and u; is in T C S. So, our intruder is now known
to have moved from N(u}) to N(u;). Since there can only be one edge
between any two vertices in V(H), this can only happen if IL(0) = u; and
IL(1) = u; j. Hence, the intruder is located at time one. Finally, consider
an intruder at some u; ; at time zero. If both u; and u; are in S, then the
intruder is immediately located. Otherwise, the intruder can only move to
u; or u;, one of which is in S. WLOG, suppose u; is in S. Moving to u;,
the intruder is located at time one since u; € S. Moving to u;, the intruder
is also located at time one. To see this, note that we know the intruder has
moved from N(u;) to N(u}). Since JL(1) cannot be uf in this situation,
we know IL(1) = u;.

Now suppose we have a 1-step locating-dominating set S C V(G) of
G with |S| < k. We claim that there is a vertex cover T' C V(H) of H
with with |T'| < j. Since S dominates G, at least one of u! and u) must
be in S for each u; € V(H). Excluding these vertices, there are |S| —
|V(H)| < k= |V(H)| = j vertices in S that must dominate, in particular,
{uij : viu; € E(H)}. Take T} to be SN {u; : u; € V(H)} and construct
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T; as follows. For each u; j = u;; € S place one of u; and u; in T2. Then,
T = Ty UT, must dominate {u;; : uju; € E(H)}. Hence, T is a vertex
cover of H with |T| < j.

Thus, there is a “yes” answer to the instance of VC if and only if there is
a “yes” answer to the constructed instance of 1SLD. Since 1SLD is clearly
in NP, this shows that 1SLD is NP-complete. (]

4. RELATED PARAMETERS

In addition to further work on «;p(;) we have started to consider the
following related parameters.

When a detection device at vertex v can detect the presence of an in-
truder in N[v] but which vertex in N[v] can not be pinpointed, then one is
interested in having an identifying-code. Here, instead of using our three-
state detection devices, we use two-state detection devices with the fol-
lowing properties. A detection device placed at a vertex v is assumed to
transmit one of two possible outcomes in each time period: O if there is no
intruder in N{v); 1 if there is an intruder in N[v]. We assume that there
is at most one intruder, and IC(G) or v1¢(G) denotes the minimum cardi-
nality of an identifying code C for G, that is, a dominating set C C V(G)
such that N[z]NC # Ny]NC for all vertices z # y in V(G). One can con-
sider the 1-step identifying-code problem of placing the minimum possible
number of two-state detection devices in V(G) so that the presence of an
intruder in V(G) can be detected, and the exact location of the intruder
can be identified either immediately (at time zero) or when the intruder has
moved to an adjacent vertex (at time one). We will call a dominating set
D with this capability a I-step identifying-code, and the I-step identifying-
code number v;¢(1)(G) is the minimum possible cardinality of such a set.

With details to appear elsewhere, we have the next result.

Proposition 4.1. For the (long) ladder L of order |V(L)| = n = 2k, we
have vroy(L) =~ 3.

One can easily see that LD(G) < IC(G) and v.p1)(G) £ 71cq)(G)
when G has an identifying code.

Proposition 4.2. When G has an identifying code, v(G) < vLp(1)(G) <
Yp(G) < 711¢(G) and vLp1)(G) < v1c)(G) < 11¢(G).

Parameters vz p and y;¢(1) are incomparable. We have v.p(Fr) = -2-5'—‘ <
Yre)(Pr) = v1c(Pr) = [§], and for the tree on n = k+3 vertices in Figure
5 we have ’710(1)(Tn) =3<vp(Tp)=k+1=n-2

A 1-step parameter can be extended to a k-step parameter in different
ways. For example, we can consider the problem of precisely identifying
the location of an intruder either immediately or while the intruder moves
a distance of k, along a path of length k, along a trail of length k, or along
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FIGURE 5. Tree T, is a path on three vertices with k ver-
tices attached to the same endpoint.

a walk of length k. These ideas lead to multiple k-step locating-dominating
and identifying code parameters. We let LDyx), LDp(ky, LDy(ry, LDury,
and ICyk), ICp(ky, ICy(k), ICy (k) denote the parameters when an intruder
can be located/identified while traveling a distance of k, a path of length
k, a trail of length k, or a walk of length k, respectively.

A 1-step (or k-step) parameter can also be extended to consider multiple
intruders that may, or may not, be able to simultaneously occupy the same
location or to consider various kinds of detection device faults, be they
faults in detection, faults in reporting or faults of another nature.
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