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Abstract

This paper investigates the existence of monadic balanced ternary
designs (BTDs). A monadic BTD is a BTD where each size K block
contains one element that appears doubly and K — 2 elements that ap-
pear singly. The authors show that the conditions (1) p, = 2p,, (2)
A(V —1) = 10p,, and (3) A # 3 are sufficient for the existence of monadic
BTD(V; B; py, pas R; 4; A)s. The authors also give necessary and sufficient
conditions for the existence of monadic BTDs where the block size is five
and A is 3 or 6.

Keywords and phrases: BIBD, BTD, balanced ternary design, nested
design, balanced incomplete block design.

1 Introduction

A balanced ternary design, or BTD, with parameters (V, B, R, K, A) is a collec-
tion of B blocks on V elements such that (1) each element occurs R times in the
design, (2) each pair of distinct elements occurs A times in the design, where A
is called the index of the design, and (3) each block contains K elements, where
an element may occur 0, 1, or 2 times in a block (i.e., each block is a multiset).

An example of a BTD with parameters (5; 10; 4,2, 8; 4; 5) appears in Figure
1. In the figure, each column represents a block of the design.

1 0 2 3 401 4 3 2
1 0 2 3 4 01 4 3 2
0 11 2 0 2 3 0 01
4 2 3 4 3 3 4 2 1 4

Figure 1: A BTD(5;10; 4,2, 8;4;5).

BTDs are regular in the sense that each point occurs singly in p, blocks and
doubly in p, blocks [5]. Because of this regularity, BTD parameters are most
often given as (V; B; py, pg, R; K; A).

The purpose of this paper is to investigate a class of BTDs which we call
monadic. A BTD(V; B; py, po, R; K; A) is said to be monadic if every block in
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the design contains one element which appears doubly and K — 2 elements which
appear singly. The design shown in Figure 1 is a monadic BTD(5; 10; 4, 2, 8; 4; 5)

Counting arguments can be used to establish the necessity of the following
well-known relationships among a BTD’s parameters:

VR = BK,
AV = 1) = py (K — 1) + 2py(K — 2), and
R =p, +2p,.

Since each block in a monadic BTD contains exactly one doubleton, in
monadic BTDs it is further true that B = Vp,. Thus, in monadic BTDs,
the parametric relationships reduce to:

R=p,K,
p1 = (K —2)p,, and
AV —1) = (K + 1)(K - 2)p,.

These reduced relationships imply that V', K, and A are sufficient to spec-
ify the other parameters of a monadic BTD. We take advantage of this fact
throughout the paper by using the notation BTD(V, K, A) for monadic BTDs.

In Section 2 we investigate monadic BTDs with block size four. By showing
the non-existence of BTD(V, 4,3) and the existence of (1) monadic BTD(5t +
1,4,2s) for t > 1 and s > 1, (2) monadic BTD(V,4,5s) for V > 3 and s > 1,
and (3) monadic BTD(V,4,10s) for V > 3 and s > 1 the sufficiency of the
conditions (1) p; = 2p,, (2) A(V — 1) = 10p,, and (3) A # 3 for the existence
of monadic BTD(V, 4, A) is established.

In Section 3 we investigate monadic BTDs with block size five. Necessary
and sufficient conditions are established for BTD(V, 5, 3)s and BTD(V, 5, 6)s.

For the interested reader, more detail about BTDs and their generalizations
appear in [4], [5], [9], [12], [13] and [15], and about nested designs in [10], [11],
and [14]. In [8], the present authors considered nested BTDs with odd block
size in which each block has exactly one singleton and (k — 1)/2 doubletons.
Since, for block size three, the previous study and this would overlap, we begin
this study with block size four.

2 Monadic BTDs with Block Size Four

In this section we restrict our investigation to monadic BTDs with block size
four.

Proposition 1 If a BTD(V; B; p,, ps, R;4; A) is monadic, then (1) R = 4p,,
(2) py = 2y, and (9) A(V — 1) = 10p,.

The necessary conditions for the existence of monadic BTD(V; B; p,, po, R;
4; A) shown in Proposition 1 severely restrict the set of possible indices for
monadic BTD(V, 4, A)s. Indices are further restricted by the extra regularity
imposed on the blocks of monadic designs. This is illustrated by the following
non-existence result.
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Proposition 2 No monadic BTD(V,4,3) exzists.

Proof. Suppose that D is a monadic BTD(V, 4, 3). Since the index of D is odd,
each element x must appear with every other element in at least one block where
both are singletons. This implies p; > V —1. But from Proposition 1 we know
p1 = 2p, and 3(V —1) = 10p, in D. Hence, we have 20, = p; > V —1 = 10p,/3,
a contradiction. Thus, no monadic BT'D(V, 4, 3) can exist. m

Throughout the remainder of the section we turn our attention to existence
results for monadic BTD(V,4,A). In sub-Section 2.1 we show how to con-
struct BTD(V, 4, A)s for even A, in sub-Section 2.2 we show how to construct
BTD(V,4, A)s for A divisible by five, and in Section 2.3 we show how to con-
struct BTD(V, 4, A)s for odd A not divisible by 5.

2.1 Monadic BTD(V, 4, 2t)

Proposition 3 For any monadic BTD(V,4,2t), V =1 (mod 5) or t = 0 (mod
5).

Proof. Follows from Proposition 1 part (3). =

In the special case where A = 2, Proposition 1 implies that V = 1 (mod 5).
The smallest such BTD(V, 4,2) would have V = 6 elements.

Example 4 [6] A monadic BTD(6,4,2) ezists. The blocks of the BTD(6,4,2)
are given by blocks {0+4,0+414,1+1,4+41} wherei =0,1,...,5, and the addition
is done mod 6. The block {0,0,1,4} is called a starter block, and the design is
said to be cyclicelly or additively generated.

A BIBD(v,k,A) can be defined as a BTD(v; b; p,,0,p,;k; ) (i.e., a BTD
in which no element appears doubly in a block). The necessary conditions for
BIBDs are (1) vp, = bk and (2) A(v—1) = p,(k - 1).

Proposition 5 If a BIBD(v,k1, A1) and a monadic BTD(k,, k3, A2),exist, then
a monadic BTD(v, k2, \1)2) exists.

Proof. Suppose B; is a block of a BIBD(v, k1, A;). Identify the k; elements of
B; arbitrarily with the k; elements of a monadic BTD(k;, k2, A2). Now create
blocks as in the monadic BTD. Do this for each B;. =

Note that Proposition 5 used with the monadic BTD(6,4, 2) of Example 4
implies that a BTD(v, 4, 2)) exists whenever a BIBD(v, 6, \) exists.

For details on the existence and non-existence of BIBD(v, 6, A) see Table 3.3
on page 72 in [2].

D. Donovan in [7] proved a key existence result for BTDs with block size
four. We incorporate her result into Proposition 6 using the terminology of this

paper.
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Proposition 8 A cyclic monadic BTD(5t + 1,4,23) ezists for all positive inte-
gerst and s.

Proof. In (7] Donovan constructed cyclic monadic BTD(5¢+-1,4,2) forall ¢ > 1.
To construct monadic BTD(5¢ + 1,4, 2s) for s > 1 simply combine s copies of a
BTD(5t + 1,4,2). m

2.2 Monadic BTD(V, 4, 5t)

Proposition 2 implies that the smallest odd index for a monadic BTD(V, 4,A)
is five. Moreover, Proposition 1 tells us that when the index of a monadic
BTD(V, 4, A) is five, V"is odd.

Example 7 A cyclic monadic BTD(5,4,5) is generated mod 5 by {0,0,2,3}
and {0,0,1,4}.

Proposition 8 There ezists a monadic BTD(V,4, A) with:
(a) A =5 when V = 1,3 (mod 6);
(b) A=15 when V =5 (mod 6);
(c) A =10 when V = 0,4(mod 6); and
(d) A =30 when V =2 (mod 6).

Proof. Suppose {a,b,c} is a block of a BIBD(V, 3, A). Replace the block with
the three blocks {a, a,b,c}, {a,b,b,c}, and {a, b, c,c}. Doing this for each block
of the BIBD creates the desired monadic BTD. The conditions in (a)..(d) cor-
respond to the necessary conditions for the existence of a BIBD with the stated
A=

Part (b) of the theorem can be lowered to index five by a variant of a con-
struction from [8]. As we show below, part (d) can be improved to index 10.
Before we present this result, we give two definitions and state the structure
theorem of H. Agrawal’s that is used in the construction.

One may modify a monadic BTD(V, B, R, K, A) by replacing each doubleton
in a block with a single appearance of the same element. When this is done,
the resulting structure consists of blocks of size X — 1. Sometimes the resulting
structure is a BIBD, sometimes it is not (the reduction of the design in Figure
1 is a BIBD while the reduction of the BTD in Proposition 4 is not). When
the resulting structure is a BIBD we say it is nested in the monadic BTD. (The
concept of nested designs appear in a more general form in the literature, see for
example [10] or [11]. However, for our purposes the restricted definition given
above suffices.)

The Agrawal result that we use in our construction is stated for binary equi-
replicate designs. A binary equi-replicate design is a collection of b size k blocks
(i.e., each block is a set) over a v-set of elements such that each element appears
in r blocks.
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Proposition 9 [3] The elements of every binary equi-replicate design with bk =
vr and b = mv, can be arranged in a kxb array such that each column represents
a block of the design and each row contains m copies of each element.

We are now in a position to prove the main results of the section.

Proposition 10 Every BIBD(v,3,3) is nested within a monadic BTD(v, 4,5)
with b = v(v — 1)/2, p; = (v—1), and py = (v — 1)/2. Moreover, for every odd
v, there exists a monadic BTD(v,4,5) which has a BIBD(v,3,3) nested within
it

Proof. Suppose D is a BIBD(v,3,3). Each block {z,y,z} in D corresponds to
a set of three unordered pairs {zy, zz,y2}. If we regard each block of D as a
block of pairs, we get an equi-replicate design in which each pair occurs three
times and m, as defined in Proposition 9, is one. Thus by Agrawal’s theorem,
we can create a 3 x b array where each column represents a block of the equi-
replicate design and every pair appears exactly once in each row. Use this array
to build a new structure on the elements of D as follows. If a column in the
array corresponds to the block {zy,zz,yz} with zy appearing in row one, zz
appearing in row two and yz appearing in row three, define a block {z,z,y, 2}
in the new structure. The two singletons in the new block are the two elements
from the pair in row three. The doublteton in the new block is the element of
D that does not appear in the pair of row three of the array but which appears
in both rows one and two.

Since each pair of elements z and y of D appear together once in each row
of the array, they appear together, counting multiplicities, five times in the
new structure. Each is a singleton in the block that correponds to the column
where they appear as a pair in row three, and one is a doubleton and the other
a singleton in the two blocks that correspond to the two columns where they
appear as a pair in either row one or row two.

Since each element z of D appears 3(v — 1)/2 times in D, it appears in
3(v — 1)/2 columns of the array. Of these 3(v — 1)/2 columns, v — 1 contain
an appearance of z in row three and one other row, and the reamining 3(v —
1)/2 -~ (v — 1) = (v — 1)/2 contain an appearance of z in rows one and two.
Thus, each = appears singly in v — 1 blocks of the new structure and doubly in
(v — 1)/2 blocks. It now follows that the new struture is a monadic BTD with
the indicated parameters. The second sentence of the theorem follows since
there exists a BIBD(v, 3,3) for everyodd v >3. m

The above construction can also be used with a BIBD(v,3,6). Here the
corresponding Agrawal array will have each element pair zy occurring twice in
each row. Thus, the same construction will generate two blocks where = and y
are both singletons and four blocks where exactly one of = and y is a singleton
and the other is a doubleton. Since BIBD(v, 3, 6) exist for all v > 3, this yields
the following result:
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Proposition 11 Let v > 3, then there ezists a BIBD(v,3,6) which is nested
within a monadic BTD(v,4,10), and conversely, there exists a BTD(v,4,10)
which has o BIBD(v, 3, 6) nested within.

Using repeated copies of a BTD(V, 4, 5) we can conclude:

Proposition 12 There exists a monadic BTD(V, 4,5s) for all odd V > 3 and
s> 1.

Using repeated copies of a BTD(V, 4, 10) we can conclude:

Proposition 13 There erists a monadic BTD(V,4,10s) for all V > 3 and
s2 1.

2.3 Monadic BTD(V, 4, A) with A odd and A > 5

Proposition 14 A BTD(V,4,5) and a BTD(V,4,2) both ezist, if and only if
V=10t+1 fort>1.

Proof. Combine Propositions 6 and 12. m

Proposition 15 There ezists a monadic BTD(V,4,A) for all V =10t +1 and
odd A greater than three.

Proof. Suppose A is odd and greater than three. Then A can be written as
2s+5 for some s > 0. Construct a monadic BTD(V, 4,2s+ 5) by combining the
blocks of a BTD(V, 4, 5) and s-copies of a BTD(V, 4, 2). Note that a BTD(V 4,5)
and a BTD(V 4,2) both exist in this case. ®

3 BTDs with Block Size Five

In this section we restrict our investigation to monadic BTDs with block size
five. Unlike the case where the monadic designs had block size four, we do
not give a complete picture. However, we do present necessary and sufficient
conditions for the existence of monadic BTD(V,5,A)s when A is 3 or 6. The
section also includes several other isolated examples of monadic BTD(V, 5, A)s.

Proposition 18 If a BTD(V; B; py, py, R; 5; A) is monadic, then (1) R = 5p,,
(2) py = 3p;, and (3)A(V — 1) = 18p,.

As was true in the block size four case, the necessary parameter relationships
are not sufficient for the existence of a monadic design.

A BTD is said to be symmetric if the number of elements in the design
equals the number of blocks in the design. If a monadic BTD(10, 5, 2) exists it
is necessarily symmetric since Proposition 16 implies that b = 10, the number
of elements in the design.

Proposition 17 There does not ezist a monadic BTD(10, 5, 2).
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Proof. Follows from the Bruck-Ryser-Chowla theorem for symmetric ternary
designs since 52 — 2 x 10 = 5 is not a perfect square. The Bruck-Ryser-Chowla
Theorem for ternary designs [5] states: In a symmetric balanced ternary design
with parameters v,k, and A, (i) if v is even, then k% — \v is a perfect square,
and (ii) if v is odd, then 22 = (k? — Av)z? + (—1)(*~1)/2)¢? has a solution in
integers z,¥, z not all zero. &

Although a BTD(10,5,2) does not exist, a monadic BTD(10, 5,4) does ex-
ist. A cyclic monadic BTD(10,5,4) can be generated mod 10 by base blocks
{0,0,5,6,8} and {0,0,1,3,4}.

Proposition 18 If a BTD(V; B; py, ps, R; 5; A) is monadic then:
(a) if A=2, thenV > 19 and V =1+ 9p,;
(b) if A=3, then V =1+ 6p,;
(c) if A=4, then V =1+ 9t for some t, and 2(V — 1) = 9p,;
(d) if A =5, then V =1 (mod 18); and
(e) if A=6, then V =1+ 3p,.

Proof. Part (a) follows from Propositions 16 and 17. The other parts follow
directly from Proposition 16 part (3). ®

We close by showing that the conditions in Proposition 18 parts (b) and (e)
are sufficient as well as necessary.

A near-resolvable BIBD is a BIBD with the property that the blocks of the
design can be partitioned into classes such that (1) no element appears more
than once in a class, (2) each class is missing a single element, and (3) each
element is missing from exactly one class. Near-resolvable BIBD(v,k,k — 1)
exist for all v = 1 (mod k), see [1].

Proposition 19 A monadic BTD(v,5,6) ezists for allv=1 (mod 3).

Proof. Assume A, is the class of blocks missing element z in a near-resolvable
BIBD(v, 3,2). Augment each of the blocks in the class with a doubleton of the
element . Do this for each of the near-resolvable classes. Now each pair of
distinct elements z and y will appear together six times in the new collection
of blocks. Four times in blocks created from A and A, and twice more from
the blocks created from the two original blocks where the pair £ and y appear
together. The result follows. =

A BIBD(v, 3,1) over an element set X is said to be nested in a BIBD(», 4, 2)
over the same element set if there exists a way to add one element of X to each
block in the BIBD(v,3,1) to produce the blocks of the BIBD(v,4,2). Stinson
proved the following:

Proposition 20 (16] For v =1+ 6t, there exists a BIBD(v, 3, 1) which can be
nested in ¢ BIBD(v,4,2).
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The Stinson constructions can be used to generate BTD(v, 5, 3)s.
Proposition 21 A monadic BTD(v,5,3) exists if and only if v = 1 + 6t.

Proof. To construct the monadic BTD(1 + 6¢, 5, 3) use Stinson’s constructions
from Proposition 19. Instead of augmenting each block {a,b,c} to {a,b,c,x},
augment it to {a,b,¢c, z, z}.

Proposition 18 tells us that v = 6t + 1 is necessary. ®

The final proposition of the paper further describes the designs of Proposition
21.

Proposition 22 Every monadic BTD(v,5,3) has a BIBD(v,3,1) nested in it

Proof. Let D be a monadic BTD(v, 5,3) with element set X and block set Y,
and let i € X. Define: A(?) = {y € X : {i,%,y,2,w} is a block of Y for some
z,win X}, B(G) ={y € X : {y,9,1, z,w} is a block of Y for some 2z, w in X}.
C(i) = {y € X : i and y appear together in three blocks of Y in which each is
a singleton.}. Since the index of D is 3, it is straightforward to show that A(i),
B(i), and C(3) are mutually disjoint and that |A(7)| + |B(Z)| + |C({)| = V- 1.

Since D is a monadic BTD(v, 5, 3), Proposition 16 tells us that p, = 3p, and
(v~ 1) = 6p,. But clearly |A(¢)] = 3p,. Also |B(3)] = p; = 3p, since no two
elements a and b can appear in a pair of blocks {e,a,b,¢c1,d1}, {a,a,b,c2,d2}.
Thus JA(z)| + |B(%)] = 6p, which implies that |C(i)| = 0. From this we can
conclude that every pair of elements in X appear together in one block of Y
both as singletons and in one block where one is a singleton and the other
is a doubleton. Thus, deleting the doubleton from each block will create a
BIBD(v,3,1). =
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