The Tree Connectivity of Regular Complete Bipartite Graphs

Futaba Okamoto

Mathematics Department
University of Wisconsin - La Crosse
La Crosse, WI 54601

Ping Zhang

Department of Mathematics Western Michigan University Kalamazoo, MI 49008

Abstract

For a set S of two or more vertices in a nontrivial connected graph G of order n, a collection $\{T_1, T_2, \ldots, T_\ell\}$ of trees in G is said to be an internally disjoint set of trees connecting S if these trees are pairwise edge-disjoint and $V(T_i) \cap V(T_j) = S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$. For an integer k with $2 \leq k \leq n$, the tree k-connectivity $\kappa_k(G)$ of G is the greatest positive integer ℓ for which G contains at least ℓ internally disjoint trees connecting S for every set S of k vertices of G. It is shown for every two integers k and r with $3 \leq k \leq 2r$ that $\kappa_k(K_{r,r}) = r - \lceil (k-1)/4 \rceil$.

Key Words: connectivity, internally disjoint set of trees, tree connectivity. AMS Subject Classification: 05C40.

1 Introduction

The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal from G results in a disconnected or trivial graph. If $\kappa(G) \geq t$ for some positive integer t, then G is t-connected. By a well-known theorem of Whitney [3], a graph G is t-connected if and only if G contains t internally disjoint u-v paths for every two distinct vertices u and v of G. That is, G contains u-v paths P_1, P_2, \ldots, P_t such that $V(P_i) \cap V(P_j) = \{u, v\}$ and $E(P_i) \cap E(P_j) = \emptyset$ for all distinct integers i and j with $1 \leq i, j \leq t$. In particular, if $\kappa(G) = \ell$, then G contains ℓ internally disjoint u-v paths for every pair u, v of vertices of G, but G does not contain $\ell+1$ internally disjoint x-y paths for some pair x, y of vertices of G.

In [1] a generalized connectivity was introduced for the purpose of studying rainbow edge colorings of graphs. Let G be a nontrivial connected graph of order n. For a set S of two or more vertices of G, a collection $\{T_1, T_2, \ldots, T_\ell\}$ of ℓ trees in G is called an internally disjoint set of trees connecting S if $V(T_i) \cap V(T_j) = S$ and $E(T_i) \cap E(T_j) = \emptyset$ for every two distinct integers i and j with $1 \leq i, j \leq \ell$. The tree connectivity $\kappa(S)$ of S is the maximum number of internally disjoint trees connecting S. For an integer k with $1 \leq i \leq k \leq n$, the tree k-connectivity (or, more simply, the k-connectivity) $\kappa_k(G)$ of G is defined by

$$\kappa_k(G) = \min\{\kappa(S)\},$$

where the minimum is taken over all sets S of k vertices of G. Thus $\kappa_2(G) = \kappa(G)$.

In [1] the k-connectivity of complete graphs of order n was determined for each integer k with $2 \le k \le n$.

Proposition 1.1 [1] For every two integers k and n with $2 \le k \le n$,

$$\kappa_k(K_n) = n - \lceil k/2 \rceil.$$

By Proposition 1.1, $\kappa_4(K_6) = 4$. For the complete graph K_6 in Figure 1 and the set $S = \{u, v, w, x\}$ of vertices of K_6 , four internally disjoint trees connecting S are shown in this figure.

Figure 1: Four internally disjoint trees connecting the set $S = \{u, v, w, x\}$ in K_6

For every positive integer r, it is well known that the connectivity of the regular complete bipartite graph $K_{r,r}$ is $\kappa_2(K_{r,r}) = \kappa(K_{r,r}) = r$. In this

paper, we determine $\kappa_k(K_{r,r})$ for every integer k with $3 \le k \le 2r$. We refer to the book [2] for graph theory notation and terminology not described in this paper.

2 The Tree Connectivity of $K_{r,r}$

By a theorem of Whitney [3],

$$\kappa(G) \le \delta(G)$$

for a graph G, where $\delta(G)$ is the minimum degree of G. Thus if G is r-regular, then $\kappa(G) \leq r$. There are many regular graphs for which $\kappa_2(G) = \kappa(G) = \delta(G)$, including the complete graph K_{r+1} and the complete bipartite graph $K_{r,r}$, as we noted above. By Proposition 1.1,

$$\kappa_k(K_{r+1}) = r + 1 - \lceil k/2 \rceil$$

for every integer k with $2 \le k \le r+1$. Thus, $\kappa_k(K_{r+1}) \le r-1$ for every integer k with $3 \le k \le r+1$. In fact, $\kappa_k(G) \le r-1$ for every r-regular graph G of order n and every integer k with $3 \le k \le n$.

Proposition 2.1 If G is an r-regular graph of order n and k is an integer with $3 \le k \le n$, then $\kappa_k(G) \le r - 1$.

Proof. Assume, to the contrary, that $\kappa_k(G) \geq r$. Let S be a k-element subset of V(G), where $k \geq 3$, and suppose that $v \in S$. Let $N(v) = \{u_1, u_2, \ldots, u_r\}$ be the neighborhood of v. By assumption, there is a collection $T = \{T_1, T_2, \ldots, T_r\}$ of r internally disjoint trees connecting S. Since these r trees are edge-disjoint, we may assume that $vu_i \in E(T_i)$ for $1 \leq i \leq r$. Therefore, every vertex in S is an end-vertex in each tree T_i for $1 \leq i \leq r$. Now consider a k-element subset $S' = \{w_1, w_2, \ldots, w_k\}$ of V(G), where w_1 and w_2 are adjacent. Let $T' = \{T'_1, T'_2, \ldots, T'_r\}$ be an internally disjoint set of trees connecting S' and suppose that the edge w_1w_2 belongs to T'_1 . Since both w_1 and w_2 are end-vertices in T'_1 , it follows that $T'_1 = K_2$. However, this is impossible since T'_1 is a tree of order $k \geq 3$.

For the r-regular complete bipartite graph $K_{r,r}$, $r \geq 2$, we show that

$$\kappa_k(K_{r,r}) = r - \lceil (k-1)/4 \rceil \tag{1}$$

for every integer k with $3 \le k \le 2r$. For this purpose, the following lemma will be useful.

Lemma 2.2 For a positive integer p, the maximum number of pairwise edge-disjoint spanning trees in $G \in \{K_{p,p+1}, K_{p+1,p+1}\}$ is $\lfloor \frac{p+1}{2} \rfloor$.

Proof. We first consider the graph $K_{p,p+1}$. Suppose that

$$U = \{u_1, u_2, \dots, u_p\}$$
 and $W = \{w_1, w_2, \dots, w_{p+1}\}$

are the partite sets. Since the size of $K_{p,p+1}$ is p(p+1) and each spanning tree contains 2p edges, the maximum number of pairwise edge-disjoint spanning trees is at most $\left|\frac{p(p+1)}{2p}\right| = \left\lfloor \frac{p+1}{2} \right\rfloor$. For $1 \leq i \leq \left\lfloor \frac{p+1}{2} \right\rfloor$,

$$T_i: w_{2i-1}, u_1, w_{2i}, u_2, w_{2i+1}, u_3, \dots, w_{2i-2+p}, u_p, w_{2i-1+p},$$

where the subscript 2i-2+j $(1 \le j \le p+1)$ is expressed as one of the integers $1,2,\ldots,p+1$ modulo p+1, is a Hamiltonian path in $K_{p,p+1}$. Then $\left\{T_1,T_2,\ldots,T_{\left\lfloor\frac{p+1}{2}\right\rfloor}\right\}$ is a set of $\left\lfloor\frac{p+1}{2}\right\rfloor$ pairwise edge-disjoint spanning trees in $K_{p,p+1}$.

For $K_{p+1,p+1}$, let

$$U = \{u_1, u_2, \dots, u_{p+1}\}$$
 and $W = \{w_1, w_2, \dots, w_{p+1}\}$

be the partite sets. The maximum number of pairwise edge-disjoint spanning trees is at most $\left|\frac{(p+1)^2}{2p+1}\right| = \left\lfloor\frac{p+1}{2}\right\rfloor$. For $1 \le i \le \left\lfloor\frac{p+1}{2}\right\rfloor$,

$$T_i: w_{2i-1}, u_1, w_{2i}, u_2, w_{2i+1}, u_3, \ldots, w_{2i-1+p}, u_{p+1},$$

where again the subscript 2i-2+j $(1 \le j \le p+1)$ is expressed as one of the integers $1, 2, \ldots, p+1$ modulo p+1, is a Hamiltonian path in $K_{p+1,p+1}$. Therefore,

$$\left\{T_1, T_2, \dots, T_{\left\lfloor \frac{p+1}{2} \right\rfloor}\right\}$$

is a set of $\lfloor \frac{p+1}{2} \rfloor$ pairwise edge-disjoint spanning trees in $K_{p+1,p+1}$.

We are now prepared to verify (1).

Theorem 2.3 For $r \ge 1$ and $3 \le k \le 2r$,

$$\kappa_k(K_{r,r}) = r - \lceil (k-1)/4 \rceil.$$

Proof. First, we show that

$$\kappa_k(K_{r,r}) \leq r - \lceil (k-1)/4 \rceil.$$

Let $U = \{u_1, u_2, \dots, u_r\}$ and $W = \{w_1, w_2, \dots, w_r\}$ be the partite sets of $K_{r,r}$. We consider two cases according to whether k is even or k is odd.

Case 1. k is even. Then k=2a for some integer $a\geq 2$. Consider the set

$$S = \{u_1, u_2, \dots, u_a, w_1, w_2, \dots, w_a\}$$

of 2a vertices. A vertex not belonging to S is referred to as an external vertex. An S-tree is a tree T with V(T) = S, an S'-tree is a tree T with $S \subseteq V(T)$ such that T contains exactly one external vertex, while an S''-tree is a tree T with $S \subseteq V(T)$ such that T contains two or more external vertices. Let $A = A^{\circ} \cup A' \cup A''$ be a set of pairwise edge-disjoint trees connecting S, where A° is the set of S-trees, A' is the set of S'-trees, and A'' is the set of S''-trees. Suppose that $|A'| = p \geq 0$.

Let $H \cong K_{a,a}$ be the subgraph of G induced by S and X = E(H). Hence $|X| = a^2$. Observe that if $T \in \mathcal{A}'$, then T contains at least a edges belonging to X. Therefore, $0 \le p \le a$ and furthermore,

$$|\mathcal{A}^{\circ}| \leq \left| \frac{a^2 - ap}{2a - 1} \right| \text{ and } |\mathcal{A}''| \leq \left| \frac{2r - (2a + p)}{2} \right|.$$

Therefore,

$$|\mathcal{A}| \leq \left\lfloor \frac{a^2 - ap}{2a - 1} \right\rfloor + p + \left\lfloor \frac{2r - (2a + p)}{2} \right\rfloor$$

$$\leq \frac{a^2 - ap}{2a - 1} + p + \frac{2r - 2a - p}{2}$$

$$= r - \frac{2a^2 - 2a + p}{2(2a - 1)} \leq r - \frac{a^2 - a}{2a - 1}.$$

If a = 2b for some $b \ge 1$, then $\frac{a^2 - a}{2a - 1} > b - 1$ and so

$$|\mathcal{A}| \leq r-b = r - \left\lceil \frac{4b-1}{4} \right\rceil = r - \left\lceil \frac{k-1}{4} \right\rceil.$$

If a = 2b + 1 for some $b \ge 1$, then $\frac{a^2 - a}{2a - 1} > b$ and so

$$|\mathcal{A}| \leq r - (b+1) = r - \left\lceil \frac{(4b+2)-1}{4} \right\rceil = r - \left\lceil \frac{k-1}{4} \right\rceil.$$

Case 2. k is odd. We consider two subcases.

Subcase 2.1. k = 4b + 1 for some integer $b \ge 1$. Consider the set

$$S = \{u_1, u_2, \dots, u_{2b}, w_1, w_2, \dots, w_{2b+1}\}$$

of 4b+1 vertices and let $\mathcal{A}=\mathcal{A}^\circ\cup\mathcal{A}'\cup\mathcal{A}''$ be a set of pairwise edge-disjoint trees connecting S, where these sets are defined as before. Also, let $|\mathcal{A}'|=p>0$.

Let $H \cong K_{2b,2b+1}$ be the subgraph of G induced by S and X = E(H). Hence |X| = (2b)(2b+1). Observe that if $T \in \mathcal{A}'$, then T contains at least 2b edges belonging to X. Therefore, $0 \le p \le 2b+1$ and furthermore,

$$|\mathcal{A}^{\circ}| \leq \left| \frac{(2b)(2b+1) - (2b)p}{4b} \right| \text{ and } |\mathcal{A}''| \leq \left| \frac{2r - (4b+1+p)}{2} \right|.$$

Therefore,

$$\begin{aligned} |\mathcal{A}| & \leq \left[\frac{(2b)(2b+1) - (2b)p}{4b} \right] + p + \left[\frac{2r - (4b+1+p)}{2} \right] \\ & \leq \frac{2b+1-p}{2} + p + \frac{2r - 4b - 1 - p}{2} = r - b \\ & = r - \left[\frac{(4b+1) - 1}{4} \right] = r - \left[\frac{k-1}{4} \right]. \end{aligned}$$

Subcase 2.2. k = 4b + 3 for some integer $b \ge 0$. Consider the set

$$S = \{u_1, u_2, \dots, u_{2b+1}, w_1, w_2, \dots, w_{2b+2}\}$$

of 4b+3 vertices and let $\mathcal{A}=\mathcal{A}^\circ\cup\mathcal{A}'\cup\mathcal{A}''$ be a set of pairwise edge-disjoint trees connecting S, where again these sets are defined as before. Also, suppose that $|\mathcal{A}'|=p\geq 0$.

Let $H \cong K_{2b+1,2b+2}$ be the subgraph of G induced by S and X = E(H). Hence |X| = (2b+1)(2b+2). Observe that if $T \in \mathcal{A}'$, then T contains at least 2b+1 edges belonging to X. Therefore, $0 \le p \le 2b+2$ and furthermore,

$$|\mathcal{A}^{\circ}| \leq \left\lfloor \frac{(2b+1)(2b+2)-(2b+1)p}{4b+2} \right\rfloor \text{ and } |\mathcal{A}''| \leq \left\lfloor \frac{2r-(4b+3+p)}{2} \right\rfloor.$$

Therefore,

$$\begin{aligned} |\mathcal{A}| & \leq & \left\lfloor \frac{(2b+1)(2b+2) - (2b+1)p}{4b+2} \right\rfloor + p + \left\lfloor \frac{2r - (4b+3+p)}{2} \right\rfloor \\ & \leq & \frac{2b+2-p}{2} + p + \frac{2r - 4b - 3 - p}{2} = r - b - \frac{1}{2} \end{aligned}$$

and so

$$|\mathcal{A}| \leq r - (b+1) = r - \left\lceil \frac{(4b+3)-1}{4} \right\rceil = r - \left\lceil \frac{k-1}{4} \right\rceil.$$

Therefore, if S is the set of k vertices in $K_{r,r}$ described in each case, then the number of pairwise edge-disjoint trees connecting S is at most $r - \left\lceil \frac{k-1}{4} \right\rceil$. Consequently, $\kappa_k(K_{r,r}) \le r - \left\lceil \frac{k-1}{4} \right\rceil$.

It now remains to show that

$$\kappa_k(K_{r,r}) \geq r - \lceil (k-1)/4 \rceil.$$

As before, we denote the partite sets of $K_{r,r}$ by U and W. Let S be a set of k vertices of $K_{r,r}$, where $S \cap U = S_U$ and $S \cap W = S_W$, where say $|S_U| \leq |S_W|$.

Thus $S = S_U \cup S_W$. We show that there are $r - \lceil \frac{k-1}{4} \rceil$ internally disjoint trees connecting S. We now consider four cases, according to whether k is congruent to 0, 1, 2, or $3 \mod 4$.

Case 1. k = 4a for some positive integer a. Then $|S_U| = 2a - b$ and $|S_W| = 2a + b$ for some integer b with $0 \le b \le 2a$. In this case, we show that there are r - a internally disjoint trees connecting S.

The result holds for b=2a, for in this case $S=S_W$ and there are r stars $T_u \cong K_{1,4a}$, one for each $u \in U$, where u is the center of T_u . Hence we may assume that $0 \le b \le 2a-1$. Let

$$S_U = \{u_1, u_2, \dots, u_{2a-b}\}$$
 and $S_W = \{w_1, w_2, \dots, w_{2a+b}\}.$

If 2a + b < r, then let

$$X = \{x_1, x_2, \dots, x_{r-2a-b}\} = W - S_W$$
 and $Y = \{y_1, y_2, \dots, y_{r-2a-b}\} \subseteq U - S_U$,

while $X = Y = \emptyset$ if r = 2a + b. Also, if b > 0, then let

$$Z = \{z_1, z_2, \ldots, z_{2b}\} = U - [S_U \cup Y].$$

Let $\mathcal{B}'' = \emptyset$ if r = 2a + b. Otherwise, let $\mathcal{B}'' = \{S_1'', S_2'', \dots, S_{r-2a-b}''\}$ be the set of r - 2a - b double stars with $V(S_i'') = S \cup \{x_i, y_i\}$ (and x_i and y_i are the central vertices of S_i'') for $1 \le i \le r - 2a - b$.

If b = 0, then by Lemma 2.2 there are a pairwise edge-disjoint S-trees T_1, T_2, \ldots, T_a , and

$$\{T_1, T_2, \ldots, T_a\} \cup \mathcal{B}''$$

is a collection of r-a internally disjoint trees connecting S. If $a \le b \le 2a-1$, then let $T_1', T_2', \ldots, T_{a+b}'$ be the S'-trees such that $V(T_i') = S \cup \{z_i\}$ and

$$E(T_i') = \{u_j w_{j+i-1}: 1 \le j \le 2a - b\} \cup \{w_j z_i: 1 \le j \le 2a + b\}.$$

Then

$$\{T_1', T_2', \ldots, T_{a+b}'\} \cup \mathcal{B}''$$

is a collection of r-a internally disjoint trees connecting S.

If $1 \le b \le a-1$, then we first construct 2b internally disjoint S'-trees $S'_1, S'_2, \ldots, S'_{2b}$. For $1 \le i \le b+1$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a - b\},\$$

where the subscript j + i + (2a - 2b - 1) is expressed as one of the integers $1, 2, \ldots, 2a - b + 1$ modulo 2a - b + 1, while for $b \ge 2$ and $b + 2 \le i \le 2b$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a - b\},\$$

where the subscript j+i+(2a-2b-1) is expressed as one of the integers $2a-b+2, 2a-b+3, \ldots, 2a+b$ modulo 2b-1. Then let S_i' be the tree such that $V(S_i') = S \cup \{z_i\}$ and

$$E(S_i') = E_i \cup \{w_j z_i : 1 \le j \le 2a + b\}.$$

Let $\mathcal{B}' = \{S'_1, S'_2, \dots, S'_{2b}\}$. Next let q and r be the unique nonnegative integers such that 2a - b = (2b - 1)q + r with $0 \le r < 2b - 1$ and consider a vertex $w \in \{w_{2a-b+2}, w_{2a-b+3}, \dots, w_{2a+b}\}$. Observe that the number of vertices u in S_U such that the edge uw belongs to some tree in $\mathcal{B}' \cup \mathcal{B}''$ is at most

$$(b-1)q + \min\{b-1, r\} < a$$
.

Therefore, for each w_{α} with $2a - b + 2 \le \alpha \le 2a + b$, there exists a set

$$\{u_{1,\alpha}, u_{2,\alpha}, \ldots, u_{a-b,\alpha}\} \subseteq S_U$$

of a-b vertices such that the edge $u_{\beta,\alpha}w_{\alpha}$, $1 \le \beta \le a-b$, does not belong to any tree in $\mathcal{B}' \cup \mathcal{B}''$. For $1 \le i \le a-b$, let

$$F_i = \{u_j w_{j+2i-2}, u_j w_{j+2i-1}: 1 \le j \le 2a - b\},\$$

where each of the subscripts j+2i-2 and j+2i-1 is expressed as one of the integers $1, 2, \ldots, 2a-b+1$ modulo 2a-b+1. Construct the S-tree S_i by taking

$$E(S_i) = F_i \cup \{u_{i,j}w_j : 2a - b + 2 \le j \le 2a + b\}.$$

Then

$$\{S_1, S_2, \ldots, S_{a-b}\} \cup \mathcal{B}' \cup \mathcal{B}''$$

is a collection of r-a internally disjoint trees connecting S. Hence

$$\kappa_{4a}(K_{r,r}) \geq r - a.$$

Case 2. k = 4a + 1 for some positive integer a. Then $|S_U| = 2a - b$ and $|S_W| = 2a + b + 1$ for some integer b with $0 \le b \le 2a$. We show that there are r - a internally disjoint trees connecting S.

The result holds for b=2a, for in this case $S=S_W$ and there are r stars $T_u \cong K_{1,4a+1}$, one for each $u \in U$, where u is the center of T_u . Hence we may assume that $0 \le b \le 2a-1$. Let

$$S_U = \{u_1, u_2, \dots, u_{2a-b}\}$$
 and $S_W = \{w_1, w_2, \dots, w_{2a+b+1}\}.$

If 2a + b + 1 < r, then let

$$X = \{x_1, x_2, \dots, x_{r-2a-b-1}\} = W - S_W$$
 and $Y = \{y_1, y_2, \dots, y_{r-2a-b-1}\} \subseteq U - S_U$,

while $X = Y = \emptyset$ if r = 2a + b + 1. Also, let

$$Z = \{z_1, z_2, \ldots, z_{2b+1}\} = U - [S_U \cup Y].$$

Let $\mathcal{B}'' = \emptyset$ if r = 2a + b + 1. Otherwise, let $\mathcal{B}'' = \{S_1'', S_2'', \dots, S_{r-2a-b-1}''\}$ be the set of r - 2a - b - 1 double stars with $V(S_i'') = S \cup \{x_i, y_i\}$ (and x_i and y_i are the central vertices of S_i'') for $1 \le i \le r - 2a - b - 1$.

If $a \le b \le 2a-1$, then let $T'_1, T'_2, \ldots, T'_{a+b+1}$ be the S'-trees such that $V(T'_i) = S \cup \{z_i\}$ and

$$E(T_i') = \{u_j w_{j+i-1}: 1 \le j \le 2a - b\} \cup \{w_j z_i: 1 \le j \le 2a + b + 1\}.$$

Then

$$\{T_1', T_2', \dots, T_{a+b+1}'\} \cup \mathcal{B}''$$

is a collection of r-a internally disjoint trees connecting S.

If $0 \le b \le a-1$, then we first construct 2b+1 internally disjoint S'-trees $S'_1, S'_2, \ldots, S'_{2b+1}$. For $1 \le i \le b+1$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a - b\},\$$

where the subscript j+i+(2a-2b-1) is expressed as one of the integers $1,2,\ldots,2a-b+1$ modulo 2a-b+1, while for $b\geq 1$ and $b+2\leq i\leq 2b+1$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a - b\},\$$

where the subscript j+i+(2a-2b-1) is expressed as one of the integers $2a-b+2, 2a-b+3, \ldots, 2a+b+1$ modulo 2b. Then let S_i' be the tree such that $V(S_i') = S \cup \{z_i\}$ and

$$E(S_i') = E_i \cup \{w_j z_i : 1 \le j \le 2a + b + 1\}.$$

Let $\mathcal{B}'=\{S_1',S_2',\ldots,S_{2b+1}'\}$. Next let q and r be the unique nonnegative integers such that 2a-b=(2b)q+r with $0\leq r<2b$ and consider a vertex $w\in\{w_{2a-b+2},w_{2a-b+3},\ldots,w_{2a+b+1}\}$. Observe that the number of vertices u in S_U such that the edge uw belongs to some tree in $\mathcal{B}'\cup\mathcal{B}''$ is at most

$$bq + \min\{b, r\} \le a$$
.

Therefore, for each w_{α} with $2a-b+2 \leq \alpha \leq 2a+b+1$, there exists a set

$$\{u_{1,\alpha},u_{2,\alpha},\ldots,u_{a-b,\alpha}\}\subseteq S_U$$

of a-b vertices such that the edge $u_{\beta,\alpha}w_{\alpha}$, $1 \le \beta \le a-b$, does not belong to any tree in $\mathcal{B}' \cup \mathcal{B}''$. For $1 \le i \le a-b$, let

$$F_i = \{u_j w_{j+2i-2}, u_j w_{j+2i-1}: 1 \le j \le 2a - b\},\$$

where each of the subscripts j + 2i - 2 and j + 2i - 1 is expressed as one of the integers $1, 2, \ldots, 2a - b + 1$ modulo 2a - b + 1. Construct the S-tree S_i by taking

$$E(S_i) = F_i \cup \{u_{i,j}w_j: 2a - b + 2 \le j \le 2a + b + 1\}.$$

Then

$$\{S_1, S_2, \ldots, S_{a-b}\} \cup \mathcal{B}' \cup \mathcal{B}''$$

is a collection of r-a internally disjoint trees connecting S. Hence

$$\kappa_{4a+1}(K_{r,r}) \geq r - a.$$

Case 3. k = 4a + 2 for some positive integer a. Then $|S_U| = 2a - b + 1$ and $|S_W| = 2a + b + 1$ for some integer b with $0 \le b \le 2a + 1$. We show that there are r - a - 1 internally disjoint trees connecting S.

The result holds for b = 2a + 1, for in this case $S = S_W$ and there are r stars $T_u \cong K_{1,4a+2}$, one for each $u \in U$, where u is the center of T_u . Hence we may assume that $0 \le b \le 2a$. Let

$$S_U = \{u_1, u_2, \dots, u_{2a-b+1}\}$$
 and $S_W = \{w_1, w_2, \dots, w_{2a+b+1}\}.$

If 2a + b + 1 < r, then let

$$X = \{x_1, x_2, \dots, x_{r-2a-b-1}\} = W - S_W$$
 and $Y = \{y_1, y_2, \dots, y_{r-2a-b-1}\} \subseteq U - S_U$,

while $X = Y = \emptyset$ if r = 2a + b + 1. Also, if b > 0, then let

$$Z = \{z_1, z_2, \dots, z_{2b}\} = U - [S_U \cup Y].$$

Let $\mathcal{B}'' = \emptyset$ if r = 2a + b + 1. Otherwise, let $\mathcal{B}'' = \{S_1'', S_2'', \dots, S_{r-2a-b-1}''\}$ be the set of r - 2a - b - 1 double stars with $V(S_i'') = S \cup \{x_i, y_i\}$ (and x_i and y_i are the central vertices of S_i'') for $1 \le i \le r - 2a - b - 1$.

If b = 0, then by Lemma 2.2 there are a pairwise edge-disjoint S-trees T_1, T_2, \ldots, T_a , and

$$\{T_1,T_2,\ldots,T_a\}\cup\mathcal{B}''$$

is a collection of r-a-1 internally disjoint trees connecting S. If $a \leq b \leq 2a$, then let $T_1', T_2', \ldots, T_{a+b}'$ be the S'-trees such that $V(T_i') = S \cup \{z_i\}$ and

$$E(T_i') = \{u_j w_{j+i-1}: 1 \le j \le 2a - b + 1\} \cup \{w_j z_i: 1 \le j \le 2a + b + 1\}.$$

Then

$$\{T_1',T_2',\ldots,T_{a+b}'\}\cup\mathcal{B}''$$

is a collection of r-a-1 internally disjoint trees connecting S.

If $1 \le b \le a-1$, then we first construct 2b internally disjoint S'-trees $S'_1, S'_2, \ldots, S'_{2b}$. If b=1, then for i=1,2 let

$$E_i = \{u_j w_{j+i+(2a-3)}: 1 \le j \le 2a\},\$$

where the subscript j+i+(2a-3) is expressed as one of the integers $1, 2, \ldots, 2a+1$ modulo 2a+1. If $b \ge 2$, then for $1 \le i \le b+2$ let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a-b+1\},\$$

where the subscript j + i + (2a - 2b - 1) is expressed as one of the integers $1, 2, \ldots, 2a - b + 2$ modulo 2a - b + 2. Also, for $b \ge 3$ and $b + 3 \le i \le 2b$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a-b+1\},\$$

where the subscript j+i+(2a-2b-1) is expressed as one of the integers 2a-b+3, 2a-b+4, ..., 2a+b+1 modulo 2b-1. Then let S_i' be the tree such that $V(S_i') = S \cup \{z_i\}$ and

$$E(S_i') = E_i \cup \{w_j z_i : 1 \le j \le 2a + b + 1\}.$$

Let $\mathcal{B}' = \{S'_1, S'_2, \dots, S'_{2b}\}$. Next let q and r be the unique nonnegative integers such that 2a - b + 1 = (2b - 1)q + r with $0 \le r < 2b - 1$ and consider a vertex $w \in \{w_{2a-b+3}, w_{2a-b+4}, \dots, w_{2a+b+1}\}$. Observe that the number of vertices u in S_U such that the edge uw belongs to some tree in $\mathcal{B}' \cup \mathcal{B}''$ is at most

$$(b-2)q+\min\{b-2,r\}< a.$$

Therefore, for each w_{α} with $2a-b+3 \leq \alpha \leq 2a+b+1$, there exists a set

$$\{u_{1,\alpha},u_{2,\alpha},\ldots,u_{a-b,\alpha}\}\subseteq S_U$$

of a-b vertices such that the edge $u_{\beta,\alpha}w_{\alpha}$, $1 \leq \beta \leq a-b$, does not belong to any tree in $\mathcal{B}' \cup \mathcal{B}''$. For $1 \leq i \leq a-b$, let

$$F_i = \{u_i w_{i+2i-2}, u_i w_{i+2i-1} : 1 \le j \le 2a - b + 1\},\$$

where each of the subscripts j+2i-2 and j+2i-1 is expressed as one of the integers $1,2,\ldots,2a-b+2$ modulo 2a-b+2. Construct the S-tree S_i by taking

$$E(S_i) = F_i \cup \{u_{i,j}w_j: 2a - b + 3 \le j \le 2a + b + 1\}.$$

Then

$$\{S_1, S_2, \ldots, S_{a-b}\} \cup \mathcal{B}' \cup \mathcal{B}''$$

is a collection of r-a-1 internally disjoint trees connecting S. Hence

$$\kappa_{4a+2}(K_{r,r}) \geq r - a - 1.$$

Case 4. k = 4a+3 for some nonnegative integer a. Then $|S_U| = 2a-b+1$ and $|S_W| = 2a+b+2$ for some integer b with $0 \le b \le 2a+1$. We show that there are r-a-1 internally disjoint trees connecting S.

The result holds for b=2a+1, for in this case $S=S_W$ and there are r stars $T_u \cong K_{1,4a+3}$, one for each $u \in U$, where u is the center of T_u . Hence we may assume that $0 \le b \le 2a$. Let

$$S_U = \{u_1, u_2, \dots, u_{2a-b+1}\}$$
 and $S_W = \{w_1, w_2, \dots, w_{2a+b+2}\}.$

If 2a + b + 2 < r, then let

$$X = \{x_1, x_2, \dots, x_{r-2a-b-2}\} = W - S_W$$
 and $Y = \{y_1, y_2, \dots, y_{r-2a-b-2}\} \subseteq U - S_U$,

while $X = Y = \emptyset$ if r = 2a + b + 2. Also, let

$$Z = \{z_1, z_2, \ldots, z_{2b+1}\} = U - [S_U \cup Y].$$

Let $\mathcal{B}'' = \emptyset$ if r = 2a + b + 2. Otherwise, let $\mathcal{B}'' = \{S_1'', S_2'', \dots, S_{r-2a-b-2}''\}$ be the set of r - 2a - b - 2 double stars with $V(S_i'') = S \cup \{x_i, y_i\}$ (and x_i and y_i are the central vertices of S_i'') for $1 \le i \le r - 2a - b - 2$.

If b = 0, then by Lemma 2.2 there are a+1 pairwise edge-disjoint S-trees $T_1, T_2, \ldots, T_{a+1}$, and

$$\{T_1,T_2,\ldots,T_{a+1}\}\cup\mathcal{B}''$$

is a collection of r-a-1 internally disjoint trees connecting S. If $a \le b \le 2a$, then let $T_1', T_2', \ldots, T_{a+b+1}'$ be the S'-trees such that $V(T_i') = S \cup \{z_i\}$ and

$$E(T_i') = \{u_j w_{j+i-1}: \ 1 \leq j \leq 2a-b+1\} \cup \{w_j z_i: \ 1 \leq j \leq 2a+b+2\}.$$

Then

$$\{T'_1, T'_2, \dots, T'_{a+b+1}\} \cup \mathcal{B}''$$

is a collection of r-a-1 internally disjoint trees connecting S.

If $1 \le b \le a-1$, then we first construct 2b+1 internally disjoint S'-trees $S'_1, S'_2, \ldots, S'_{2b+1}$. For $1 \le i \le b+2$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a-b+1\},\$$

where the subscript j+i+(2a-2b-1) is expressed as one of the integers $1,2,\ldots,2a-b+2$ modulo 2a-b+2, while for $b\geq 2$ and $b+3\leq i\leq 2b+1$, let

$$E_i = \{u_j w_{j+i+(2a-2b-1)}: 1 \le j \le 2a-b+1\},\$$

where the subscript j+i+(2a-2b-1) is expressed as one of the integers $2a-b+3, 2a-b+4, \ldots, 2a+b+2$ modulo 2b. Then let S_i' be the tree such that $V(S_i') = S \cup \{z_i\}$ and

$$E(S_i') = E_i \cup \{w_j z_i : 1 \le j \le 2a + b + 2\}.$$

Let $\mathcal{B}' = \{S'_1, S'_2, \dots, S'_{2b+1}\}$. Next let q and r be the unique nonnegative integers such that 2a - b + 1 = (2b)q + r with $0 \le r < 2b$ and consider a vertex $w \in \{w_{2a-b+3}, w_{2a-b+4}, \dots, w_{2a+b+2}\}$. Observe that the number of vertices u in S_U such that the edge uw belongs to some tree in $\mathcal{B}' \cup \mathcal{B}''$ is at most

$$(b-1)q + \min\{b-1,r\} < a.$$

Therefore, for each w_{α} with $2a - b + 3 \le \alpha \le 2a + b + 2$, there exists a set

$$\{u_{1,\alpha},u_{2,\alpha},\ldots,u_{a-b,\alpha}\}\subseteq S_U$$

of a-b vertices such that the edge $u_{\beta,\alpha}w_{\alpha}$, $1 \leq \beta \leq a-b$, does not belong to any tree in $\mathcal{B}' \cup \mathcal{B}''$. For $1 \leq i \leq a-b$, let

$$F_i = \{u_j w_{j+2i-2}, u_j w_{j+2i-1}: 1 \le j \le 2a - b + 1\},$$

where each of the subscripts j + 2i - 2 and j + 2i - 1 is expressed as one of the integers $1, 2, \ldots, 2a - b + 2$ modulo 2a - b + 2. Construct the S-tree S_i by taking

$$E(S_i) = F_i \cup \{u_{i,j}w_j: 2a - b + 3 \le j \le 2a + b + 2\}.$$

Then

$$\{S_1, S_2, \ldots, S_{a-b}\} \cup \mathcal{B}' \cup \mathcal{B}''$$

is a collection of r-a-1 internally disjoint trees connecting S. Hence

$$\kappa_{4a+3}(K_{r,r}) \geq r-a-1.$$

This completes the proof.

As an example, we now consider the graph $G = K_{12,12}$ and let S be a set of 15 vertices in G. According to Theorem 2.3, there is a collection \mathcal{A} of 8 internally disjoint trees connecting S. To illustrate how such 8 trees are constructed in the proof, we consider a set S with $|S_U| = 7 - b$ and $|S_W| = 8 + b$, where $b \in \{0, 2, 4\}$.

• If
$$b = 0$$
, then $S = \{u_1, u_2, \dots, u_7\} \cup \{w_1, w_2, \dots, w_8\}$. Let

$$\mathcal{A} = \{T_1, T_2, T_3, T_4\} \cup \{S_1'', S_2'', S_3'', S_4''\}$$

be the set of 8 trees, where T_1, T_2, T_3, T_4 are the paths defined by

 $T_1: w_1, u_1, w_2, u_2, w_3, \ldots, w_7, u_7, w_8$ $T_2: w_3, u_1, w_4, u_2, w_5, \ldots, w_1, u_7, w_2$ $T_3: w_5, u_1, w_6, u_2, w_7, \ldots, w_3, u_7, w_4$ $T_4: w_7, u_1, w_8, u_2, w_1, \ldots, w_5, u_7, w_6$

and S_i'' $(1 \le i \le 4)$ is a double star whose central vertices are x_i and y_i such that

$$N(x_i) = \{u_1, u_2, \dots, u_7, y_i\}$$
 and $N(y_i) = \{w_1, w_2, \dots, w_8, x_i\}.$

• If
$$b=2$$
, then $S=\{u_1,u_2,\ldots,u_5\}\cup\{w_1,w_2,\ldots,w_{10}\}$. Let
$$\mathcal{A}=\{S_1\}\cup\{S_1',S_2',\ldots,S_5'\}\cup\{S_1'',S_2''\}$$

be the set of 8 trees, where S_1 and S'_j $(1 \le j \le 5)$ are shown in Figure 2 and S''_i (i = 1, 2) is a double star whose central vertices are x_i and y_i such that $N(x_i) = \{u_1, u_2, \ldots, u_5, y_i\}$ and $N(y_i) = \{w_1, w_2, \ldots, w_{10}, x_i\}$.

Figure 2: Internally disjoint trees connecting S for b=2

• If b = 4, then $S = \{u_1, u_2, u_3\} \cup \{w_1, w_2, \dots, w_{12}\}$. Let

$$A = \{T_1', T_2', \ldots, T_8'\}$$

be the set of 8 trees, where T_i' $(1 \le i \le 8)$ is obtained from the star $K_{1,12}$, whose vertex set is $V(K_{1,12}) = \{z_i\} \cup \{w_1, w_2, \ldots, w_{12}\}$ and whose central vertex is z_i , by adding the vertices u_1, u_2, u_3 and joining u_j to w_{j+i-1} for j=1,2,3. The trees T_1' , T_2' , and T_8' are shown in Figure 3.

Figure 3: Internally disjoint trees connecting S for b = 4

3 Acknowledgments

We are grateful to Professor Gary Chartrand for kindly providing useful information on this topic and to the referee whose valuable suggestions resulted in an improved paper.

References

- [1] G. Chartrand, F. Okamoto, and P. Zhang, Rainbow trees in graphs and and generalized connectivity. Preprint.
- [2] G. Chartrand and P. Zhang, *Chromatic Graph Theory*. Chapman & Hall/CRC Press, Boca Raton (2009).
- [3] H. Whitney, Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932) 150-168.