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ABSTRACT- A model that represents the rate of changes of the population with

limited environmental resources can be described by,

d

;’:—= pla-bp)+ g(t.,p). p(8)= p,
where a measures the growth rate In the absence of the restriction force b and a/b is
called the carrying capacity of the environment. The random perturbation g(t, p) is
generated by random change in the environment. The behavior of the solution of this

model for continuous and discrete case when g(t,p)=w(t) is density independent with
a constant random factor w in a short time interval [t , + Ot) will be studied. The
stability and the behavior of the equilibrium point will also be investigated. A
computational approach to the solution using Excel spreadsheet and Maple will be
presented.

1- Introduction and History

The evolution of mathematical models used to describe population
growth and balance is a great example of how this field has evolved over
the years. The first mathematical model, referred to as the classical
Malthusian scheme for population growth, is based on the work of
Thomas R. Malthus (1766-1834). In The Principle of Population essay
that he published in 1798, Malthus explained in fundamental and
brilliantly simple terms his theories of human population growth and the
connection between over-population and misery. One of the fundamental
concepts that he brought up is that of unlimited population growth (see
Bulaevsky, [2]). Tomas R Malthus was one of the first people to use math
modeling to solve a population growth problem. His model stated that the
size population for one generation depends on population size of the last
generation. In a discrete model, the equation that he used

was: P, =r.P (see Interesting Facts about Population Growth

Mathematical Models written by Bulaevsky [3]). After Malthus,
mathematicians and biologists used math modeling for different types of
population problems. Particularly in the area of unlimited growth, limited
growth, age Structure dependencies, competition, predator and prey
model, natural equilibrium, dynamic behavior, and stability of the
equilibrium points have been studied during the past centuries ([4], [5]).

Random logistic model were used in random drift / migration and
directional changes in gene frequency (for details, see notes on
population structure and gene flow and Futuyma 2005 [4]. The
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dynamic behavior of logistic model leading to stability, instability, and
chaos has been studied in many different areas of science and
mathematics during the past decades [7]. One of the characteristics of
the random-looking behavior or deterministic chaos is its sensitivity and
dependence on the initial conditions. This means that the separation
between two nearby orbits of the system and the prediction of the long
term behavior of the system can only be described in probabilistic
language {5]. In computational approach a computer algebra systems
like Maple can be used for simulation and control of chaos ([ 8],[12]).

The structure of this paper will be the following: First we begin to discuss
the principles of the random perturbation in setting the model. In the next
step we will study the solution of Random Perturbed Logistic Model
(RPLM). The analytical and numerical solution will be presented. A
computer algebra system will be used to demonstrate the exact solution.

2.1- Random Perturbations in the logistic Environment: We start with the
logistic equation itself:

@ . rP(l— -’3—) @1

If the paradise of nature provides unlimited resources, then the
population increases exponentially to P(t) = Fe™ . When the resources
are limited, nature will impose a rule of restriction force of reproduction
against the exponential increase.

The behavior of many populations cannot be modelled using (2.1), as it
is affected by an additional perturbation term

dP (1) ( P(1) (2.2)

@ =rP|1- 7—)+ g, P (1))

We next study what happens when we perturb a logistic population. How
do we perturb it? One of the important principles of evolution is the
variation of condition where the individual will learn how to adapt in a
new environmental condition. The random perturbation w may represent
the amount of individuals being recruited or harvested from the
population, which may not be Independent from the density of the
population.

The equation (2.2) can be studied when w is a discrete constant
recruitment or harvesting term Independent from the population
density.

This is a euphemism for killing some individuals or providing resources to
flourish another individual. If we do so for food, we call it harvesting,
whereas if we do it in order to save the underlying environment (and
hence the population itself), we call it culling. If the environment does this

296



random change then we do not know when it is going to be killing one or
flourishing another individual.

Small fluctuations in the perturbation w such as climate changes and
food supply can have amplified effects on the population growth rate.
The stochastic effects can be examined when a random noise term is
added to the perturbation w.

To study these problems, we need to assume that a perturbation w
imposed in the original equation (2.1) is density independent that is
o(t,p(t)=w(t). Thus, in such a condition, the general form of random

logistic can be describe by

dp p
—=a-p|l1-—|+w( 2.3
i p( K) @ (2.3)
This model is particularly useful to represent a random logistic model.
The random function w in the logistic equation was a subject of study in
many areas of computation biclogy, population dynamics, and many
theoretical aspects of stochastic differential equations (see Scheuring
and Domokos 2007).

Ecological systems are inherently noisy and the data series are short and
unreliable (see Scheuring et all [14]). The main question is whether the

noise can induce a chaotic behavior?

3. Continuous Random Logistic Model: We will impose the
following general conditions to determine the mathematical model.
3.1- Modeling with the Postulates for Open Environment: Naturally
these parameters satisfy the following conditions:

1- in the absence of random effect (in a closed environment) the
population may be changed with the exponential rate of a when there is
no overcrowded restriction force factor (or equivalently b=0).

2- In the absence of the environment random change and presence
of overcrowded restriction forces factor b, the rate of change of the
population is proporticnal to the population rate = a-b.p(t) that is
p'(t)=p(a-bp).

3 If the environment is not closed to random change during the
time interval [f,f+ At), resources may be eliminated or added.

Consequently, the growth rate of changes of the population may be
increased or decreased and the population rate speeding up or slowing
down. Assume that the perturbation function is density dependent and it
is denoted by g(t,P (t)).

In the absence of the influences of the variation forces, that is when
g(t,p(t)) =0, the model is called classical logistic equation. The impulsive
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behavior of the model (2.3) has been studied by many authors ( Heydar,
et all, [6])

We can describe the population by the following differential equation,
which is called the perturbed logistic differential equation.

‘fl—’:= P(a-bP)+g(t,P), P(t,)= P, 3.1)
In the original model of (3.1) the perturbation function g(t,P) is a function
of time t and the population P(t). We would like to apply this model to a
special case when

i) the random perturbed function is independent from the value P. In
other words the perturbed function g(t,P(t))= w(t) is a function of t but it
will stay constant in a short time interval [z, + Az).

Rearranging the equation (3.1)

‘;—f= aP(1~ %p)+ w(t), P(t,)=P, (32)
i) The second form of the perturbed function may be introduced by
g(t,P(t))=w(t).P(t). Thus the equation (3.2) will be affected by random
environmental changes of external force w(t) such that:
apP_ _ _ £ . =P. _ P,

o aP(l. K)+w(r) P(t) = P la(l K)+ w(1)]

(3.3)

a
The ratio -b—= K is known a carrying capacity and the equation (3.2) is

called Random Perturbed Logistic Model (RPLM).
3.2- Analytical Solutions:

The random perturbation on the logistic model represents the openness
of the environment to the variations of resources. These variations can
.be observed in a small time interval At showing increases or decreases
in environmental resources. Mathematically, this can be interpreted as
how much this bio-energy will increase or decrease the rate of change of
the repreduction or the population. This phenomenon can be described
by two contro! functions; g(t) acts like pedal to increase the speed and
h(t) acts like break to decrease the speed.

In this sense the random perturbed function can be written by w(t)=g(t)-
h(t). Due to the uncertainty arising from the environmental variation, the
value of w(t) may be negative, zero, or positive.

We say a perturbation has a positive effect during the time interval At if

& =a’ +4bw >0 and has a negative effect when & =a® +4bw< 0.
Our goal is to investigate the solution of the random perturbed logistic
equation with positive or negative effects.
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Case (1): The random number w has a positive effect meaning that
8 =a® +4bw >0 . Thus integrating (3.1) will provide

dt = dp _ dp ___—dp
—bp*+ap+w Va®+4bw , blu’ -m’]

-bl(p ) (T) ]

Integrating both sides by introducmg auxiliary variables u and m will
produce the following:

-— 2
—b(t +¢,) = In|X="%| where , - p-2 and m=Ya t4bw
u+m 2b 2b

The general solution p(t) can be calculated:

a al+4bw l+ce™ 3.4
p(t)= —+ o (3.4)
2b 2b 1-ce

Assuming K=a/b is the carrying capacity of the environment the resuit
(3.4) can be described by the following simplified version:

K 1+ Bo+ it
pt)= ——+,f( >+§1—:m (35)

4. 'l 8
real number but has a ositlve effect We def‘ne a ositlve effec

when_ w=k for some non-negative real number k (small k) and
2

& =a? - 4bk >0 (or equivalently k < g——). Rearrange the equation to

4b
integrate as follows
dt = dp _ dp ___—dp
- bp*+ap-k a., Na 4bk blu? —m’]
blp-p) = ()]

Integrating both sides will produce the same result as in case (l) by
replacing the following:
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va® - 4bk

where -— = -
| u=p(1) 2b and m= 2

=b(t +c¢,) = 1n|u
u+

for some constant number ¢,. The general solution p(t) can be
calculated:

_a_ va® - 4bk 1+ ce™ (3.6)

t) =
P@) 2b 2b 1-ce™
for all nonnegative parameters a, b, and k. The constant number ¢ can

be determined through the initial information.
Case lI-b: Let us assume that for w=-k for some non-negative real

number k the value of

2
8 =a® — 4bk <0 (or equivalently k > Z—b)

dp _ dp _—dp

~bp* +ap-k b(p -2y V-a’ +4bk 12 ]_b[u’+m’]
— —— + _—._
P % 2b
Integrating both sides and use substitution method will produce the

following resuit:

dt =

du 1 _u
=b(t +¢,|) = Im = ;tan l(r—n-) where

a v-a? +4bk
u=p—-— and m=—m———m—roHr!
2b 2b
Substitute m and u in u(t) = m- tan(bmc, —bm-t)

tan™ (%) = —mb(z + ¢,) = u = mtan(-mbt — mbc, )
m
This relation can be modified into

p(t) = —b-m tan(S +at) 3.7)

where B =mbc, and «a =mb . Substitute back K=a/b and small k=-

w
-k _ /_ K, .., K,
P(‘)‘-2 (2)+b tan( B + at)

We will obtain the following solution after combining the results of part (1)
and (ll) together.
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4, mlrexpla “Bl) yp 5 52 4pk 20 (3.8)

p(1) = Zab 1-exp(a -bt)
2—b-+mtan(a+ﬂt) if § = a? -4bk < 0

We can summarise our computation in the following theorems.
Theorem 3.1: Assume the environmental conditions for population p(t)
satisfies all three postulates. If the perturbed function w(t) is a

nonnegative constant with a positive effect § = a® +4bw > 0. The
original random perturbed logistic model

d
;’f=p(a —bp)+w, p(0)=p,

i) has a general solution on the small subinterval [z,z + Az) and the

solution ) = X, /(5_),+w_1+ea.‘a..
P - 2 2 b l_eﬂo‘ﬁul

where a and b are constant real numbers and K=a/b is the carrying
capacity of the environment.

Theorem 3.2: Assume that the conditions for the population p(t) satisfies
all three postulates of the open environment. If the perturbed function
w(t) is a negative constant real number with a positive effect

8 =a’ +4bw> 0 (for dimensionless system & =1+4w > 0). The
original random perturbed logistic model

%;L= pla —bp)+w, p(0) = p,

i) has a general solution on the small subinterval [z, + Az) and
L im 1+exp(a -bt) if §=a’ - 4bk > 0 has a positive effect

p(t) = 2b 1-exp(a - bt)

-2%+ mtan(B +at) if § =a®-4bk <0hasa negative effect

where w=-k for some non-negative real number k.

Corollary 3.1: If w the periodic environmental contribution is
nonnegative then

lim,_,,, p(t) = §—+ 1’(%—)2 + ‘bv— (3-9)

This result is consistent when the symbiotic contribution stops (w=0) and
the value p(t) will approach the carrying capacity K.
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4.1 - Equilibrium Points for Random Perturbed Continuous Logistic
Model

First, we study the perturbed logistic model described in (3.2)
where the perturbation is a constant real number w. To find the
equilibrium points, set %: P(a-bP)+w=0 and solve the

quadratic equation to find the values of P.

P = a_izT'\/Z‘__’ where 6 :=a2+4bw 20 4.1)
Two equilibrium points may exist where we can label them
- K /ﬁz w _K_ | K. w (4.2)
l—2+ (2)+b and Pz-2 (2)+b

where K is the carrying capacity. When the constant real number w is
zero then two equilibrium points will be K and 0. Notice that P, > P, . Let
us evaluate f'(Py) and f'(P2): '

f(B)=—Va* +4bw <0 and f(P2)=+\/a2+4bw>0

P(t) P'(t)=f(P) f'(P)=a-2bP

P<P, Negative P(t) is decreasing
P=P; 0 Unstable since f(P2) >0
Px=<P<P Positive P(t) is increasing

P=P, 0 Stable since f(P,)<0
P>P, Negative P(t) is decreasing

Fig. 4.1: stability analysis of the equilibrium points
4.2: Graphical Approach for Stability Discussion
The quadratic function f(P) can be demonstrated by a parabola where
the constant value w will determine its position in the rectangular plane.

f(P)= P(a-bP)+w=-bP2+aP+w=-b[P’—-:—P]+w

K

_)2 +a2 + 4bw
2

= —b(P -2 + b(22 = -b(P -
=-b(P =207 + ()" +w=-b(P b

K | K w
This parabola has vertex at (—2—, (--2—)2 + —b-) and intersects the
horizontal P axis at two points P, and P,.

5. Introduction to the Discrete Model:
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In the rescaled form of logistic medel in (3.4)
‘Z; P(A-BP)+w(), P(0) = P,, we can assume that
there is a short time interval [¢;,t, +At) where i=0,1,2,...n the

system will not be disturbed. Meaning that w(t) will stay constant. Thus,
for sufficiently small interval we can approximate

P A P t;

Pl =P < b )(A-BPG) + i)
Let us use a notation P(¢,) = P, and w(t,) =w, then we will
obtain the following discrete form
P, =P +A[(A-BP)P,+w,] where P(t,)=F, (5.1)
If the value of the increment is equal to a unit interval that is At = 1the
relation (5.1) will be

=P[1+(A-BPR)l+w, where P(t))= (5.2)

n+1

Section 5.2: Equilibrium Point of Discrete Random Perturbed Logistic
Model:

Case (l)- Density Independent: We would like to find the equilibrium point
of the density independent random perturbation in the Logistic Model
(5.2). We assume for large n,

hmn—)oo Pn hrnn—m n+l = P E thus
=P.[14+(A-BF,)+w,] where P(t,)=F,
We will produce and solve a quadratic equation: BP; — AP, —w, =0

A+ JA? +4Bw,

2B
Thus, for every w, there are two equilibrium points:

P A+ A’+4Bw, i P A-JA*+4Bw, (5.4)
= ~a 8= an *

2B an 2B

:PE=

A
Using the carrying capacity K = E the relation (5.4) can be described

by the following two equilibrium points
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K K, w
P. = —~—+ (= 2 5.5
E= (2) +B (5.5)

5.3- Stability of the Equilibrium Point for Random Logistic Mcdel with
Density Independent Perturbation g(t, P(t))=w(t)

To find the stability of this problem, we use the equation from when we
found stability the first time:

P, =P+(+A-BR)+g(t,Pt)) where g(,P(t)=w(t) (5.6)

Where w is a random change of the environment that causes change in
the population, so (5,5) is going to be
P, = Bl1+A-B(P)l+wWt,) (5.7)
Now let's assume that the population is near the equilibrium point Py,
thatisP, =P, +¢&, and P,,,=P; +¢".
Then the relation (5.7) will be
(Pg+&)=(P; +e)[1+ A—-B(P + &)+ w,

The right hand side equals to
=(P;+&)+A(P; + €)— BP,(P; +¢)— Be(P; +¢€)+w,

This equals
P, +&'=P, +&+AP, + Ac —BP,> —2BP.s — Bs* +w,
=P, (1+A-BP,)+w, +¢+Ae —2BP,c— Be?
=P, +&+Ac —2BP,c -B¢®

Notice that we replace
P+ AP, -BP,>+w, by = P,=P,(1+ A-BP,)+w,.
Simplifying and using the relation (5.7) implies
e'=¢g+Aec—2BeF;
Factor & on the right hand side:
¢'=¢(1+ A-2BP; - Be)
For this converse it is required that
‘:—'—-) 0 fl+ A-2BP, |<1 (5.8)

Then solve for P, — A L P < At 2 This is the condition for
2B 2B

stability.
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= KT< P, < 12(—+ ;— (5'9)
Checking the Stability of the Equilibrium Points:
Let us evaluate the relation (5.8) at two equilibrium points of (5.4). Thus

l+A-2BP, |=l+ A - 28(A+J‘S_)] h--/5l<1

This inequality implies that the equilibrlum point Pgq is stable. We will
evaluate the status of the Pg,.

L+ A-2BP,,|=]1+ A- ZB(A ‘/—)|_|1 NAES!

This result shows that the second eqwllbrcum point Pg, is unstable.
Theorem 5.1: In a short time interval (¢, + At) , the density independent
random perturbed logistic model (5.2) has two possible equilibrium points
Pg; and Pg; described in (5.4).
If there is random harvesting or symbiotic contribution, in the
environment resources o the logistic system w, stay constant, then the
equilibrium point Pg, is stable and Pg, is unstable.
Theorem 5.2- Quasi-equilibrium Point for Discrete Random
Perturbed Logistic Model:

1- The unstable equilibrium point P, = 0 will not be disturbed but

the second equitibrium point P, = % =K- % is subject to
or associated with a random change.
Let us call this kind of equilibrium a Quasi Equilibrium.
2- The quasi-equilibrium points are stable if

A+r <P < A+r+2
2B ¢ 2B
The quasi-equilibrium point is stable if

£+1-<P,_,<—I—{—+1+l (5.10)

2 2B 2 2B B
6. Computational Approach to the solution and the Stability of the
Equilibrium Points in Discrete Random Perturbation Logistic Model
We have demonstrated the analytical solutions of a random perturbed
logistic model in the past sections in the form of differential equations.
The analytical solution and stability of the equilibrium points of the
discrete systems of (5.2) and (5.3) were investigated in the form of
difference equations.
6.1- Computational Approach using MAPLE: We developed Maple
programs to soive random perturbed logistic differential equation with
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given initial data. The following Maple algorithm uses “dsolve” command
to find the solution in every consecutive time interval with a density
independent random harvesting perturbation w=-rand(1..100)() (see Fig
6.1). Itis important to notice that I) the final position of the solution in
each loop will be the initial position of the consecutive stage. 1) Due to

the randomness of w, in each stage of computation § = a* + 4bw may
be positive, zero, or negative. According to (3.10) this may switch the
solution from one kind to another. lll) It is clear that the negative
population does not make sense and part of the computation generates
negative numbers, which kept in the graph to study the mathematical
behavior and perhaps applications in other areas like economics.
The following Maple procedure is for Density independent Random
Perturbation of Logistic model:

> restart;

logisticpplm := proc (g, b, ic1, n)

local i, eq, s, ¢, ic, f, g; c[1] := 0; ic[1] := y(c[1]) = ic1;

foritondo

eq := diff(y(x), x) = y(x)*(a-b"y(x))-(1/100)*(rand(1 .. 6))();

s[i] := rhs(dsolve({eq, icfi]}, y(x)));

c[i+1] := 50*i/n; icfi+1] := y(c[i+1]) = evalf(subs(x = c[i+1],

s[i])); fli) := sli]*Heaviside(x-c[i])*(1-Heaviside(x-c{i+1])) end do;
g:=seq(ffl,i=1..n)

end proc;

> plot([logisticppim(.5, 0.1e-2, 5, 100)}, x = 1 .. 60, discont = true);

> a[1] := .4, a[2] :=.5; a[3] := .6;

> for i to 3 do f[i] := logisticppim(a[i], 0.1e-2, 5, 50) end do;
>g:=seq(ffi},i=1.. 3);

> plot([g], x = 1 .. 50, discont = true);

Random harvesting parturtiation Logiatio
"‘_‘—_T' TIMMMMN~N - —r
J g
0 - / i
] ! )
%0 - / ’
Populstion Density / ‘
20 - / ;
10 - ‘
] i
u T L s 1
10 2 » ' ')

Time biterval
Fig.6.11 Random Harvesting Pertixbation werandd(1.16)(/160 cauzses distrhances in the solution of
the logistio model.
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Negative Effect of Random Perturbed Logistic Model;

> restart;

>a:=.5 b:=0.1e-1; ¢[1] := 0; ic[1] := y(c[1]) = 5; n := 100;
> for i to n do eq := diff(y(x), x) = y(x)*(a-b*y(x))-(rand(1 .. 100))();
s[i] := rhs(dsolve({eq, icfi]}, y(x)));

cfi+1] := 50*i/n;

ic[i+1] := y(cli+1]) = evalf(subs(x = c[i+1],

s[iD); f{i] := s[i]*Heaviside(x-c[i})*(1-Heaviside(x-c[i+1]))
end do;

>g:=seq(ffil,i=1. n)

> plot([g], x =0 .. 50);

Negative Effeot on Random Pertubed Logistic Model
4,000 -

3,000 -

2,000 -

1,000 —

o 10 20 30 40 50
x
Fig.6.2: Negntive effect by random disturbances In

envirmental resources may change the logiistio
behavior.

Random Symblotio Perturbed Logistio Model

50 - /_.- -

0 - /

o] /

Populstion Density | /

» /

10 -
Vv

[} v r )
° 10 20 30 o 50

Time biterval
Fig. 6.3: The random symblotic perturbation function w(n)=rand(1..100)Q
/1000 used In this sigorithm Is density independent.

307



6.2- Exact Solution-

We will assume some constant values for Random Perturbed Logistic
Differential Equations and use Maple “dsolve” command to solve the
problem. We will also simulate the solution based on the various values

of the constant of integration.

Recall the package of differential equations tools (DEtools).

Example 1: The following is a random logistic differential equation with a
random harvesting perturbation with a positive effect. This means delta is
positive and Maple will help us to verify that the analytical solution is in
the form of hyperbolic tangent.

Solution by Maple dsoive for negative Perturbation:

>a:=.045:b:=.00003:r:=rand(-6.1)():
>K gy % -]

> delta := a° — 4-b-r;
3 := 0.002025

> with (DEtools):

> f:=y(x)*(a-b*y(x))+r;

Solution by Maple dsolve for negative perturbation:
deq1 = diff(y(x),x) =f

> dsolve(deq1, y(x) );

(x) = 750 + 22 JT785 tanh(—— 1785x + —— /1785 - C)
30 2000 2000

Parameter C can be determined using the initial condition of the
differential equations.

yourtoplot = [seq(L(x), C=-5.5)]:

plot(yourtoplot, x =-100 ..150);

Random Simblotio Perturbantion Logtastio Modal
600 —

300 —

Population Density 300 —

200 -
100 —
o T U 1
10 20 30 0 30
Time brrerval
Fig.S.4- This s e of o per werand(1..10)
0/100 In logistio el «k: in the
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Exmot Solution for Random Hurvesting Logistio with Positive Effect

-100 -50 0 s0 100 150
Time Interval
Fig. 6.5- Random Harvesting wihen delta is positive lead to hypeerisolic
tangent solution.

Example 2: We will experience a perturbation, which has a
negative effect on the resources carrying capacity:
a=1:b=1:r1:=rand(-9.9)():

a

b
deilta = 82—4-b-r1;
g:=z(x)*(a-b*z(x))-r1;
deq2 = diff(z(x), x) = g;
dsolve(deq2, z(x) );
LY :=x--;——%ﬁtan[ J_x+—J? cf)
myplot = [seq(L1(x), C1=-5.5)]:
plot( myplot, x=-100 ..150);

Example 3: With some arbitrary initial data, one can simulate a solution g(x)
with a positive effect on the resources carrying capacity; that is:

g(x) = 2500+100V626 tanh(“62 *’5636)

The following is a demonstratlon of the solution.
mytoplot = [seq(G(x), C=-5.5)]:

plot( mytoplot, x=-10..10)s
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Random Harvesting In Logistio Model with negative Effect
1,000

800 ~
Population| 600 -'
400 -

200

“»‘ J f-30

-600

Fig. 6.6- Random Harvesting for Logiztio Model with negative deita
(megative effect) will lead the tangent solution.

Hyperbolio Tangent Solution for Ranslom Harvesting
Logistic Model

~10 -5 o s 10
Time Interwval
Flg.6.7- Simulation of the solution to a differentinl
eguation represents the random harvesting logistio
with positive effeot.

7- Discussion and Open Problems for Future Challenges:

We explored density independent types of random perturbation for a
logistic model. In this model the general perturbaticn function g(t,P(t)) is
independent from density function P(t) and is equal to w(t) which will stay

constant in a short time interval [z,7 + At) .
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The dynamic behavior of the solution and the stability of the equilibrium
points have been studied when the random perturbed function is positive

or negative in any small time interval.

There are many existing chailenges on these associated questions and
they can be investigated in future works. Some of them are listed below.
- Demonstrate the result of discrete systems by a computational

approach using Excel Spreadsheet.
- Explore in depth, more application, relation of this perturbation with

noise, and stochastic form.

- Determine the bifurcations of random perturbed logistic models.
-Study the problem when the general perturbation g(t,P(t)) is some
probability distribution.

-Determine when this dynamical system leads to a chaotic behavior.
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