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ABSTRACT. The ATSP polytope can be expressed by asymmetric
polynomial size linear program.

INTRODUCTION

In his seminal work [1], M. Yannakakis proved that the Traveling Sales-
man Problem (TSP) polytope cannot be expressed by symmetric polyno-
mial size linear program, where symmetry means that the polytope is an
invariant under vertex relabeling. The question about the size of asymmet-
ric linear programs was left open in [1], and it remained open since.

This article answers the question. We reduce the Asymmetric Trav-
eling Salesman problem (ATSP) to an asymmetric polynomial size linear
program whose feasible set is asymmetric in the sense of [1].

1. DIRECTED HAMILTONIAN CYCLE PROBLEM

Directed Hamiltonian Cycle Problem (DHC) is a problem to find in any
given digraph a cycle which visits all vertices (a circuit which visits all
vertices and visits each of them just once). Any such cycle is called Hamil-
tonian.

Ultimately, the problem can be solved by testing all vertex permutations
on being a Hamiltonian cycle, or by “growing” of paths. The only draw-
back here is the number of “elementary operations” required in worst case?.
Computational complexity of the methods will be factorial and exponential
appropriately. So, they are infeasible for modern computers even in the
cases of modest digraphs.

The real problem is to detect Hamiltonian cycles in feasible time. Some-
times, that can be done using the appropriate criterion [2, 3, 4, 5, 6, 7, 8,
and many others]. But, such particular instances of DHC are rare.
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1That number as a function of digraph’s size is called a time or computational
complexity.
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The importance of DHC follows from the fact that its decision version?
is & NP-complete problem® [9]. There is a wide spread belief in P $ NP.
This hypothesis means that no polynomial time algorithm exists for DHC
[9, 10]. Yet, below we express DHC by a polynomial size linear system. It
is well known that solution of such systems is a P-problem [11].

1.1. DHC as a relabeling problem. Let G be a given digraph with n
vertices, n > 1. Let’s arbitrarily enumerate/label vertices of G. Let Ag be
the appropriate adjacency matrix of G:

Ag = (gij)an
- where g;; is 0 or 1 depending on the existence/absence of arc from vertex
1 into vertex j.

Obviously, there is a Hamiltonian cycle in digraph G iff there is a circular
permutation submatrix in matrix Ag. That submatrix is an adjacency
matrix of that cycle. This trivial fact may be expressed by the following
quadratic system?:

(1.1) Ag > XSXT,
- where unknown X is a permutation matrix, and constant S is any circular

permutation matrix - an adjacency matrix of a Hamiltonian cycle. Let’s fix
to S the following value:

01 0 ...0
00 1 .0
S = (8i)nxn = ot
60 0 .. 1
10 0 ... 0

nxn

Any permutation-matrix solution X of system 1.1 means a Hamiltonian
cycle in G. Matrix XSXT7 is an adjacency matrix of that cycle, and matrix
XT defines relabeling of G along it. After that relabeling, this cycle will
visit vertices of G in the following order:

19293>2...9n—>1

2The problem of the existence of Hamiltonian cycles.

3NP-complete problem is such NP-problem to which any other NP-problem can be
reduced in polynomial time by deterministic Turing machine (DTM). DTM is a rigor-
ously defined algorithm. NP-problem is a problem which can be solved in polynomial
time by non-deterministic Turing machine (NDTM). NDTM is an aggregate of a non-
deterministic polynomial time generator of guesses for solution and a polynomial time
DTM which checks those guesses on being a solution. P-problem is a problem which can
be solved by DTM in polynomial time. For more information, see, for example, {10].

4For two matrices B = (bij) and C = (cij) of the same size, relation B > C means
that ¥, § (bi > cig)-
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System 1.1 presents DHC in all senses: DHC as a decision problem is
the consistence problem for the system; DHC as a search problem® is the
problem to solve the system; DHC as a counting problem® is the problem
to count the system’s solutions, etc.

In terms of system 1.1, guesses are vertex permutations. They are pre-
sented in the system with unknown permutation matrix X. Each solution
of the system delivers a Hamiltonian cycle.

1.2. Compatibility matrix. In system 1.1, digraph G is presented with
its adjacency matrix. Adjacency matrix is a universal encoding for di-
graphs. To solve system 1.1, we will use special encoding which we call a
compatibility matriz.
For each two vertices ¢ and 7, let’s build a compatibility box. The box is
the following matrix’ Ci; = (Cijuv)nxn!
o 1, 8 <G Acjii < Gup
(12) Ciguw = { 0, 8ij > Guv V 85i > Guu

The (p, v)-th element of C;; indicates whether vertex couple (¢, ) can be
relabeled into couple (%, j) regardless of anything but adjacency.

There are n? compatibility boxes, and it takes time O(n2) to compute
any of them with brute force. The boxes have the following major proper-
ties:

(1.3) Cu=U,
t1# 5= Cijup =0

- where U, is n x n identity matrix, and all indexes are in their ranges.
Compatibility matrix is a box matrix which aggregates all compatibility
boxes in accordance with their indexes:

C = (Cij)nxn
In elements, the matrix has size n? x n2.
Compatibility matrix aggregates all relabeling options for vertex couples

5The problem of the actual finding of Hamiltonian cycles.

6The problem to count different Hamiltonian cyeles in G - n times of that number is
the number of solutions of system 1.1.

7Here, we intentionally disregard the type of S and that particular value we fixed to
it.
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of G. For our particular value of S, the matrix looks:

( Un Ac K. ... K, AL \
Ag Un AG .'° Kn Kn
C = Kﬂ Ag Un Kn Kn
K, K, K, " U, Ac
\ 4¢ Kn Kn ... AL U. ), .

- where the size of C is shown in boxes and
Kn = (l)nx'n - Un

Obviously, the pattern holds for any circular permutation matrix S.

Due to the previous subsection, G has a Hamiltonian cycle iff its vertex
couples can be relabeled without any contradiction, i.e. iff C has a grid
of non-zero elements, one element per compatibility box. Any such grid
of elements in the compatibility matrix we call a solution grid. The com-
patibility matrix encoding of G reduces DHC to search the encoding for
solution grids.

All elements of any solution grid equal 1, their indexes x depend on their
indexes  and their indexes v depend on their indexes j, only®:
(1.4) {cijuv =1 | p=p(), v=r(j), ,j =1,2,...,n}

The following major properties of the elements’ indexes follow from prop-
erties 1.3 of the compatibility boxes:

i=j = u@)=v(j)
(1.5) i#Fir = p(i) # p(i)
h#Fj = v(H) #v()

- where all indexes are in their ranges. Due to these properties, any solution
grid is a cyclical permutation of vertex indexes:

(1) = p(2) s 2(3) ..o s pu(n)) = (v(1) s (2) s v(3) = ... : v(n))
In other words, it is a Hamiltonian cycle in G:
(1) = p(2) = p@B) = ... = p(n) = p(1)

Now, let’s describe the guessing in the compatibility matrix’s terms. It
may be organized as follows:
(1) Guess v is a box matrix with the same structure as C. In the matrix,

$Index 4 is a function of index i, and index v is a function of index j.
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all elements equal 0 except those which create a possible solution grid in
C, i.e. except those whose indexes create a set
{(i:jau: V) I H= /“(i)t v= V(j)a ,J=12,... ’n}

- where functions p(7) and v(7) satisfy properties 1.5. All elements with
these indexes equal 1.
(2) There are n! such guesses v in total. Let I’ be set of all of them:

(16) ['= {71172)'--’7111}

(3) Checking conditions are the following relation:
(1.7) v<C, v€eT

Non-zero elements of any guess v which passed this test are a solution grid
in C.

1.3. Convex hull of all guesses. The following theorem clarifies the ben-
efits of the compatibility matrix encoding.

Theorem 1.1. Conver hull of guesses 1.6 is the following polytope:

( Tijuy = Tjivps Tijuw 20

-where i, jp,v=12,...,n, i #j, pFv

Z:=1, uv Tijuy = Yijov

- wheret,5,v=1,2,...,n, 1 £ j

(1.8) !
1]

D iz, istj Tijuw = Yijow

- where J,p,v=12,...,n, p#v

2:=1 Yijvv = 1, Yijvv =0
-wherej =1,2,...,n

\

Proof. System 1.8 may be described with the following box matrix of un-
knowns:

Yip X2 .. Xia
B= Xo1 Yoo - Xon

Xn,l Xn,2 Yn,n

Diagonal boxes in B are the following n x n diagonal matrices:

n2xn?

Y = diag(vii,1,1 ¥i,i,2,2 -+ Yiivw -+ Yiinn)
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Off-diagonal boxes in B are the following n x n matrices :

0 xiaj)112 e zi,j,l,ﬂ
X;; = | T2 O o Tigam
zi:jrnal xilj)nSQ 0t 0 nxn

System 1.8 states the following relations between elements of n2 x n? matrix
B:
(1) B is a symmetric matrix: Xj; = Xg-' . Thus, all the below will be true
in the horizontal direction as well as in the vertical direction;
(2) For every fixed box column j and for every fixed column v in it: the
total over p =1,2,...,n, p # v, of all elements x;;,, does not depend on
i. It equals to element y;;,, of box Yj;;
(3) For every fixed box column j, for every fixed column v in it, and for
every fixed row u # v, the total over i # j of all elements z;;,, does not
depend on p. It equals to element y;;,, of box Yj;;
(4) For every box Yj;, its diagonal is a convex decomposition of 1.

Let’s notice, system 1.8 is consistent. For example, the following solution
of the system we call a center:

1

Yijov = n’ Tijuvy = m

- where all indexes are in their ranges. The center minimizes Euclidean
norm in polytope 1.8. Other obvious solutions of system 1.8 are guesses
1.6. The guesses maximize Euclidean norm in polytope 1.8. Thus, every
guess is a vertex of the polytope.

Now, let the above matrix B be a solution of system 1.8. It is easy to see
that, for every fixed j and v, elements zij,.,, ¢ # j and p # v, constitute a
(n—1) x (n — 1) doubly stochastic matrix multiplied on y;;,. (the same is
true for elements z;;,,, ¢ # j and u % v). Due to Birkhoff-von Neumann
theorem [12], that matrix is a convex combination of (n — 1) x (n — 1)
permutation matrices multiplied on y;;,,. Let’s substitute these convex
decompositions in B and write B as the appropriate sum. That sum is a
convex decomposition of B over guesses 1.6. Thus, the guesses are the only
vertices in polytope 1.8. ]

1.4, The ATSP polytope. Due to theorem 1.1, solution grids are those
vertices of polytope 1.8 which satisfy inequality 1.7. But, that inequality
can be expressed with the following equalities:

(1.9) Tigjopovo = 0

- where indexes (%9, jo, to, ¥o) are indexes of all those elements in compati-
bility matrix C which equal 0.
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Theorem 1.2. Convez hull of all solution grids is polytope 1.8, 1.9.

Proof. Let’s just notice that equations 1.9 cut from polytope 1.8 a chunk.
That cutting is along the (%o, jo, 10, ¥0)-th coordinate lines going through
vertex points of the polytope, i.e. it does not create new vertices. (]

Aggregated linear system 1.8 and 1.9 expresses the ATSP polytope. The
system has polynomial size and can be solved in polynomial time. For
example, Khachiyan’s ellipsoid algorithm [11, 13] and Karmarkar’s interior-
point algorithm [14] will solve this system in strongly polynomial time,
because all its coefficients are 0 or 1.

Due to definition 1.2 of the compatibility boxes, system 1.9 explicitly
involves an adjacency matrix of digraph G. Vertex relabeling of G will
rotate chunk 1.9 all over polytope 1.8. In other words, aggregated system
1.8 and 1.9 is asymmetric in the sense of [1]. Thus, theorem 1.2 may be
seen as complementary to Yannakakis’ theorem [1]: the ATSP polytope can
be expressed by an asymmetric polynomial size linear program.

Let’s notice that, due to theorem 1.1, any solution of aggregated system
1.8 and 1.9 can be presented as a convex combination of guesses 1.6. This
decomposition is a P-problem. Due to equalities 1.9, any guess in any such
decomposition will be a solution grid, i.e. it will deliver a Hamiltonian
cycle. Thus, theorem 1.2 efficiently solves DHC in both senses as a decision
problem and as a search problem.

Also, let’s notice that the number of vertices in polytope 1.8, 1.9 divided
by n is the number of different Hamiltonian cycles in G.

2. ASYMMETRIC TRAVELING SALESMAN PROBLEM

Asymmetric Traveling Salesman Problem (ATSP) is a problem to find in
any given weighted digraph a Hamiltonian cycle with minimal total weight.

ATSP is a well known problem of combinatorial optimization [1, 15, 16,
17, 18, 19, and many others]. Decision version® of ATSP is a NP-complete
problem [9]. Yet, theorem 1.2 allows an expression of ATSP by a polynomial
size linear program.

Let W be a weight function on given digraph G:

W= (wij)nxn : (7".7) — Wij € (_°°x+°°], i,j = 1v21 ey

- where w;; is the weight of arc from vertex ¢ into vertex j (as usual,
wj; = +o00 if there is not any such arc).

9The problem of existence of a Hamiltonian cycle with total weight in any given
boundaries.
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Theorem 2.1. The minimal total weight of Hamiltonian cycles in G is the
solution of the following linear program:
n

(2.1) > wyziju — min
i,Jv=1

- subject to constrains 1.8 and 1.9.

Proof. Due to theorem 1.2, G has Hamiltonian cycles iff program 2.1 has
non-empty feasible set. Due to the same theorem, vertices of that set are
Hamiltonian cycles in G, and the addends in criterion 2.1 pertain to the
weights of those arcs which participate in the cycles. 0

Linear program 2.1 has polynomial size and can be solved in polynomial
time [11, 13, 14]. From the practical perspective, let’s notice that we do
not require weights w;; to be positive.

CONCLUSION

In this article, we reduced DHC to an asymmetric O(n?)-size linear sys-
tem and expressed ATSP by the appropriate linear program.

The linearization was done by immersing O(n?)-dimensional algebraic
variety 1.1 in R™. The immersion was done with the compatibility matrix
encoding.

Compatibility matrix is an encoding of DHC instances in the contradic-
tions between relabeling options for vertex couples. The options can be
computed in O(n*)-time with the brute force method. Analysis of the con-
tradictions is a parallel testing of all guesses. The testing is the solution of
linear system 1.8 and 1.9.

Let’s notice that the role of those particular value and type of matrix
S in inequality 1.1 was insignificant. So, our method can be directly ap-
plied to Subgraph Isomorphism problem (SubGI) in (multi) digraphs with
(multi) loops [20] and to related optimizations.

Because of the possibility of loops in SubGI (the diagonal elements in
adjacency matrices Ag and S may be positive), the second property 1.3
has to be changed to inequality

Cii <Un
Strong inequalities in these relations cause additional constrains on vari-
ables yj;,, in system 1.9:
Yioiopopo = 0

That will be the only change for SubGI.
There is a demo [21]. Using it, readers may try the reduction on their

own examples.
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