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Abstract

Chain integrator backstepping is a recursive design tool that has
been used in nonlinear control systems. The complexity of the com-
putation of the chain integrator backstepping control law makes in-
evitable the use of a computer algebra system. A recursive algorithm
is designed to compute the integrator backstepping control process.
A computer algebra program (Maple procedure) is developed for sym-
bolic computation of the control function using a newly developed
recursive algorithm. We will present some demonstrative examples to
show the stability of the control systems using Lyapunov functions.

1 Introduction

Backstepping is a recursive design for systems with nonlinearities not con-
strained by linear bounds. With backstepping the construction of both
feedback control laws and associated Lyapunov functions is systematic.
This methodology is important in both theory and applications of non-
linear control systems.

Although the idea of integrator backstepping may be implicit in many
earlier researches, it flourished during the past decades [1], [5], [9]. How-
ever, the complexity of the computation of the backstepping control law
makes the use of a computer algebra system inevitable. The use of com-
puter algebra systems not only helps the applications with numerical and
graphical representation, but also helps the learning of the methodology.

Backstepping of chain of integrators has been studied since 1990 [2], [4],
[5]. A lemma of chain of integrators was introduced [5). Feedback control
laws constructed with backstepping of a chain of integrators were shown
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in [2] (page 86), [5] (page 36), and other publications in various forms.
Detailed constructions for the case considered in this paper can be found in
[6]. Computer algebra systems have been used in the study of backstepping
[7). We studied the chain of integrator backstepping and have derived the
control law. We use symbolic computation of Maple to find the control law
of the nonlinear system with chain of integrators.

This paper is structured as follows. In the first part we introduce the
backstepping control laws of nonlinear systems with chain of integrators.
The recursive algorithm is presented using Maple procedure to compute
the control laws. In the following section several examples demonstrate
the validity of the algorithm. Finally the conclusion and plan for further
development of this algorithm is presented in the last section.

2 Integrator Backstepping

Consider the following integrator nonlinear output-feedback system

P o= fo)+e@

§1 = &

& = &3 )
ér}—l = &n

& = u.

where z € R*, & € R (i = 1,...,n), © € R is the control input, f and g
are locally Lipschitzian.

Lyapunov Stable Control Design: The Lyapunov-based control de-
sign is a methodology that generates an input function that satisfies Lya-
punov stability theorems [3],[8]. Assume a dynamical system

z(t) ft,z(t),u(t)) for t>to (2
z(t) #(t)

Where z is the state and u is the initial input. Let system (2) have an
equilibrium point z. in the solution domain. Choose V(z) to be a scalar
valued positive definite function of the state vector = (this idea is inspired
from the formula of the total energy of the dynamical system), that is
V(z) = 2Tz. The time derivative can be described by the following
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V(z) = (A V)a(2).

System (2) is said to be stable if there is an input control function u so
that the time derivative of the Lyapunov function is negative definite in a
region of the equilibrium point z..

Throughout this paper, the following is assumed. For the system

z = f(z) + g(z)u, f(0) = 0, 3)
where z € R* is the state, u € R is the control input, there exist a continu-
ously differentiable feedback control law u = ap(z) and a smooth, positive

definite, radially unbounded function V: R* — R such that a—:( flz) +
g(z)ao(x)) is negative definite.

Under the above assumption, system (3) is globally asymptotically sta-
ble with the initial control law v = ag(z).

Chain Integrator Backstepping Lemma. Under the above assump-
tion, for system (1) there is a Lyapunov function

Va(@61,nn) = Vi(m)+ 56— a0@)? +

%Z(& - ag_l(a:.&, ceny gi-l))2’

1=2

which is smooth, positive definite, radially unbounded, and V; is nega-~
tive definite {5)].

One choice for ¢; (i = 1,..,n) and the control law « = a,, which could
be viewed as a special case of that presented in [6], is

a(e6) = aolz) =&~ Zoo(e) +

920(2) (¢(2) + g(x)e),

Oz

ax(z,61,62) = oao(z) & +ai(z,6) - &+
(88 (1(2) + o(w)er) +
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ai(z,€1, &) = oi_o(x, 1,0 Eim2) = &ic1 +
ai_l(ﬂ?,él, "'361'—1) —-&+
aai—l(z7£11"',£i—l)

2 (£(2) + g(@)é1)
i-1
Oca;—1(z,€1, ..y Ei1)
+ €j+1.
j=1 a{?
(i=3,..,n)
The final control law v = ay,(z, £, ...,&n) renders the zero solution of
the chain integrator system, z = 0, §; = & = .-+ = €, = 0, globally
asymptotically stable.

With the above choice for a; (i = 1,..,n), it can be verified that the
function V,(z,&1,...,&,) is positive definite and its derivative is negative
definite.

3 A Maple Procedure

The following is a Maple Procedure for computing the control law u of
nonlinear system (1). For simplicity, we assume & = 1, that is, the equation

z = f(z) + g(z)&; is a scalar equation. In the case k¥ > 1, the procedure
can be modified easily.

The first argument of the procedure is f(z). The second argument of
it is g(z). The third and the fourth arguments are the known Lyapunov
function, V(z), and the initial control law, u(z), for system (3), z = f(z) +
g(z)u. The last argument is the number of integrators, n, of the system.
The output of the procedure is the final control law of the system.

bst := proc (f, g, V, a, n)

local i, u, xi, alpha;

alpha[1] := a-xi[1]+
(diff(a, x))*(f+g*xil[1])
-(diff(V, x))*g;

alpha[2] := a-xi[1]+alpha([1]-xi(2]
+(diff (alphal1), x))*(f+g*xi[1])
+(diff (alphaf1], xil[1]))*xi[2];

alpha[2] := simplify(alpha[2]);

for i from 3 to n do
alpha[i] := alphaf[i-2]-xil[i-1]
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+alphal[i-1]-xi[i]
+(diff(alphali-1], x))*(f+g*xil[1])
+sum( (diff (alpha(k], xi[k]))
*xilk+1], k=1 .. i-1);
alpha[i] := simplify(alphal[il)
end do;
u := simplify(alphal[n])
end proc

4 Examples

To demonstrate the validity, we would like to test this computer algebra
algorithm. The goal is to select and demonstrate examples whose analytical
solutions are already known. We give two examples to show how the above
procedure works.

Example 1. Our first example is borrowed from reference [5], page 35.
Consider the system

z = z6
£ = u
V(z) = 122 and u(z) = —z? are the Lyapunov function and a control
law of the system
T =7zu

respectively.
The arguments of the Maple procedure are 0, z, 122, —22, and 1.

The following is the maple command to execute the program and its
result. The result agrees with the control law shown in [5] (page 36).

u := bst (0,z,1/222%, —22,1)

u = =222 - § - 222,

Stability of the Solution. We have written a Maple procedure, called
portrait, to plot the phase portraits of initial problems with the variable
initial conditions. The first argument of the procedure is the system; the
second argument of the procedure is the number of initial value problems it
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will solve. We use that procedure to test the stability of the above systems.
The following test shows the system with the computed control law globally
stable.

We can run the Maple procedure for n = 20 randomly with generated
initial conditions in Example 1, a system with one integrator. First, name
the system as sysi1, then call the procedure. The phase portrait demon-
strates the stability of the dynamic control system.

d
sysl = { 7O ==z ()= (1), %m (t) = -2 (z (t))® - zi1 (¢) - 2 (z (t))? zil (t)}
portrait(sysl, 20)

|
/

!

Fig 1; The phasc portrait with random initial conditions

We call the procedure one more time:

portrait (sys!, 20)
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Fig 2; The phase portrait with random initial conditions

Now Consider the system with two integrators:

z = z6
él = &
2 = u

The arguments of the Maple procedure are 0, z, 422, —z2, and 2. The
following are the commands for execution and the results of the computer

algebra.
u := bst (0,z,1/22%, —22,2)

u = —3z% — 26 — 62%¢ — 26 — 42%,® - 26,77

Now consider the system with three integrators:

z = z£
él = &
éz = &
éa = u

The arguments of the Maple procedure are 0, z, é—xz, ~z2, and 3.
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The following is the command and resuit.
u := bst (0,2,1/222, —22,3)

u = —51% — 3£ — 1422, - 3¢& — 162%¢,% — 26,22 — &5 — 82%6,°2

—42%6,62

Example 2. Our next demonstrative example is selected from the refer-
ence [2], page 86. Consider the system

z 22 + (1 +2)6

& = u
where V(z) = 3z? and u(z) = —z are the Lyapunov function and a
control law of the the following system respectively.
=1+ (1+2z)u

The arguments of the Maple procedure are z2, 1 + z, 322, —z, and 1.
With the maple code the following nonlinear feed-back control result will
be produced. The result of the algorithm produced by computer algebra
agrees with the control law shown in [2] (page 86).

u = bst (z2,1+2,1/22%,-z,1)

= -2r-2& -222 - 61z
Now consider the system with two integrators:
z = 22+ (1+2)&
& = &
£2 = u.

The arguments of the Maple procedure are z2, 1 + z, 322, —z, and 2.
The following is the command and result of the maple computation.

u = bst (22,1 +z,1/222%,—z,2)
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u:i=—3z—-5& —4z% —T&z— 36 — 4% - 56,22

-&% - &%z~ &z

5 Conclusions

The paper gives the feedback control laws of nonlinear systems of chain
of integrators with backstepping and a Maple Procedure to compute the
control laws. Several classical and well-known examples are used for demon-
stration purposes and to check the validity of the algorithm. These exam-
ples demonstrate that the symbolic computation approach is a powerful
method in determining the nonlinear control solution in the backstepping
method.

This algorithm and maple procedure can be developed to find the feed-
back control solution for some other nonlinear dynamical systems. The sta-
bility and behavior of the system can be studied. Developing the program
to demonstrate the numerical and geometrical solution using computer al-
gebra, like Mathematica or Matlab, will be interesting educational tools
that can be used in industry or the engineering environment. Converting
the algorithm into a Java program and using it on the Web will dissemi-
nate a world-wide application of backstepping method in nonlinear control

systems.

Applying this algorithm to optimal control problems will help to dis-
cover more interesting links between backstepping procedure and dynamic
programming.
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