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Abstract

We consider the problem of relocating a sensor node in its neigh-
borhood so that the connectivity of the network is not altered. In this
context we introduce the notion of in-free and out-free regions to cap-
ture the set of points where the node can be relocated by conserving
connectivity. We present a characterization of maximal free-regions
that can be used for identifying the position where the node can be
moved to increase the reliability of the network connectivity. In addi-
tion, we prove that the free-region computation problem has a lower
bound Q(nlogn) in the comparison tree model of computation, and
also present two approximation algorithms for computing the free
region of a sensor node in time O(k) and O(klog k).

1 Introduction

Problems dealing with the deployment and relocation of sensor nodes have
attracted the interest of many investigators [4, 3, 2, 5, 8]. In the deployment
problem, we are given a fixed region R such as a terrain surface and we need
to deploy nodes on it, such that the region can be covered by the sensing
group of nodes. At the same time, the network must be connected. In
the relocation problem, we are given a pre-deployment of nodes in a fixed
region R and we need to relocate some nodes by small displacement so that
the region R can be covered.

In this paper, we introduce the notion of a free-region for nodes in a sen-
sor network that can be used relocation. Intuitively, the free-region F R(p)
of a node p is the maximal connected region contained in the broadcast
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disc of p so that the local connectivity properties of p are preserved even
if p is moved to any point inside R. In Section 2, we characterize the free-
region problem of a sensor node. We show that the problem of computing
the free-region of a sensor node has a lower bound Q(nlogn). In Section
3, we propose two approximation algorithms for estimating a sub-set of
the free-region. The first approximation algorithm we propose is called the
Empty Circle Approzimation and runs in O(k) time. The second approx-
imation algorithm, called Conver Approzrimation computes the free-region
in O(klog k) time, where k is the number of in-bound and out-bound nodes
of the candidate node. Both algorithms are simple and efficient, and can be
used for practical implementation in environmental monitoring and surveil-
lance applications. Finally, we discuss possible extensions of the proposed
algorithms.

2 Preliminaries

Consider n sensor nodes v1, v, ..., deployed on a terrain surface, which
is taken as a two dimensional plane. The location of node v; is represented
by point ¢; with coordinates z; and y;. The transmission range r of all
sensor nodes is assumed to be identical and the implied transmission region
is taken as the transmission disk T'D(i) of radius r centered at ¢;. The
circle of the transmission is denoted as TC(7). We can imagine a network
obtained by connecting all pair of nodes within each others transmission
range. Such a network is often called Unit Disk Graph UDG [1] and we
denote it by G(V,E), where V and E are the set of nodes and the set
of edges, respectively. Fig. 1 shows an example of the unit disc graph

Figure 1: Illustrating a Unit Disk Graph (UDG).
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induced by 15 nodes, where the disk with dashed boundary indicates the
transmission region corresponding to node v;.

We first start with a few more definitions. A pair of nodes v; and vj
are called neighbors or adjacent if they are within each others’ transmission
range. Similarly, a pair of non-adjacent nodes v; and v; are called adjoining
if their transmission disks T'D(i) and T'D(5) intersect.

Now consider what happens to the connectivity of the network when a
node, say vy, is moved very slightly. It is very likely that the connectivity
will remain the same. If we continue to slowly move the node in some
direction, two kinds of events can occur. A node that was within the
transmission region of v; at the beginning may fall outside the range. For
example, if node v; is moved along the y-direction, node v4 will fall outside
the transmission region of v;. We call such event as an ezcluding event. If
the node continues to move further along the y-direction, node vs, which
was outside the transmission range of v; at the start, will eventually appear
within the range. We call this type of event an including event. This
observation leads us to model free-region for a sensor node as follows.

Figure 2: Illustrating a Free-Region of a node.

Definition 1 The free-region of a node v;, denoted by FR(i) is the con-
nected set of points in its neighborhood that preserves the connectivity of
the network. This means if we move node v; to any point in the free-region,
the network connectivity does not change.

A free-region FR(z) of a node v; is called mazimal if it is not a proper

subset of any other free-region of v;. Fig. 2 illustrates a free-region for node
vy. It can be verified that that this free-region is also maximal.
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Consider the outer circle OC(3) of radius 2r centered at node v;. The
outer circle together with the transmission circle form the annulus AN L(z)
induced by node v;. Sensor nodes lying within the transmission disk T°D(%)
are referred to as the in-bound nodes of v;. Similarly, nodes lying between
the transmission circle and the outer circle are referred to as out-bound
nodes of v;. These definitions are illustrated in Fig. 3. The notion of free-

Figure 3: Illustrating Annulus, In-Bound Nodes, and Out-Bound Nodes.

region can be captured in term of (i) the transmission disks of node v;, (ii)
its in-bound nodes, and (iii) its out-bound nodes. The region of intersection
of transmission disks of in-bound nodes gives the region in which node v;
can be relocated without disconnecting with its adjacent nodes, even though
some new nodes may become adjacent. This region which we call in-free-
region I F R(i) can be expressed in term of transmission disks as:

IFR(i) = \TD(j), where j =1 or V; is a neighbor of v;. 1)
f
J

The portion of the transmission disk 7"D(3) that overlaps with the trans-
mission disks of its out-bound nodes is referred to as fringe region. The re-
gion obtained by removing fringe region from T D(3) is called out-free-region
(see Fig. 4). The out-free-region can be formally expressed as:

OFR(i) =TD(i) — UTD(j), for all outbound nodes v; of node v;. (2)

J

It is noted that as long as a node stays within its out-free-region, the set
of nodes that were outside its transmission range at the initial position will
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b: Formation of out-free region

Figure 4: Illustrating an Qut-Free-Region of a Node.

continue to remain outside. It can be observed that the free-region FR(3)
of node v; is given by the intersection of its in-free-region and out-free-
region. In fact, the maximal free-region shown Fig. 2 is the intersection of
free-regions shown in Fig. 5 and Fig. 4. (Note, in Fig. 4, the transmission
circles for the nodes labelled vg,v13, and v14 in Fig. 1 have been left out
in order to keep the picture simple; they do not impact the final out-free

region anyway.)
FR(i) = ()(OFR(:),IFR()) (3)

Remark 1: Both OF R(z) and I FR(3) are bounded regions whose bound-
ary consists of arc-chains. Such regions are essentially special polygons
whose edges are circular arcs and we refer to them as arc-gons.

It is interesting to look into the structural properties of free-regions.
Even if a node v; has a single neighbor, its in-free-region IFR(3) is not
empty. The following properties of free-regions can be verified easily.

Property 1: The in-free-region IFR(z) of any node v; that has at least
one neighbor is non-empty.
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Figure 5: Transmission Circles and In-Free-Region.

Property 2: The in-free-region I F R(i) of any node v; is a convex arc-gon.

For most node distributions the arc-gon representing IF R(i) will have
only a few number of arcs. For some special node distributions the arc-gon
could have O(n) arcs. Such examples can be constructed easily and are
omitted in this paper.

Property 3: In-free-region I FR(?) can have O(n) arcs in the worst case.

We now turn to the first of the main results of this paper; namely the
low bound results of computing free-regions. It is interesting to note that
the problem of computing the free-region of a sensor node is at least as
difficult as the sorting problem. This can be established by examining the
lower bound for computing the out-free region.

Theorem 1 The sorting problem is transformable to the out-free-region
problem (OFR) in linear time. Hence OF R has a lower bound of Q(k log k)
in the comparison tree model of computation, where k is the number of in-
bound and out-bound vertices of v;.

Proof: Given a set of numbers a;,az,as,...,ax to sort, we map them to
points in two dimensions as follows. Let ! and u be the minimum and maz-
imum values of the input numbers. We transform each a; to ©; by using
the formula ©; = 360x%(a; —!)/(u—1). By this transformation, each ©; falls
in the range 0-860 and the initial order of the input number is preserved.
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Figure 6: Reducing Sorting Problem to Out-Free-Region Computation
Problem.

These angles are used to locate points. Let (z;,y;) be coordinates of node v;.
Corresponding to number a;, we locate a node at (z; + 2r' cos8;, 2r' sin §;),
where v/ is little less than r. This results in out-bound nodes of v; at dis-
tance 2r' along the outer circle as shown in Fig. 6. The out-free-region
OFR(i) for this distribution of nodes consists of k very small arcs near the
transmission circle of v;. From the OF R(i) we can read off the original in-
put numbers in sorted order. The time required to make the transformation
is linear. Since Q(klogk) is the lower bound for the sorting problem we
conclude that S)(klogk) is also lower bound for the problem of computing
OFR(3). (m]

An exact algorithm for computing OF R(%) can be developed by using
an incremental approach in which out-bound nodes are processed one at a
time. Such an approach takes O(k?) time and the detail are available in
6, 7).

3 Approximation Algorithms

The shape of a free-region can be non-convex and complicated and ex-
act algorithms for determining such shapes tend to become non-simple.
For practical application, it would be desirable to have easily computable
convex shapes. In this section we describe approaches for developing sim-
ple approximation algorithms for obtaining such solutions. The notions of
image points and antipodal points are needed to develop the intended algo-
rithms. Image points are defined for out-bound nodes, antipodal points are
defined for in-bound nodes as follows.
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Figure 7: Illustrating (a) Image Points, Antipodal Points, and (b) Empty
Circle Approximation.

Definition 2 The image point u; of an out-bound node v; is defined
as the point located at distance (2r — d(i,7)) from v;, where d(%,7) is the
distance of v; from v; and r is the transmission radius. In Fig. 7 (a), the
image points of three out-bound nodes are shown as unfilled white dots.

Definition 3 The antipodal point of an in-bound node v; is defined by
considering the circle C(i, j) with center at v; and passing through v;. The
point p; on the circle C(%,5), diametrically opposite to v;, is its antipodal
point.

Definition 4 The collection of inbound nodes, antipodal points, and image
points are together referred to as pseudo nodes.

These definitions are illustrated in Fig. 7 (a), where image points and an-
tipodal points are drawn as small unfilled dots and unfilled squares, respec-

tively.

3.1 Empty Circle Approximation

Consider a circle enclosing node v; that does not enclose non of the pseudo
nodes. Such circles as empty circle. One of the easiest way to obtain an
empty circle is find the nearest pseudo node z from v; and construct a circle
centered at v; and passing through = as shown in Fig. 7 (b).



Empty Circle Approximation Algorithm
Input: (i) Sensor node v;, and
(ii) Its in-bound and out-bound nodes.
Output: A circle approximating the free-region of v;.
Step 1: ~ /* Determine pseudo nodes ¥/
(i) Find image points of out-bound nodes of v;.
(ii) Find antipodal points of in-bound nods of v;.
Step 2:  Determine the distance r’ to nearest pseudo node by
examining the coordinates of image points, antipodal
points, and in-bound nodes.
Step 3:  Output the disk centered at v; and radius 7’ as the
free-region.

It can be easily verified that the empty circle approximation algorithm can
be executed in O(k) time, where k is the number of in-bound and out-bound

nodes of node v;.

3.2 Convex Region Approximation

In this approach we seek to construct a convex polygon containing the can-
didate node v; that does not encloses any pseudo nodes. Corresponding to
each out-bound node v; we construct a directed line L; called the separat-
ing line, which passes through its image point u; and is perpendicular to
the line through v; and v;. The direction of the separating line is such that
the candidate node v; lies to the left of the line. The transmission circle of
each in-bound node is approximated by a regular polygon of size ¢, where
c is some constant integer. A typical value of c is 8. The approximating
regular polygon corresponding to in-bound nodes is required to satisfy the
"antipodal property” which is stated as follows.

Definition 5 An inscribed regular polygon approzimating the transmission
circle of an in-bound node v; is said to have antipodal property if one
of its vertices passes through the antipodal point of v;.

The bounding edges of the approximating polygons are assigned direction
implied by the counterclockwise traversal of its boundary. Consider the left
half-plane corresponding to each directed line. The intersection of the right
half planes of directed lines (all separating lines and lines corresponding to
all regular c-gons) give a convex polygon which can be taken as an approxi-
mation for free-region F'R(z) of node v;. (Fig. 8 shows partial construction.)
This approximation scheme is listed as Convex Polygon Approximation Al-
gorithm.
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Figure 8: Illustrating Convex Approximation.

Convex Approximation Algorithm
Input: (i) Node v; and its in-bound and out-bound nodes,

(ii) A constant c.

Output: A convex polygon approximating the free-region of v;.
Step 1:  For each in-bound node v; of v; do

(i) Find antipodal point p; of v;.

(ii) Construct the regular c-gon inscribed in the
transmission circle TC(j) and satisfying the an-
tipodal property.

(iii) Assign direction to the bounding edges of the c-
gon implied by its counterclockwise traversal.

Step 2: (i)  Construct a regular c-gon inscribed in T'C(3).

(ii)  Assign direction to the bounding edges of the c-

gon implied by its counterclockwise traversal.
Step 3:  For each out-bound node v; of v; do

(i) Find the image point u; of node v;.

(ii) Construct the corresponding directed separating
line L;.

Step 4:  Construct the intersection region R of the left half
planes implied by all directed lines and output it as
the free-region.

Lemma 2 The output region R generated by Convex Approzimation Algo-
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rithm is (i) a sub-set of mazimal free-region FR(i) and (ii) contains vertex
Y.

Proof: Since the transmission circles are approzimated by inscribing reg-
ular c-gons, their intersection region R’ is a subset of the in-free region
IFR(i). Any point in the right half-plane of the directed separating line
is at o distance greater than the transmission range. This implies that any
point in the intersection region Q' of the half planes of separating lines is at
a distance at least r from any out-bound nodes. Since R is the intersection
of R' and Q' it is a proper sub-set of FR(1) o

Theorem 38 Convexr Approzimation Algorithm can be ezecuted in O(klog k)
time, where k i3 the total number of in-bound and out-bound nodes of v;.

Proof: For a constant ¢, a regular c-gon having the antipodal property
can be constructed in time O(1). Since there are O(k) in-bound nodes, all
c-gons corresponding to in-bound nodes can be constructed in O(k) time.
Hence, step 1 takes time O(k). Step 2 takes O(1) time. Separating he lines
corresponding to out-bound nodes can be constructed in time O(1). Since
there are O(k) out-bound nodes, all separating lines, and hence step 8, takes
time O(k). . The problem of computing the intersection of k half-planes
can be reduced in linear time to the problem of computing the conver hull
of k points in two dimensions by using duality methods of computational
geometry [3]. Since the convez hull of k points can be computed in O(klog k)
time [3], it implies that Step 4 can be done in O(klogk) time. Hence the
total ezecution time for all steps adds to O(klogk). o

4 Discussion

We introduced the notion of free-regions for sensor nodes. We investigated
several interesting properties of free-regions and established a tight lower
bound of Q(klogk) for the free-region computation problem. We also pre-
sented efficient approximation algorithms for constructing the free-region
of sensor nodes.

Several extensions of the proposed problems and algorithms are planned
as future work. It would be very interesting to establish a tight bound on the
quality of the solution obtained by the proposed approximation algorithms.
So far we have only determined the free region of sensor nodes; if we move
a node in the free-region its local connectivity is not changed but it can
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change the free-regions of other nodes in its proximity. One interesting
related problem would be to develop an algorithm to identify those nodes
that will have very small change in their neighbor’s free-region when they
are relocated.
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