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ABSTRACT. Beautifully Ordered Balanced Incomplete Block Designs,
BOBIBD(v, k, A, k1, A1), are defined and the proof is given to show
that necessary conditions are sufficient for the existence of BOBIBD
with block size k = 3 and &k = 4 for k; = 2 except possibly for eleven
exceptions. Existence of BOBIBDs with block size k =4 and k; = 3
is demonstrated for all but one infinite family and the non-existence
of BOBIBD(7,4,2,3,1), the first member of the unknown series, is
shown.

1. Introduction

A Balanced Incomplete Block design, BIBD(v, k, A), is a collection of k-
subsets (called blocks) of a v-set such that each pair of distinct points occurs
in exactly A blocks where & < v. The definition a BIBD(v, k, \) requires k
< v, but sometimes the notation BIBD(v,v, ) is used to denote A copies
of the complete block {1,2,-:- ,v}. A Nested Balanced Incomplete Block
Design, (NBIBD), is a BIBD(v, k&, A) in which it is possible to subdivide
each block of the design into :_1 sub-blocks of size k; such that the sub-
blocks themselves form a BIBD, here k and k; are positive integers such
that k; divides k. For example, consider the following collection of five
blocks of a BIBD(5,4,3) on five points {1,2,3,4,5}:

{{1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}}.
Now consider the following subdivision of these five blocks in two specific
subblocks of size two:
block {1,2,3,4} into blocks {1,4}, and {2,3},
block {1,2,3,5} into blocks {3,5}, and {1,2},
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block {1,2,4,5} into blocks {4,2}, and {1,5},

block {1,3,4,5} into blocks {3,1}, and {4,5},

block {2,3,4,5} into blocks {2,5}, and {3,4}.
Notice that these ten subsets of size two form a BIBD(5,2,1) and hence
above BIBD(5,4,3) is an NBIBD.
In the above example one can not arbitrarily partition each block of the
original design into two blocks to get a BIBD, of course for an NBIBD this
condition is not even required. Nested designs have been studied exten-
sively [8). The BIBDs with ordered blocks are also studied extensively in
different context, for example see [7] and [2].

We are proposing to order the elements of the blocks of a BIBD in such
a way that for any fixed set of k; locations, the collection of sub-blocks
with entries from the fixed set of locations from all blocks gives a BIBD.
For example, order the elements of the blocks of a BIBD(5, 4, 6), obtained
by taking two copies of a BIBD(5, 4, 3), as follows:
{{1’2,3)4}3{2’3)4,5}’{3’4’511}’{4’5?1,2}7{5!1?2)3},
{2,4,1,3},{3,5,2,4},{4,1,3,5},{5,2,4,1},{1,3,5,2} }.
As the block size is four, each block has four locations, first, second, third
and fourth. Choose ANY two locations, say first and fourth, and construct
blocks from the entries at these locations of each block:

{{1, 4}, {2, 5}, {3,1}, {4, 2}, {5, 3}, {1, 2}, {3, 4},{5, 1},{2, 3}, {4, 5}}.
The blocks above give a BIBD(5,2,1) as every pair has occurred exactly
once in these (unordered) smaller blocks. Note that one may choose any
other two distinct locations, viz., first and second, first and third, second
and third, second and fourth or third and fourth and construct sub-blocks
from the entries at these locations of the ordered blocks and still gets a
BIBD(5,2,1). We call such a BIBD with ordered blocks a Beautifully Or-
dered Balanced Incomplete Block Design. Formally,

DEFINITION 1. If each of the blocks of a BIBD(v, k, A) is ordered such
that for any k; indices iy,i3,- - - ,ik, the sub-blocks {a;,,a:,, - ,ai,,} of all
ordered blocks {ay,az,--- ,ax} of the BIBD(v, k, A) form a BIBD(v, ki, A1)
then we say that the collection of ordered blocks gives a Beautifully Or-
dered Balanced Incomplete Block Design, BOBIBD(v, k, A, k1, A1) where 2
<k <k-1.

Clearly when k; divides k, a BOBIBD gives a nested BIBD with (super)
block size k and sub-block size k; but for a BOBIBD there is no restriction
on k;, hence BOBIBDs can be constructed even when k; is not a factor of
k. Note that small BOBIBDs may be given as a b x k array where the rows
are the ordered blocks.
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EXAMPLE 1. The following is a BOBIBD(5, 5, 10,2, 1).

QY i) OO 2] =] x| b)) | Cof
o] o] pof | ] | onf o

Wl NI] =] r| in] o] o] =] ] v
) ool oo =] o eof anf cof =)

DN =] onf ] o) Lo ] i Do) er

1.1. Perpendicular and Beautiful Arrays. There is another com-
binatorial object which is quite similar to what we have defined. It is called
Perpendicular Array [8]. The formal definition is:

DEFINITION 2. A perpendicular array PAx(t,k,v) is a k x A(?) array
with v entries such that

(1) each column has k distinct entries, and
(2) each set of t rows contains each set of t distinct entries as a column

precisely A times.

Clearly when ¢ = 2, the perpendicular array gives a BOBIBD with
ki = 2 when we consider the columns of the array as the blocks of the
BIBD(v,k, A). Of course, for k; > 3, BOBIBD and perpendicular arrays
are different combinatorial structures.

There are many existence results on perpendicular arrays as given in
[3], for example, using our terminology, it is given in [3] that:

e BOBIBD(, 3,3,2,1) exists for odd v > 3, [10]

e BOBIBD(v,4,6,2,1) exists for odd v > 5 [9)], [5] and

e BOBIBD(v, 4, 12, 2, 2) exists for v > 4 [9]
In fact, the results proven in this paper for k; = 2 can be deduced from these
results, though we give straight-forward independent proofs for general A
with usual design theory techniques. The results for k; = 3 may not be
obtained from the results in [3]. Given such close relation, one may tempt
to rewrite our definition and introduce BOBIBD as an array

DEFINITION 3. A Beautiful Array BA(v,k, A\ k1, A1) is a bx k array (k
> 2), where b = ’\—,:’(s:%l;l = A:” :’:% , the entries of which are drawn from o
set of v symbols and are disposed so that (a) the rows of the array constitute
the blocks of a BIBND(v, k, A), and (b) if we form a b x k; sub-array from
any ky columns of the array, 1 < ky < k, then the rows of the sub-array

constitute the blocks of a BIBD(v, k1, A1).
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We feel that having the word BIBD in the definition is more revealing
than the word array as the underlying structure is a BIBD and substruc-
tures are also BIBDs.

1.2. Latin Square. We will need the following well known results
about Latin squares. For basic definition and notation, please see [12]. A
Latin square L of side 7 on symbols @ = {1,2,--- ,n} can be considered as
a Quasigroup (@, o), the rows and columns of L are labeled by the symbols
in Q and % 0 j is the (,7)*" element of L. When (4,4)** element of L is ¢
for all ¢ = 1,2,--. ,n, L is called an idempotent Latin square. Let N(n)
denote the number of Latin squares in the largest possible set of mutually
orthogonal Latin squares of side n.

LEMMA 1. ([12], page 126) There ezists a set of N(n) - 1 mutually
orthogonal idempotent Latin squares of side n.

THEOREM 1. ([12], page 143) There exist three mutually orthogonal
Latin squares of every side except 2, 3, 6, and possibly 10.

COROLLARY 1. ([12], page 145) There is a pair of orthogonal idempo-
tent Latin squares of every side except 2, 3 and 6.

2. Necessary Conditions for BOBIBDs

From the definition, if a BOBIBD(v,k,\,k1,A1) exists, then
(1) BIBD(v,k,)) exists, and
(2) BIBD(v,k1,A1) exists.

Hence:

THEOREM 2. Every necessary condition for the ezistence of BIBD(v,k,))
is a necessary condition for the exzistence of BOBIBD(v,k,\,k1,A1) and ev-
ery necessary condition for the existence of BIBD(v,k1,A1) is a necessary
condition for the existence of BOBIBD(v,k,\,k1,A1).

For ease of reference the well known necessary conditions for BIBD(v,3,A)
and BIBD(v,4,)), for v > k, are given below:

Block size 3:
A spectrum of A-fold triple systems
A = 0(mod 6) all v # 2
A = 1,5(mod 6) all v = 1,3(mod 6)
A = 2,4(mod 6) all v = 0,1(mod 3)
A = 3(mod 6) all odd v
Block size 4:
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A spectrum of A-fold quadruple systems
A = 0(mod 6) all v
A = 1,5(mod 6) all v = 1,4(mod 12)
A = 2,4(mod 6) all v = 1(mod 3)
A = 3(mod 6) all v = 0,1(mod 4)

Simple counting arguments give

k
THEOREM 3. In a BOBIBD(v,k\ kM), A = %,3:)%
ky =2

If we want to construct BOBIBD(v, k, A,2,\1), there are (§) ways we

can pick up two locations in a block of BIBD(v, k, A), hence A is a multiple
of (¥) and A = (§)A;. This fact is included in the following corollary.

COROLLARY 2. For any BOBIBD,
(1) if ky = 2, then A = (§5)\1 and the number of blocks must be a
multiple of (3).

k k
(2) if ks =3, then s = {0 = G

THEOREM 4. If a BOBIBD(v,k,\,2,A;) exists, then e BOBIBD(v,k,\,
k1, (%)) exists for2 < ky < k.
In view of the above theorem, all results obtained for k = 4 and k; =

2 extend for k = 4 and k; = 3 as well and all examples constructed for
BOBIBD(v, 4, A,2, A1) are also the examples for BOBIBD(v, 4, A, 3,3),).

THEOREM 5. If a BOBIBD(v,k,A,2,A,) ezists, then a BOBIBD(v,k;,
(3)M,2,M1) exists, where 2 < ky < k.

PROOF. Fix any k; locations of the blocks of BOBIBD(v, k, A, 2, A;)
and construct the ordered subblocks of size k; with elements from the fixed
k1 locations, we get a BOBIBD(v, k1, (%) A1, 2, \1). m]

ExXAMPLE 2. The BOBIBD(5,5,10,2,1) given in the introduction is
also a BOBIBD(S, 5,10, 3, 3).

The above example has an easy generalization:
THEOREM 6. A BOBIBD(v,v, A, k1, A1) is also a BOBIBD(v, v, A, v-

k1, 2), where Ay = &ﬂ;%’(z_;@ if vk > 2.

PROOF. As we know that entries from any k; locations is a BIBD(v, k;,
A1), and hence the compliments of the blocks is a BIBD(v,v — k;, A2) for
some Ap. Note that the number of blocks and the replication number for
the design is A and as for a BOBIBD, at each location every element occurs
2, the replication number for BIBD(v, v-k1,A2) is (v — k;)(2). Using the
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usual parametric relationships between design parameters, A; is as given in
the statement of the theorem. a

THEOREM 7. If a BOBIBD(v,k, A,2, A1) ezists then k divides v and
in the (ordered) blocks of BOBIBD each element occurs exactly 1 times at
each location of the blocks.

PROOF. Let ¢; denote the number of times an element a appears at the
ith location in the collection of ordered blocks of a BOBIBD(v,k,\,2,A1).
Consider any two locations ¢ and j, as we have a BOBIBD with k; = 2,
¢i+c¢; = A (v—1). Similarly for locations i and k, ¢;+cx = A1(v—1), hence
for all k#j, ck = ¢j. As ey+ca+...ck =T, kej = 7, and hence k divides r.

O

EXAMPLE 3. For the BIBD(4,4,6), r = 6 and § = §, which is not an
integer. Therefore BOBIBD(4,4,6,2,1) does not exist .

The above theorem can be generalized easily as follows.

THEOREM 8. If a BOBIBD(v, k, A, k1, M) ezists then k divides r and
in the (ordered) blocks of BOBIBD each element occurs ezactly ¢ times at
each location of the blocks.

3. Blocksizes k = 3, k; = 2

For any BOBIBD, if k = 3 then the only possible value of k; is 2. With
these two values, Corollary 2 gives A = 3); and hence A has to be a multiple
of 3. We therefore consider two cases: A = 6¢t+3 and A = 6¢. It is well
known that for block size k = 3 and A = 6¢ + 3, v has to be odd. On the
other hand, BIBD(wv, 3, 6t) exists for any v. In other words, the necessary
conditions for the existence of a BOBIBD(v,3,1,2,\) are:

A spectrum of BOBIBD(v,3,A,2,\;)’s
A =1, 2(mod 3) none
A = 3(mod 6) odd v
A = 0(mod 6) all v
Table 1

We might write a block {a,b,c} as abc and the context will indicate
.when the block is ordered.

Subcase A = 6t + 3

For this case, v must be odd, so v = 1, 3, 5(mod 6).

For v = 1,3(mod 6), a BIBD(v,3,1) exists. Arrange 3 copies of each
block {a,b,c} of the BIBD(v,3,1) as {a,b,c}, {c,a,b}, and {b,c,a} to get a
BOBIBD(v, 3,3,2,1). A BOBIBD(v,3,6t+3,2,2t+ 1) can be obtained by
taking (2t + 1) copies of a BOBIBD(v, 3,3,2,1).
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For v = 5(mod 6). Recall one can construct a PBD on v = 6t+-5 points
with exactly one block, say {1,2,3,4,5}, and all other blocks of size 3 [6]. Or-
der 3 copies of each of the triples as in the above paragraph. Combining with
triples 123,412,251,314,531,154,235,342,425,543 of a BOBIBD(5,3,2,2,1)
we get a BOBIBD(v,3,3,2,1). Here again, (2t + 1) copies yield the re-
quired BOBIBD(v, 3,6t + 3,2,2t + 1).

Subcase A\ = 6¢

There is no restriction on v for A = 6t.

Even though one can use similar arguments again for v odd, a general
construction gives the required designs for A = 6¢ automatically.

Recall that one can construct a BIBD(v, 3,6) by an idempotent Quasi-
group (Q,0) of order v which exists for all order v > 3 where the collection
of triples of the BIBD(v, 3,6) is {{a,b,acb} where a # b € Q}. Keeping
the ordering of the elements in triples as it is, the properties of the Latin
square guarantee that each pair {a,b} occurs at the location 7,7, 1 <i < j
< 3 in the triples exactly twice as required. Taking ¢ copies of the design
gives BOBIBD(v, 3, 6t,2, 2t). Hence we have:

THEOREM 9. The necessary conditions given in Table 1 for the exis-
tence of BOBIBD with k = 3 and k; = 2 are sufficient.
4. Block sizes k =4, k; = 2

In this section, the BOBIBDs will have k = 4 and k; = 2. We begin with
an easy application of Theorem 3 and Theorem 7.

THEOREM 10. For any BOBIBD(v,4, A, 2, A;), A = 6); . Moreover if
A is odd then v is odd, and if A; is even then there is no condition on v.

In other words, the necessary condition for the existence of BOBIBD(v, 4,
A2, ) are:

A spectrum of BOBIBD(v,4, A, 2, \1)’s
A = 6(mod 12) alloddv > 5 .
A = 0(mod 12) no condition on v

It follows from this that we only need to consider two cases, A = 6 and
A = 12. We do this in the next two subsections.

4.1. BOBIBD(v,4,6,2,1) for odd v > 5.

EXAMPLE 4. One can construct a BOBIBD(5,4, 6,2, 1) by deleting the
first entries of all the blocks of Example 1, BOBIBD(5,5,10,2,1).

Using the above example and the fact that BIBD(v, 5, 1) exist for all v
= 1,5(mod 20), we have
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THEOREM 11. A BOBIBD(v,4,6,2,1) ezists for all v = 1,5(mod 20).

ExaMPLE 5. A BOBIBD(7,4,6,2,1) can be constructed with ordered
difference sets {7,1,2,4}, {7,2,4,1}, {7,4,1,2}.

EXAMPLE 6. A BOBIBD(9,4,6,2,1) is constructed below:

711123 6]1114]7 3{1[(5]9 911|168
8(2(3]1 91417]|1 4591 21681
9[3]1]2 3|17(1(4 8[9|1]5 4|8|1]|6
1]4]5]|6 41258 1{2]6]|7 7[2[(4(9
215[(6[4 7|5[8]2 5[6(7]2 314]19([2]-
3161415 118|125 9(712]6 519]2([4
4171819 5[3|6]9 2(314(8 8(3[5]7
5/8[9]7 816[(913 614]81]3 115({7(3
619|7]|8 219(3]|6 7/8(3]4 6|7]|3]5

THEOREM 12. Necessary conditions (v > 5§ and v odd) are sufficient
for the ezistence of a BOBIBD(v,4, 6t,2,t) ezcept possibly for 15, 27, 33,
39, 51, 75, 87, 95, 99, 111, and 115.

Proor. A BOBIBD(v,4,6,2,1) exists for {5,7,9} and hence for v =
1(mod 2) except possibly for (11-19), 23, (27-33), 39, 43, 51, 59, 71, 75,
83, 87, 95, 99, 107, 111, 113, 115, 119, 139, 179 [1]. Excluding the eleven
exceptions listed in the theorem, one can construct BOBIBDs using The-
orem 13 given below. Take ¢ copies of BOBIBD(v,4,6,2,1) to construct

BOBIBD(v, 4, 6t, 2, t) 0

THEOREM 13. For any prime p, ordered difference sets {0,i,p-i,2i}, i
=1,2,-- ,25* give BOBIBD(v,4,6,2,1).

ProoF. Differences from the ordered difference set {0,i,p-:,2i} are i,
2i, 3¢, 4, 1, 24 and as ¢ runs through 1 to 12'2 every difference from 1 to 7"2'—1
occurs exactly once for each pair of locations. a

4.2. BOBIBD(v,4,12,2,2) for all v > 4.
ExaMmpLE 7. BOBIBD(4,4,12,2,2)

1[2[3[4 3[1]2]4
1/4(2[3 3[4(1]2
1(3[4(2 3(214(1
2[1[3[4 a(1[2(3]|
2413 4312
23741 4231

Note for v = 1,4(mod 12), a BOBIBD can be constructed by rearranging
the blocks of a BIBD(v,4,1) according to the above example. Hence we
have:
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THEOREM 14. A BOBIBD(v,4,12,2,2) erists for all v = 1,4(mod 12).
We need a BOBIBD(6, 4,12, 2,2) which is given below:

1[2[64 3[1[2[4 5[1[6]3
1[3[2]6 3[2[5]1 5[2]1]6
1[4[5][2 3461 5341
1[5(3(4 3[5(4(6 5423
1(6[4]2 3[6]1]4 5]6(3]1
2|1[4]5 4[1]5]6 6132
2(3[6[5 4[2(3]5 6]2[4](3
2(4]3[6 4[3[1]2 63|54
2513 4[5(6]2 6|4[1[5
2(6[5(3 4/62]5 6[5(2][1

To construct BOBIBD(v,4,12,2,2) for all values of v > 4, we can
extend the construction for BIBD(v, 3, 6) by an idempotent Quasigroup of
order v which exist for all required values of v’s.

THEOREM 15. Let Ly = (Q,01), L2 = (Q,02) be two mutually or-
thogonal idempotent Latin squares of order v. Then the set of blocks T =
{{a,b,a01b,a02b} : a # b a,b € Q} gives a BOBIBD(v,4,12,2,2).

PROOF. Let L; = (Q,01), Ly = (Q,02) be two mutually orthogonal
idempotent Latin squares of order v which exist for all values of v except
2,3, and 6 (see Theorem 1). Note that this construction generates 2(3)
= n(n-1) blocks of size four which is the required number of blocks for
a BIBD(v,4,12). For any as#b, we know that pair {a,b} and pair {b,a}
occurs at the first two locations of the blocks at least twice. Now consider
the occurrences of the pair {a,b} at the first and third location or second
and third location. The third location entry is ao;b. It is clear that for
some z,y € @, ao1z = b and yoa = b. Similarly, for some w,z € @, boyw
= g and zo;b = a. Therefore the count of occurrences of the pair {a,b} until
now is at least 244 = 6. Next we consider the occurrences of the pair {a,b}
at first and fourth or second and fourth locations. The fourth location entry
is aozb. Same argument can be used again in this case. Hence {a,b} occurs
at least 6+4 = 10 times. Now since L, and L, are idempotent MOLS,
there exists p,q € Q, such that po;q = a and poaq = b, and for some r,s
€ Q such that roys = b, ro;s = a. Hence {a,b} occurs at least 10+2 =
12 times. The number of blocks is exactly the number of blocks needed
for the design, A = 12. This counting for the index A also shows that the
construction produces BOBIBD(v, 4,12, 2, 2). (]

Theorem 15 gives the construction of BOBIBD(v, 4, 12¢, 2, 2t) except
for v = 2,3, and 6. However, a BOBIBD(6, 4, 12, 2, 2) is given above and as
k = 4 is bigger than 2 and 3, we have
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THEOREM 16. The necessary condition, that v > 4, is sufficient for the
ezistence of a BOBIBD(v, 4, 12t,2, 2t).

5. Block sizes k =4, k; =38

THEOREM 17. Necessary conditions for the ezistence of BOBIBD(v, 4, A,
3,\1) are A = 2); (hence A is even), and
A A spectrum
A = 0(mod 12) all v
A = 2,10(mod 12) | v = 1(mod 6)
A = 6(mod 12) all odd v
A =4,8(mod 12) | v = 1(mod 3)

PROOF. Necesscary conditions for BIBD(v,4, A) imply A(v — 1) = 3r
and 1\1"12—1(-"'—1)- =b. (]

5.1. A = 0,6(mod 12). We have proved for BOBIBD(v, 4,6,12t +
6,2,2t + 1) exists for all odd v and BOBIBD(v, 4,12, 2, 2t) exists for any
v > 4 and hence we have the following result.

THEOREM 18.
(1) The necessary conditions given in Theorem 17 are sufficient for
BOBIBD(v, 4, 12t+86, 3, 6t+3).
(2) The necessary conditions given in Theorem 17 are sufficient for
BOBIBD(v, 4, 12t, 3, 6¢).
EXAMPLE 8. Using the Self-Orthogonal Latin squares of order 7 given
in [4] , we can construct the following BOBIBD(7,4,6,3,3):
7

-8

| 3| I} | | | O] o] O

LI 2 N = =3} =] 3| D] 3
] O Oy GO W] O D] GO ] =
=1 0| Ot 3| O] ] OO =] O] O

L T I Y T ) ) e o
| OY S| O | O W] WO ] OO DO
3| DNI] x| O3 ] L] O] I D] | D

N WO I =] DI =D

=

5.2. A = 2,10 and )\; = 1. In this subsection we consider the ex-
istence of BOBIBD(v,4,2,3,1). For v = 7, the underlying BIBDs exist,
and the necessary conditions are satisfied, therefore we might expect a
BOBIBD(7,4,2,3,1) to exist. However, the next two theorems indicate
some of the difficulties for A; =1
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THEOREM 19. BOBIBD(7,4,2,3,1) does not ezist.

PrROOF. Assume the design exists and is expressed as an array. With-
out loss of generality, let the last column and first row of the design be:

2(34

3| O OV x| OO DO =

Since 1 is already paired with 2, 3,4 once and due to the facts that one
already appears in the fourth column, without loss of generality, assume
one is distributed on the diagonal in row 5 to row 7 as shown below,

2(3]4

3| | | ] O] O] =

Note that the element 2 cannot be placed in row 5 and column 1. In
addition, 5 has to occur in row 6 or row 7, but 5 cannot be in the first
column. Hence we have two cases to consider because we can place 2 into
row 6 and place 5 into row 7 or place 5 into row 6 and place 2 into row 7,
for both cases, 2 or 5 has to be placed directly next to 1 in the 3"¢ or the
274 column

2] 3 [ 4 |1
2
3
4]-
1 5
1 |2/5|6
52| 1 |7

Consider Case 1: where 2 and 5 are placed in row 6 and row 7 respectively,
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2(3(4]1
2
3
4]
1 5
1126
5(1]7

As we can see from above, 7 is forced to be placed into row 6,4 and 6 are
placed into row 5 and finally 3 is placed into row 7,

2|13|4](1

2

3

4.
1]4(6]5
7[1]2]6
3[51(7

Going back to row 2,7 and 3 are forced to be placed as follows,

2

w
[N

=]

1[4

[y
[

3| O] U] | COf DO

7
31511

In row 3,6,2, and 5 are forced to be placed as shown below,

2|1314}1

7132

3
6{2(5{4]-

114165

711[(2]6

315611|7

In the final configuration shown below, zero denotes the locations where
the conflict occurs,
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W| | =] o] | | v
Y =] BN O] 3] w
=N O W] Of Wof i
| O Gt | QO] 8] =

Case 1

The final configuration with conflict for case 2 is shown below as in Case 1,

O | =] O] 3| x| o
N =] 3| O] Ut x| o
= O W O DO O]
~| O3] Ot x| GO DO| =

Case 2
]

THEOREM 20. The blocks of a BIBD(v,4,2) can not be ordered to con-
truct e BOBIBD(v,4,2,3,1) if there exist two identical blocks or two blocks
with 3 common points.

PROOF. Suppose the intersection number of two blocks is 4, i.e. two
blocks are identical. Let b; = {a,b,c,d} = b2 be two blocks of the BIBD(v,4,2).
Without loss of generality, we only rearrange by, and hence we have the fol-
lowing four cases to consider:

(1) Consider configuration below:

abcd_
a

where we placed a in the first location, no matter which way we
rearrange b,c,d, for some locations (é1,i2,i3) a pair appears more

than once.
(2) Consider b in the first location of second block, the same argument

we can use as in Case 1.
(3) Consider c in the first location as displayed below:

abcd.
c{d
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The only possible entry at the second location is d, and no matter
how we place a and b, there exist three locations of b; and b,
where a pair appears twice.
(4) Consider d in the first location and ¢ in the second location. The
same argument can be made as in Case 3.
Similarly one can show that if two blocks have 3 common element then it
is impossible to order the blocks to get a BOBIBD(v, 4, 2,3, 1). O

5.3. Applying the (3n + 1) Construction to A; = 2. The 3n+1
Construction from [6] can be usefully employed for our purposes. Let (Q,
o) be an idempotent (not necessarily commutative) quasigroup of order n
and set S = {o0}U(Q@x{1,2,3}). Define a collection of triples T as follows:

T‘}’pe 1: The four triples {m,(x’l)’(x’2)}?{w’(x’2)3(z’3)}’{m’(z’l)’(z’3)}’
{(z,1),(z,2),(z,3)} belong to T for every z€Q (note: these
4 triples form a 2-fold triple system of order 4) and

Type 2: If z # y, the six triples {(z,1),(y,1),(z0y,2)},
{(y,l),(:c,l),(yox,2)},{(:z:,2),(y,2),(a:0y,3)}, {(%2)1(3!2):(?}0‘513)}!
{(3’3))(3/,3)!(“:01/’1)}’ {(%3),(-'-'3,3),(1/01:,2)} belong to T.

Then (S,T) is a 2-fold triple system of order 3n + 1.

The above construction can be generalized to obtain a BOBIBD(wv, 4, 4, 3, 2).

THEOREM 21. If two idempotent MOLS of order n ezist, then BOBIBD(v
= 3n+1,4,4,3,2) exists.

PROOF. Let L = (X, o1) and Lp = (X, o2) be two idempotent MOLS,
and set S = {o0}U(X x{1,2,3}). Define a collection T of quadruples as fol-
lows:

Type 1: Four copies of the quadruple {oo,(z,1),(z,2),(z,3)}
belong to T for every zeX, and

Type 2: If z # y, the quadruples {(z,1),(y,1),(z01¥,2),(z029,2)},
{(y71)1($11)v(y°1232)’(y°2$:2)}s {(312)a(y’2)’(z°1y:3),(m°2y,3)},
{(%2),($,2),(y°1$,3),(y°2$,3)}, {(3)3);(1/13)’(3013/71)a(z°2y’1)},
{(y’3)s(353)1(y°1331)s(y°23:1)} belong to T.

First we want to show that T gives the blocks of a BIBD(3n+1,4,4) on
S. It is easy to see that k = 4, since all the blocks are quadruple. Moreover,
there are 4n blocks of Type 1 and 6(7) blocks of Type 2. Therefore we have
the required number, (37 + 1)n, of blocks, for a BIBD(3n + 1,4,4). Hence
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it is enough to show that each pair occurs at least four times. Let (z,3),
(y,7) be any pairs. There are three cases to consider.

e Suppose that z = y, 7 # j, in this case, the four copies of Type 1
quadruples {o0,(z,1),(z,2),(x,3)} together contain (z, ¢) and (z, §)
four times.

e Suppose that i = j. Then z # y. The blocks {(z,),(y,?),(zo1y,(i+
1)(mod 3),(zozy,(i + 1)(mod 3)}, {(y,),(z.4),(yo15,(i + 1)(mod
3),(yozz,(i + 1)(mod 3)} contain (z,i) and (y,i). Now using the
orthogonality of latin squares, there are r, s,u,w in X such that
ro1s = I, 7038 = y, uorw = y, and uogw = z. Therefore the
other two blocks containing (z,i) and (y,i) are {(r,(i-1)(mod 3),
(8,(i-1)(mod 3)), (z,), (¥,%)}, and {(u,(i-1)(mod 3), (w,(-1)(mod
3)), (ys3), (=)}

e Finally suppose that z # y and ¢ # j. Without loss of generality,
assume that ¢ = 1 and j = 2. since (L;, 01) and (Ly, 02) are Latin
square, zoja = ¥ and zozb = y for some a,b € X. Since L; and
Lo are idempotent MOLS and z # y, it must be that a # z and
b # z. Therefore

{(z,1),(a,1),(z01a = y,2),(z02a,2)}
and

{(z,1),(b,1),(x01b,2),(z02b = y,2)}

are Type 2 quadruples in T which contain (z,1) and (y,2). Other
two blocks containing (z,1) and (y,2) are obtained similarly when
(z,1) occurs at the second location.

Next we show that the blocks can be ordered to get a BOBIBD. Each
Type 1 quadruple appears four times, hence we can order the Type 1 blocks
as in BOBIBD(4,4,4,3,2).

For Type 2 quadruple, we keep the order as is in the definition of Type 2
blocks. Here we have four cases to consider. Also, as the pairs {00, (z,1)}
and {(z,1),(z,5)} ¢ # j occur twice at the required locations from Type
I blocks, for all these four cases, we assume that we need to check the
number of occurrences of the pairs of type {(z,1), (y,7)} where z # y or
{(=,%), (v,5)} where z # y and without loss of generality we assume i < j.

e Select the elements at the first, second and third locations. A
typical block will be {(z,i),(y,9),(z01y,5),(z02y,5)}, where j =
(i4+1)(mod 3). From the (3n+1) construction for triple system the
set of subblocks {(z,i),(y,i),(z01¥,5)} forms a BIBD(3n + 1,3, 2).
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o Similarly if we select 1°¢,2"¢ and 4** location elements of each
ordered block, a BIBD(3n + 1, 3,2) will follow.

e Now suppose we select entries from the 1%¢,3"¢,and 4t locations

to form a design with block size k; = 3, then we have blocks
of the type {(ﬂ?ﬂ'),(x°1y,j),($°2y,j)}- Recall, we assume that the
pairs are of type {(z,1), (y,1)}  # y or {(=,1), (y,5)} = # y and
without loss of generality i < j. Suppose when the MOLSs are
superimposed the pair (z,y) and pair (y,z) occurs at (a, b)** and
(¢, d)** locations. Correspondingly there will be two Type 2 blocks
{(a)), (b3) (z.5),(v:4)} and {(c;?), (d.?) (y.5),(z,7)}. Hence Type
{(=,%),(y,%)} = # y pairs occur twice within the smaller blocks
under consideration.
For pairs {(z, i), (¥, 7)} = # y with ¢ < j, observe that by definition
of Latin square and due to the facts that Latin squares are MOLS,
there exists y; and ys such that y; # yo and zo;y; = y and zoays
= y. Hence we get two Type 2 blocks:

{(x:i),(yl’i)v(molyl:j)a(x°2yl1j)}a
and
{(x’i)»(y2,i)’(x°1y21j)a(m°2y2aj)}'
From these blocks we get the two smaller blocks which contain
the pair {(z,1), (v,5)} = # y with { < j twice.
o Similar arguments hold when entries are selected from the 2"¢,
372, and 4*" locations.

(]

COROLLARY 3. The necessary conditions given in Theorem 17 for the
existence of BOBIBD(v = 3n+1,4,12t + 4,3,6t + 2) are sufficient for non-
negative integers t except possibly for v = 7,10, and 19.

THEOREM 22. The necessary Conditions given in Theorem 17 are suf-
ficient for the ezistence of a BOBIBD(3n + 1,4,8,3,4).

Proor. BIBD(3n + 1,4, 2) exists and BOBIBD(4, 4,4, 3, 2) exists. So
take four copies of each block and arrange as BOBIBD(4, 4, 4, 3, 2). O

COROLLARY 4. The necessary conditions given in Theorem 17 are suf-
ficient for BOBIBD(3n + 1,4,12t + 8,3, 6¢ + 4).
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