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Abstract

Let fs(n) denote the number of partitions of the natural number = into
parts co-prime to 6. This function was originally studied by Schur. We
derive two explicit formulas for fg(n), one of them in terms of the partition
function p(n). We also derive three recurrences for fs(n).
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1. Introduction

Let fe(n) denote number of partitions of a natural number n into parts
= =1 (mod 6), that is, parts that are co-prime to 6. In [6], Schur proved
that fs(n) equals the number of partitions of n into parts that differ by
at least 3, if consecutive multiples of 3 are omitted. (It is also true that
fe(n) counts the number of partitions of n into distinct parts that are not
multiples of 3.) Schur’s paper generalized (1) Euler’s result that the num-
ber of partitions of n into odd parts equals the number of partitions of n
into distinct parts; (2) the Rogers-Ramanujan formulas, which equate the
number of partitions of n into parts = £1 (mod 5) with the number of
partitions of n whose parts differ by at least 2. Bressoud [3] gave a com-
binatorial proof of Schur’s theorem, which is mentioned by Andrews [2].
Indeed, Schur gave a formula (with parameter o) that equates an infinite
determinant with an infinite product. The latter can represent the gen-
erating function for certain types of partitions, whereas the n-dimensional
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sub-determinants of the infinite determinant may be computed by means
of a second-order recurrence relation.

In this note, we obtain two alternate, explicit formulas for fg(n). One of
these new formulas expresses fg(n) in terms of the well-known partition
functions g(n) and go(n). The second formula expresses fg(n) in terms of
p(n), the partition function. In addition, we present three recurrences for
fe(n). We also discuss a few partition functions whose generating functions

were explicitly mentioned by Schur, and we apply Schur’s formula. to obtain
generating functions for certain kinds of overpartitions.

2. Preliminaries

Let m,n be natural numbers, with m > 2, m square-free.

w(j) = j(3j — 1)/2 is the j** pentagonal number, where j € Z

p(n) is the partition function

g(n) is the number of partitions of n into odd parts (or into distinct parts)
g*(n) is the number of partitions of n into odd parts exceeding 1

go(n) is the number of partitions of » into distinct odd parts (or the number
of self-conjugate partitions of n)

g3 (n) is the number of partitions of » into distinct odd parts exceeding 1
fm(n) is the number of partitions of n that are co-prime to m
®,.(2) is the nt* cyclotomic polynomial

pu(n) is the number of partitions of n into parts from H, where H C N

Identities

Letz,z€C, |zl <1, 2#0.

[[a-2"= 3 (-yra® 1)

n>1 n=-0oo
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[[a-="" =3 pr)=" 2

n2>1 n>0
[Ta+zmy =TJa-2>"H)"1=Y qr)z" (3)
n2>1 n2l1 n20
[Ta+2>1 =) gn)z" (4)
n>1 n>0
H(l +z™) = Z(—l)"qo(n):z:“ (5)
n>1 n>0
[JTa+a =3 gm)e" (6)
n>1 n20
[[a-a)"1 =3 g"(n)a" (7)
n21 n2>0

[T -z -2m2)(1 - 2227 )1 - 2122 (1 - 22 1272)  (8)
n21

0o
= z xw(—n)(z3n_z—3n—l)

Y pa(me" = [J(1-2")? (9)
n>0 neH
[T -2®H7 =257 =3 fo(n)a™ (10)
n>1 n>0

oo
H(l _ zk(2n—1)—l)(1 _ xk(2n—1)+l)(1 _ z.2k'n) — Z (_1)nzkn?+ln (11)

n>1 n=-o0o0
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Theorem A If |t| < 1 and « is arbitrary, then

1+at ts—t4 0 0 .
-1 l14at? t'-—tS 0 ' .
0 -1 1l+4ot® 8¢ ... = [J( +at? +¥4)
- i=1

Theorem B Let the square-free integer m be the product of r distinct
prime factors, with r > 1. Then

E fm(n)zn = H(@m(zn))(_l)r—l

n>0 n>1

Remarks: Identities (1) through (4) are well-known, and (5) follows
from (3) and (4). Schur specifically mentions the infinite product that
appears in (6) (see [6], p. 492), but not the partition function for which it
is a generating function. Identity (7) follows easily from (3). Identity (8)
is the quintuple product identity. Identity (9) is Theorem 1.1 from [1], and
(10) follows from (9). Identity (11) is adapted from (19.9.1) on p. 283 of
[4). Theorem A is Satz 4 in [6]. Theorem B is Theorem 1 in [5]. If f(n)
is any partition function, we define f(0) = 1, and f(a) = 0 if a is not a
non-negative integer.

3. The Main Results

Our first result is an explicit formula for fg(n), the function that is the
main object of study of Schur’s paper, in terms of g(n) and go(n). (Note
that parts = =1 (mod 6) are precisely the parts that are co-prime to 6.)

Theorem 1
[n/3]

fo(m) = D_ (~1)*q(n — 3k)go(k)

k=0

Proof: If we apply Theorem B with m = 6 (and hence r = 2), we
obtain

> fe(m)z" = [ (@e(z") ' = [[(1 - 2"+ 22" =

n>0 n21 n>1
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IT 55 = (qTa+= ([ a+ 2 =

3n
21 1+2 n>1 n>1

(X am)=™) (X (-1 e0(3)=")

n>0 n>0

The conclusion now follows by inveking (3) and (5) and matching coeffi-
cients of like powers of 2. W

Next, we express fg(n) in terms of p(n).

Theorem 2
fe(n) = Z p(=L w(J
j=—-00
Proof In (8), let z = e*F , so that z + 27! = 2cos % = 1 =

2cos 4% = 22 + 272, This yields

e27in _ o—3gt e2min

o0
H(1—:1:“)(1+:z:"+:v2")(1+:z:2""1+:c4"‘2)= Z zvm)(

n>1 n==00 1-e %
which simplifies to
oo
H(l + z2n-1 + m4n—2) H(l - l.3n) = Z v (™) (12)
n>1 n>1 n=-—00

Now

> fe(n)z" = [[(@e(z™) ! = [J(1 - =™ + 21 =

n20 n>1 n>1
2n
H l1+z"+x H(l + :132"_1 + x4n—2)

2n 4n
1+z2" 42 ]

so (12) yields
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]

Q femz")([[a-2")= 3 ™ (13)
n>0 n>1 n=-—o0
and
> feln)e = (JJ =2y Y 2v™) (14)
n>0 n2>1 n=-00

Invoking (2), we have
n oo
Y fe(n)z" = (Zp(g)m")( > =)
n20 n>0 n=—00
The conclusion now follows by matching coefficients of like powers of z.

Remarks: Invoking (1) and matching coefficients of like powers of =
in (13), we obtain the following recurrence relation for fg(n):

fo(m) + Y _(=1)*(fo(n ~ 3w(k)) + fo(n — 3uw(~k))) =

k21

1if n = w(+r)
0 otherwise
(15)

Note that fg(n) also counts the number of partitions of n into distinct parts
such that (i) no part is a multiple of 4; (ii) 2k + 1 and 4k + 2 do not appear
as parts in the same partition.

From Theorem 2, we easily deduce the following lower bound for f¢(n):
Corollary 1 fs(n) 2 p((3])
Proof: Theorem 2 implies that

fo(3R) = () + Yop(2=2)

370

fo(3k+1) =p(k)+ 3 o2y

J#0,1
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fo(ak+2) =)+ 3 p(2=2)

J#0,-1

from which the conclusion follows. W

A different application of (8) produces a recurrence for fg(n) that is similar
to, but not identical with (14).

Theorem 3

9k? + 9% + 2 ) = (-1)" if n=w(tr)
- 0 otherwise

Z (1‘6(71-9]c ) —fe(n—

k=—o00

Proof: In (8), replace z by 2® and z by z. This yields

H(l 3")(1 z3n+l)(1 :1:3"_4)(1 zSn-l)(l_xSn—s)_ f: zsw(-n)(x:!n_z-an—l)

n21
n=-o00

which we rewrite as

3")(1 23"'2)(1—3:3""!)(1 zsn-l)(l zen_s)_ z ( m 2';3_8n—2)

n=—00

This implies

=2 on?ion on2-3n-2
[T -2 [T - a1 - a5 = —o( 3 (242 — o=ty
n>1 n>1 n=—o0c0

hence

H(l _ xn) - H(l _ 3:6"_1)_1(1 — x6n—5)—1( Z ( 9&;& _ zon ii%i?)
n21 n21 n=—00
Invoking (1) and (10), we have

> (1% = (X felma™)( 3 (67T - g

n=-o00 n20 n=-00
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The conclusion now follows by matching coefficients of like powers of z.
|

A third recurrence for fg(n) is obtained by using identity (11), as is shown
below.

Theorem 4

fe(n)+2(—l)k{fe(n—(3k2—2k))+fs(n—(3k2+2k))} ={ (—1)(; iitﬁefw?;(ir)
k>1

Proof: In (11), let ¥ =3 and ! = 2. This yields

H(l _ xsn—S)(l - mGn—l)(l - xﬁn) = i x3n2+2n

n>1 n=o00

Therefore

H(l _ an) = (H(l _ 26"-5)-1(1 _ zﬁn—l)—l) i m3n’+2n

n>1 n>1 n=0o

Invoking (10), we have

H(l _ zen) = (z fs(n)x") i x3n’+2n

n>1 n>0 n=00

The conclusion now follows by invoking (1) and matching coefficients of like
powersof z. W



Table 1 below enumerates fg(n) in the range 1 < n < 30.

n | fe(n) | n | fo(n)
1 11l 16 10
2 1 17 12
3 1] 18 14
4 1019 16
5 2 20 18
6 2| 21 20
7 31 22 23
8 31 23 26
9 3 24 30
10 41 25 34
11 51| 26 38
12 6 | 27 42
13 71 28 47
14 81 29 53
15 9 (| 30 60

Next, we express g3(n) in terms of go(n).

Theorem 5 n
@(n) = _(-1)*qo(n — k)

k=0
Proof: (6) implies
Z go(n)2" = H(l +22 ) =(1+42)? H(l + 22771

n>0 n22 n21

= Q=12 qwm)2) = > O (1) q(n - k)"

n2>0 n2>0 n2>0 k=0

The conclusion now follows by matching coefficients of like powers of 2.
[ |

We now express ¢*(n) in terms of g(n), by means of Theorem 6 below.
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Theorem 6 Ifn > 1, then ¢*(n) = g(n) — g(n — 1).

Proof: (7) implies

ZQ*(n)z” = H(l - 22"""1)'1 =(1-2) H(l - z2n—l)—l

n>0 n>1 n>1

=(1-29) Y am)=" = Y am)z" - Y gm)e" =

n>0 n>0 n2>0

1+Y q(n)z" =) q(n-1)2"=1+) (¢(n) - g(n - 1))"

n2>1 n2>1 n>1

The conclusion now follows by matching coefficients of like powers of z.
[ ]

Remarks: If we define g(—1) = 0, then Theorem 6 holds for all n > 0.

Finally, we interpret some partition functions that correspond to generating
functions given by Schur. (See (5), p. 489 of [5].) If we let @ = 1 in the
right member of Theorem A, we obtain

[Ta+e+e+) =" fme»

n>1 n>0

Here f(n) is the number of overpartitions of n into distinct parts such that
(i) odd parts exceeding 1 may be overlined; (ii) if 4k + 3 and 2k + 1 appear
as parts in the same partition and 4k + 3 is overlined, then so is 2k + 1.

Similarly, if we let & =t in the right member of Theorem A, we obtain

[T +e+t 204 =5 g(n)t”

n>1 n>0

Here g(n) is the number of overpartitions of n into distinct parts such that
(i) odd parts exceeding 1 may be overlined; (ii) if 4c + 1 and 2k + 1 appear
as parts in the same partition and 4k + 1 is overlined, then so is 2k + 1.

Next, let @ = z, t = 22 in the right member of Theorem A to obtain

H 1+ g2n+l + $4n+2) = Z b(n)z"

n>1 n>0
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Here b(n) is the number of partitions of n into distinct parts exceeding 2
such that (i) no part is a multiple of 4; (ii) 2k + 1 and 4k + 2 do not appear
as parts in the same partition. Note that the generating function for b(n)
differs by one factor from the generating function for fg(n). Theorem 7
below gives an explicit formula for b(n).

Theorem 7

(3]
b(n) =D _(-1)(g(n — 35) — q(n — 1 - 35))g3 (4)

j=0
Proof:

Zb("’)” = H(1+x2n+1+x4n+2) = H - ,,2n+1 H(l —zBn+3) H(l —gntlyl

n>0 n>1 n21

= Q) %m)z*)(Q_(a(n)- Q(n—l))x")—(ZQo( 20273 _(a(n)—g(n-1))z")

n2>0 n>0 n>0 n2>0
(3]
—Z(Z%( 5 )@k —atk-1))2" = 33 (aln-3)—a(n—1-37))g3 (4))z"
n2>0 k=0 n>0 j=0

if we let n — k = 34. The conclusion now follows by matching coefficients
of like powers of z. W
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