1

Further Contributions to Balanced
Arrays of Strength Four

D.V. Chopra
Department of Mathematics and Statistics
Wichita State University
Wichita, KS 67260-0033, USA
dharam.chopra@wichita.edu

Richard M. Low
Department of Mathematics
San Jose State University
San Jose, CA 95192, USA
low@math.sjsu.edu

R. Dios
Department of Mathematics
New Jersey Institute of Technology
Newark, NJ 07102-1982, USA
dios@adm.njit.edu

Abstract
In this paper, we present (by using Cauchy-Schwarz inequalities)
some new results amongst the parameters of balanced arrays (B-
arrays) with two symbols and having strength four which are neces-
sary for the existence of such balanced arrays. We then discuss and
illustrate their use and applications.

Introduction and Preliminaries

For the sake of completeness, we first present some basic definitions and con-
cepts. An array T with m rows (also called constraints or factors in design
of experiments), N columns (also called runs or treatment-combinations),
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and with two symbols (also called levels) is merely a matrix T of size
(m x N) with two elements (say, 0 and 1). If o is a column vector of T,
then A(a), P(a), and w(a) denote respectively the number of times & oc-
curs in T, the vector obtained by permuting the elements of o, and the
weight of the vector o (ie. the number of 1s in it). It is quite obvious
that w(g) is invariant under a permutation of the elements of . Under
various combinatorial structures, these arrays assume great importance in
combinatorics and statistical design of experiments. Here, we will confine
ourselves to some such constraints leading us to the following definition:

Definition. A matrix T (mx N) with two symbols (say, 0 and 1) is called a
balanced array (B-array) of strength t (t < m) if in every (¢ x N) submatrix
T* of T (clearly, there are (':') such submatrices T™*), every (¢ x 1) vector a
of weight i (clearly, 0 < w(a) < t) occurs with the same frequency p; (say,
0<i<t).

Remark. The vector pu' = (po, p1,...,pt) is called the indez set of the B-
array T, and obviously N = 3°i_¢ (). Thus, N is known once we are
given u’. The above definition can be easily extended to B-arrays with
more than two levels.

Definition. If y; = u for each ¢ in a B-array T, then T is called an
orthogonal array (O-array).

Note that N = 2ty for an O-array of strength t and that O-arrays form a
subset of B-arrays.

These arrays have been extensively used in statistical design of experi-
ments which are widely used in almost all areas of scientific investigations
such as medicine, technology, industry, agriculture, etc. O-arrays (a special
case of B-arrays) have been used in cryptography, coding theory, computer
science, information theory, and in the famous Taguchi techniques on qual-
ity control widely used in industry. Bose [2] applied O-arrays to information
theory to point out the connections between the problems of experimental
designs and information theory. B-arrays are also related to other com-
binatorial structures. For example, the incidence matrix of a balanced
incomplete block design (BIBD) is a B-array of strength two. Saha, et. al.
[11] have pointed out the relationship of B-arrays of strength two with rect-
angular designs, group divisible designs, nested balanced incomplete block
designs, etc. Thus, B-arrays are not only useful in numerous scientific in-
vestigations but also are of great use in the study of other combinatorial
structures. To gain further insight into the importance and usefulness of
B-arrays and O-arrays to statistical design of experiments and to combina-
torics, the interested reader may consult the list of references (which, by
no means is an exhaustive one) at the end of this paper, and also further
references mentioned therein.
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The problem of the existence of a B-array for a given m (> t+1) and a
given y’ is obviously a very non-trivial problem. In this paper, we present
a set of new inequalities involving the parameters m and y'. For a B-array
T to exist, it is necessary that each and every inequality presented here be
satisfied. Also, we can obtain the maximum number m of constraints for a
given p', which is an important problem from the point of view of design
of experiments and combinatorics. Such problems for O-arrays have been
discussed, among others, by Bose and Bush [1], C.R. Rao [9, 10], Seiden
and Zemach [12], and for B-arrays by Chopra, Bsharat, Dios, and/or Low
[3, 4, 5], Rafter and Seiden [8], Saha et. al. [11], Yamamoto et. al. [14],
etc. In this paper, we obtain some such inequalities for B-arrays with ¢ = 4,
&' = (po, 1, p2, p3, f£4), m > 4, and illustrate their use and applications.

2 Main Results with Discussion

The following results can be easily derived.

Lemma 1. A B-array T of strength t = 4, with index set ' and m = 4,
always exists.

Lemma 2. A B-array T of strength t = 4 is also of lower strength k (< 4).

Remark. Considered as an array of strength £ (< ¢ = 4), the elements of
the index set of T' are merely a linear combination of the elements of y'. If
A(j, k) is the jth element of T' (when considered as an array of strength k,
where 0 < j < k), then

A(j, k) = g (t : k) Ki+j

=0

SLa-k
= ( ; )p,-.,.j, where ¢ is set equal to 4. (2.1)
0

1=l
It is clear that A(j,4) = p; and A(5,0) = N.
Lemma 3. If a B-array T with index set y' does not exist for an m (say,
m =m*), then it does not exist for all m > m*.

The next result relates the parameters of the array T with the moments
of the weights of the column vectors of T, and can be easily established
by counting in two ways (through columns and rows) the total number of
vectors of weight & (0 < k < 4).

Lemma 4. Consider a B-array T with m rows, of strength t = 4, and of
indez set y'. Let x; (j =0,1,2,...,m) be the number of columns of weight
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jinT. Let L = 2_?:0 j*z;, with (0 < k < 4). Then, the following results
are true:

m
Lo=) z;=N, (2.2)
=0
L= ijj = mlA(11 1)1
Ly = L1 + maA(2,2),
L3 =3L; — 2Ly + m3A(3,3),
Ly =06L3 — 11Ly + 6L + mypy,
where m, =m(m - 1)(m —-2)---(m —r+1).
It is obvious, from (2.2), that each of the 3" j*z; is a polynomial function
in m for a given y'.
Next, we state some new results on the existence of B-arrays of strength
t = 4 and prove some of them, while providing outlines and sketches of
others. In what follows, we use the symbols a and b to denote j and _12
respectively (ie. a =7 = Z—-i L andb=32= z—’N—’"i L),

Theorem 1. For a B-array T unth t = 4 and m rows to exist, the following
condition must be satisfied:

N2Ly —2NLyLs + L3Ly > 0. 2.3)
Proof. (Outline). Consider the inequality ¥ j2(j — a)?z; > 0. By expand-
ing the left-hand side, one obtains (2.3). O

Theorem 2. Let T be a B-array with m > 4 and p' = (o, p1, B2, 43, p4).
Then, the following must be satisfied for T to ezist:

NLy+NLy+2L1Ly > L2 + L% + 2N L. (2.4)
Proof. (Outline). In order to derive (2.4), consider the inequality

> (G — @) — (52 - b))?=; 2 0.
Expanding the left-hand side, one obtains
Y lG —a) - (52 - 0)Px; = ) (5% - 205 + 0®) + (5* — 25%b + 7)
—2(4% - bj — aj2 + ab))z;
= (Ly — 2aLy + a®N) + (Lg — 2bL, + b%N)
- 2(L3 - bLl - aLz + abN).

Substituting % for a and -I}‘;} for b, we obtain (2.4) after some simplication.
O
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We now recall the Cauchy-Schwarz Inequality, which we will use later.

Cauchy-Schwarz Inequality. If (z1,x2,...,2,) and (y1,¥2,...,¥n) are
sequences of real numbers, then

(£) <(54) (£4)

Theorem 3. For a B-array T with parameters p' = (uo, p1, p2, 13, pt4) and
m to exist, we must have the following:

N(N3L4 — 4N?LyLs + 6NL2Ly — 3L4)Lg > (N2Ly — 2N L1 Ls + L2L,)?,

(2.5)

NLy(N3Lg—AN?L Ly + 6NL3Ly — 3L}) > (N2L3 — 2N Ly Ly + L3)?,
(2.6)
(N3Lq —4N2L L3 + 6NL3Ly — 3L%) > (NLy — L3)%. (2.7)

Proof. We will use the Cauchy-Swartz Inequality on (j—a)?,/Z; and j2,/Z;
to obtain (2.5). Thus, we get (Y(j — a)*z;)(X 5z;) > (720 — a)zs]?.
Asa= %, we see that
O G - a)*z;)(Q_ j*z;) = La(La — 4L3a + 6Lra® — 4L1a® + a*N)
4L,Ly  ,L3L, L¥ L}
=L4<L4— v tO T — 4yt R

= %(Nalq - 4N2L1L3 + GNLng - 3L‘;)

A similar calculation shows that

20 N2Ly — 2NL\Ls + L2Ly)>?
[232(3—‘1’)2“:1']2=( i o

Hence, (2.5) is established.

In order to derive (2.6), we use the Cauchy-Schwarz Inequality on (5 —
a)®/z; and j,/%;. Similarly, (2.7) can be established by applying the
Cauchy-Schwarz Inequality on (j — a)?,/Z; and ,/Z;. The results are ob-
tained after some straightforward algebraic manipulations. a

Theorem 4. For a B-array T with parameters y' = (uo, i1, 2, U3, pta) and
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m to exist, we must have the following:

N(N3Ly —4N®LyL3 + 6NL2Ly — 3L3)(N%Ly — 2N L, L + L3)
> (N3Ly — 2N%LaL3 + NL3 — 2N?LyL3 +4NLy L3 - L3L2
+ NL2L, - 2L3L,)?, (2.8)
N(N3L4 —4N2L L3+ 6NL2Ly — 3L3)(Ls — 2L3 + Ly)
> (N2Ly —2NLiL3 + L3Ly — N2L3 + 2NL Ly — L3)%.  (2.9)

Proof. (Outline). In order to derive (2.8), we use the Cauchy-Schwarz
Inequality with (j —a)?,/Z; and (j—b)?,/Z; to obtain (3_(j —a)*z;)((5 -
b)iz;) > [3o(5 — @)?(j — b)%x;]%. After simplifying the left-hand side and
right-hand side of this inequality and setting ¢ = %, b= %,3, we obtain
(2.8).

To establish (2.9), we use the Cauchy-Schwarz Inequality with (5 —
a)?/55 and (42 — )y/37 to get (L — a)iz;) (T2 - 3)%2;) > [0 —
a)?(4% — 5)z;]?. The left-hand side of this inequality simplifies to

4L,L; 6L3L, 3L}
(L4— —}:',—34-—1\/1_2—2 - I—V?l) (L4—2L3+L2).

The right-hand side of the inequality simplifies to

D _G* - 2%+ j%a® - 5 + 2i%a — a%j)z;)?

oL,Ls L2L 9LLy  L3\?
-_-(L4— 1;3+_];,2_2_L3+_;V2_]_V%).

After multiplying both sides of the inequality by N* and simplifying further,
one obtains (2.9). O

3 Some Comments and Illustrative Examples

To obtain the least value of m for which a B-array T with a given ' could
possibly exist, we prepared a computer program. It is obvious that each of
the results given here was reduced to a polynomial inequality in m. Start-
ing with m = 4, let us suppose the inequality was first contradicted at
m = m* + 1. Then, the maximum value of m for which this array could
possibly exist is m = m*. We worked with scores of values of ' and found
there was no single inequality superior to all the rest, for each p'.

Ezxamples.
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o Take u’ = (6,4,1,0,0). It was found that m < 8 for each of (2.3),
(2.4), and (2.8) whlle other conditions gave m < 13,19, and exceed-
ingly large values. Taking p’' = (9,8,7,7,5), we found m < 9 using
(2.8) which is the least one and m < 18 using (2.3), m < 34 using
(2.4). Taking ' = (1,1,6,3,1), we found m < 6 (the least one) using
(2.4) while all the other inequalities gave us very large m values.

Next, we give some examples to show how these results compare with earlier
ones found within the literature.

o Take y' = (4,4,4,4,3). Using (2.4) of Chopra (3], it was found that
m < 32. Using the results in this paper, we found m < 11 using (2.8),
m < 12 using each of (2.5), (2.6) and (2.9). This is a considerable
improvement over the earlier bound.

o Take y’' = (1,1,2,4,1). Using (2.6) of Chopra and Bsharat [4], it was
found that m < 6. If we use (2.3) of this paper, we obtain m < 5
which is an improvement over the earlier result.

The above discussion and illustrations are merely presented to indicate
that no single inequality amongst the parameters of a B-array may provide
us with the least upper on the number of constraints m, for all the B-arrays

with given values of y'.
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