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Abstract

A new technique is given for constructing a vertex-magic total labeling,
and hence an edge-magic total labeling, for certain finite simple 2—regular
graphs. Let C; denote the cycle of length r. Let n be an odd positive
integer with n = 2m + 1. Let k; denote an integer such that &; > 3, for
i=1,2,...l, and write nCj, to mean the disjoint union of n copies of Ck,.
Let G be the disjoint union G & Cx, U---UCy,. Let I = {1,2,...1} and

let J be any subset of I. Finally let Gy = (U an‘) U ( U ani),
ieJ i€l~J
where all unions are disjoint unions. It is shown that if G has a vertex-
magic total labeling (VMTL) with a magic constant of A then G, has
VMTLs with magic constants 6m (ky + k2 +--- + k) + h and nh — 3m.
In particular, if G has a strong VMTL then G also has a strong VMTL.
Keywords: Graph; Labeling; Vertex-magic; Strong vertex-magic ; Edge-
magic.
AMS subject Code: 05C78

Throughout this paper, G = (V, E) will denote a 2—regular finite simple
graph with vertex-set V and edge-set E. Let I" be an Abelian group. Given any
map A : VUE — T the A—weight wt)(v) of a vertex v is the sum )\(‘v)+z Ae),
where the sum ranges over all edges e incident with v. We say that A is magic
if wéa(v) = h, where h is a constant (called the magic constant) that does not
depend on the choice of vertex v. If A is injective, we say that it is a I'-labeling
of G. In this paper, I' will either be Z or Z x Z. Throughout the paper,
Pi : ZX Z — Z will denote the cononical projection defined by p;(z,y) = z and
p2(z,y) = y. A magic Z—labeling with range {1,2,...,|V| + |E|} is called a
vertez-magic total labeling, or VMTL (see [2] or [5]).

Letv: VUE — {1,2,...,|V|+|E|} be a bijection. The y—weight of an edge
e is the sum y(e) + 7(v) + v(v'), where v and v’ are the ends of e. We say that
7 is an edge-magic total labeling if the y—weight of each edge is a constant. It
is easy to see how to convert a VMTL of a 2—regular graph into an edge-magic
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Figure 1

total labeling of the same graph (see also [3]) and so we will henceforth no longer
directly discuss edge-magic total labelings.

If ¢ is a positive integer, then A, will denote the set {0,1,...,¢t—1}. Further-
more, n will denote an odd integer such that n > 3 and we write n = 2m + 1.
The proof of the following is an easy exercise.

Proposition 1 Lett; andt; be positive integers. Let A be a magic ZxZ—labeling
of G with range A;, X Ay, and magic constant (hy,he). Let z be a vertez or
edge of G. Then:

1. The map Ay : VUE — Z defined by M\i(z) = tap1(z) +p2(z) +1 s a
VMTL of G with magic constant tahy + ha + 3.

2. The map Az : VUE — Z defined by Aa(z) = tip2(z) +p1(z) + 1 s a
VMTL of G with magic constant tyha + hy + 3.

An example of a magic Z x Z—labeling A of C3 with range A; x A3 and
corresponding VMTLs ), and A; is shown in Fig. 1.

Let [a;;] denote the 3 x n matrix:

0 1 «vv. m m+1 m+2 ... 2m
[aij]=12m 2m-2 --- 0 2m-1 2m-3 .- 1
m m+1l --- 2m 0 1 cvr o m-—1

It has the property that each row consists of a permutation of 0,1,...,n-1
and each column sum is 3m. This example is due to Kotzig [1].
We will write nG to denote the disjoint union of n copies of G.

Lemma 2 Let f be a magic Z—labeling of G with range B and magic constant
h. Then there is a magic Z x Z—labeling of nG with range B x A, and magic
constant (h,3m).
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A magic ZxZ - labeling of 5C;
Figure 3

The following is a modification of the proof of Wallis’ theorem in [4].

Proof. By Vizing's theorem G can be properly edge-colored with the 3 colors
1,2 and 3. Let x be such a coloring. At each vertex v, there will be exactly one
of the three colors not represented. Define n(v) to be that color, and let 7 agree
with x on the edges.

Now let G1 UGz U... UG, denote a disjoint union where for each 5 Gis
isomorphic to G;. Let £ € VUE and let z; be the corresponding object in G;.
One checks that A(z;) = (f(z), ay(z),;) is the required labeling. m

An example of & magic Z—labeling of a 5—cycle and a 3—coloring pforn =5
is shown in Fig. 2. The corresponding magic Z x Z—labeling for 5Cs is shown
in Fig. 3.

Lemma 3 Let f be a magic Z—labeling of the k—cycle Cy, with range B and
magic constant h. Then there is a magic Z x Z—labeling f* of Cpy with range
B x A, and magic constant (h, 3m).
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This lemma is proven in detail for the special case where B = Ay in (3].
That proof does not use the assumption that B = A and so it works just as
well here. We provide only a summarized version of that proof, as well as an
example with & = 4 and n = 5 shown in Fig. 4 and Fig. 5.

Notation 4 [9] Let vo,v1,* ,v2m be the vertices of the cycle C, of length n,
where for convenience we set v; = v; whenever j = imod(2m+1). In particular,
Vams1 = vo. Let the edges be denoted by (i, vi41). Thena: VUE — Z will
denote the following map

1. a(v;) =7 for 0 < i< 2m,
2. afvei-1,ve) =m—1i, for0<i<m,

3. o(voi,v2i41) =2m —1, for 0 < i <m.

Proof. (adapted from [3]): Let the vertex-set of Ci be denoted by {ug, - yur—1},
and for convenience we set u; = u; whenever j = imod k. In particular, uz = up.
Thus the edge-set of Cj will be denoted by {(ui,us41)} for 0 < i < k—1. Fi-
nally, let wo, w1, ..., Wnk-1 be the vertices of Cni with edges (w;, wit1), and
for convenience we set wni4j = wj, for j=0,1,...,n—1. Let z be an integer,
0 < z < nk — 1. By the division algorithm, z can be written uniquely in the
fomz=qn+r where0<g<k-land0<r<n—-1=2m. We define f*
componentwise, as follows. Let py (f*(wz)) = f(ug), and for the edges, set

. _f f(ugq,ug41) ifriseven
»n (f (w:swx+1)) = { f(u:_l,uq) if r is odd

Finally, for the second component:
p2 (f*(wz)) = a(vy) and p2 (f* (g, Wr41)) = (v, Urg1) B

A magic Z—labeling of Cy, as well as « for n = 5 are shown in Fig. 4. The
corresponding magic Z x Z—labeling for Czo is shown in Fig. 5.

Notation 5 Let G be the disjoint union of ! cycles G = Cy, U---UC},, and let
I={1,2,...,1}. Let J be a subset of I, and let

Gy = (U an‘) U] ( U an‘)
ieJ iel-J
where all unions are disjoint unions.

Theorem 6 Assume that G has a magic Z—labeling with a range of B and a
magic constant of h. Then for any subset J of I, the graph G; has a magic
Z x Z—labeling with a range of B x A, and a magic constant of (h,3m).
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Proof. This follows immediately from |I—J| applications of the previous lemma
as well as an application of lemma 2 (if J # ¢). m

Theorem 7 Assume that G has a VMTL o with ¢ magic constant of h. Then
for any subset J of I, the graph G5 has VMTLs with magic constants of nh—3m
and 6|V|m + h.

Proof. Let 6 : VUE — {0,1,...,|V| +|E| — 1} be defined by é(z) = a(z) — 1
for each £ € V U E. Observe that § is a magic Z—labeling with range Ay,
and magic constant A’ = h — 3. By the previous theorem, there is a magic
Z x Z-labeling A with a range of Ay X An and a magic constant of (h’,3m).
By proposition 1 part 1, there is a VMTL A; of Gy with a magic constant of
nh! + 3m + 3 = nh — 3m. By proposition 1 part 2, there is a VMTL A, of G
with a magic constant of 2|V|(3m) + k' +3=6|V|im+h. =

A VMTL of Cs U C, is shown in Fig. 6. If one follows the proof of the
previous theorem through on that example, one obtains the figures 2,3,4 and 5.

A strong VMTL of a graph is a VMTL such that the smallest available
labels are used on the edges (see Fig. 6). Thus the VMTL o of G is strong
if the labels 1,2,...,|V| are used on the edges. Following through the proof
of the previous theorem, this would mean that & labels the edges with labels
0,1,...,|V|—1 and therefore, A would label the edges of G; with the n|V| labels
{(z,y)lz € Av|,¥ € An}. Thus, A; would label the edges with 1,2,...,n|V].
We have:

Corollary 8 Assume that G has o strong VMTL. Then for any subset J of I,
the graph G; has a strong VMTL.
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