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ABSTRACT. This paper settles in the negative the following open question: Are V;-
magic graphs necessarily Z4-magic? For abelian group A4, we examine the properties
of A-magic lebelings with constant weight O, called zero-sum A-magic, and utilize
well-known results on edge-colorings in order to construct (from 3-regular graphs)
infinite families that are V3-magic but not Z4-magic. Noting that our arguments lead
to connected graphs of order 2n for all n > 11 that are Vj-magic and not Z4-magic,
we conclude the paper by investigating the zero-sum integer-magic spectra of graphs,
including Cartesian products, and give a conjecture about the zero-sum integer-magic
spectra of 3-regular graphs.

1. Introduction.

Unless otherwise indicated, the term multigraph shall refer to a graph that is
loopless, connected, and (following Harary [8]) possibly simple. If G = (V,E)is
a non-simple multigraph with precisely n > 2 parallel edges incident to distinct
vertices z and y, then we may denote those edges by

({xa y}r 1)1 ({31 y}’ 2)! ({3’, y}’ 3) Yooy ({.’B, y}, n) .

If there exists precisely one edge in E incident to both z and y, then that edge
shall be denoted {z,y}. Accordingly, with each edge uniquely denoted, we note
that E is a set (in contrast to multiset) whether G is simple or not.

Let (A, +) be an abelian group with identity 0 and let A* = A — {0}. Let
G = (V, E) be a multigraph. Then a labeling of G is a function ¢ from E into
A*, and for fixed e € E, ¢(e) is called the label of e under ¢.

For fixed v € V, the weight of v under ¢, denoted wg(v), is the sum of the
labels (under ¢) of the edges incident to v. It is clear that wgy is a function from
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V to A induced by ¢. In the special case that wy is a constant function, a name
is given to ¢; particularly, ¢ is an A-magic labeling of G if and only if for some
¢ € A, wy(v) = c for every v € V. Such a labeling is said to have an A-magic
value of ¢. Correspondingly, G is A-magic if and only if there exists an A-magic
labeling of G.

The topic of group-magic graphs represents a branch in the more general area
. of magic graphs, traceable to Sedlagek [24]. Since then, various authors have
defined and explored graph labelings, using such terms as edge-magic, vertex-
magic, total-magic, semi-magic, pseudomagic, and supermagic. (For definitions
of these terms and surveys of related results, see [7] and (29].) Early work in
the area of group-magic labelings was conducted by Doob [2, 3, 4] and Stanley
[27, 28], the latter of whom studied Z-magic labelings in the context of linear
homogeneous diophantine equations. More recent investigations of A-magic
labelings include works by D. Combe et al [1], S-M Lee et al [11], R.M. Low and
S-M Lee [19, 20], and W.C. Shiu and R.M. Low [25]. Particular focus has been
placed upon both Z-magic and Z;-magic labelings, leading to the invention of
the integer-magic spectra of graphs. (See [9, 10, 12, 14, 15, 16, 17, 18, 21, 22,
23, 26].) Attention has also been given to Vy-labelings of graphs (for examples,
in [13] and [30]), where Vj is the Klein group 2; x 23, the non-cyclic abelian
group of smallest order. This, in turn, has given rise to an open question: if G
is Vy-magic, is G necessarily 2;-magic?

In Section 2 of this paper, we demonstrate that the answer to this ques-
tion is ‘no’ through an investigation of specially constructed simple graphs. To
that end, we give the definitions of zero-sum A-magic labelings and pendant-
extensions of multigraphs which will link the properties of Z4-magic and V-
magic multigraphs to the traditional notions of chromatic index and factorabil-
ity. In Section 3, we present additional results that arose in our investigation.

We close this section by presenting the two promised definitions as well as a
related theorem that will facilitate the discussion.

Definition 1.1. Let G be a multigraph. Then G is zero-sum A-magic if and
only if there exists an A-magic labeling ¢ of G with A-magic value 0. Such a
labeling is called a zero-sum A-magic labeling of G. O

We observe that every zero-sum A-magic multigraph is A-magic, but that
the converse is not true. For example, the 3-cycle Cs is easily checked to be
Z3-magic (by letting ¢(e) = 1 for all e € E(C3)), but not zero-sum Z3-magic.

Definition 1.2. Let G be a multigraph and let u be a positive integer. Then

the p-pendant extension of G is the multigraph p-pe(G) obtained from G by

attaching p distinct pendant edges to each vertex in V(G). Formally, p-pe(G)

is the multigraph such that

(i) V(u-pe(G)) is the union of disjoint sets V(G) and Y, where Y = {y,,;|v €

V(G) and 1 < j < p}, and

(ii) E(p-pe(G)) is the union of disjoint sets E(G) and F, where F' = {{v,yui}v e
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V(G) and 1 < j < p}.
If p =1, then 1-pe(G) shall be abbreviated pe(G). O
We note that u-pe(G) is a special case of G o G*, the corona of G with G*,

defined in [6]. Particularly, for integer 4 > 1, u-pe(G) is isomorphic to G o K e
For illustration, we display Cy and 2-pe(C;) in Figure 1.

Cs 2-pe(Cy)

C; and the 2-pendant extension of C,
Figure 1.

Theorem 1.3. Let A be an abelian group and let G be a multigraph. Then
(i) G is zero-sum A-magic if and only if pe(G) is A-magic, and

(ii) if the maximum order among the orders of the elements of A is the finite
number mg4, then the following are pairwise equivalent:

(a) G is zero-sum A-magic

(b} for every non-negative integer j, (jm4 + 1)-pe(G) is A-magic

(c) for some non-negative integer j, (jma + 1)-pe(G) is A-magic.
Proof: Throughout the proof, we will suppose that u-pe(G) has respective
vertex and edge sets V(G)|JY and E(G)|JF, where Y and F are as defined
in Definition 1.2.

Proof of (i) (—) Suppose there exists a zero-sum A-magic labeling ¢ of G. Let

¢ be an arbitrary element of A*. Then the following function ¢’ : E(G)|JF —
A* is easily seen to be an A-magic labeling of pe(G) with A-magic weight c:

vo={ 0 FE5°

(«~) Now suppose that for some ¢ € A, there is an A-magic labeling v of
pe(G) with A-magic value c. Since every vertex in V(G)|JY has weight ¢ under
7, and since every edge in F is incident to precisely one vertex in Y with degree
1, it follows that every edge in F is labeled ¢ under v (implying ¢ # 0). Now let
9’ be the restriction of v to E(G). Clearly, v is a labeling of G. Moreover, since
every vertex in V(G) is incident to precisely one edge in F' (and at least one
edge not in F), we have w.(v) + ¢ = w,(v) for every v € V(G). But wy(v) =¢
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by assumption, implying w.(v) = 0. Thus 4’ is a zero-sum A-magic labeling of
G, giving the result.

Proof of (ii): It is clear that (b) — (c). It thus suffices to prove (a) — (b)
and (c) — (a).

We begin with the proof of (a) — (b). The argument will be similar to that
of (i), but will require the additional assumption that m4 is finite.

Suppose that ¢ is a zero-sum A-magic labeling of G and fix arbitrary integer
§ > 0and c € A*. We claim that ¢’ is an A-magic labeling of (jm4 +1)-pe(G),
where ¢’ is the function from E(G)|J F into A* such that

56) = { d(e) ife€ E(G)

c ife€F.

To see this, we argue that c is the weight (under ¢') of every vertex in V(G) Y.
If y € Y, then wy (y) = c because y has degree 1 and is incident to an edge in F.
On the other hand, if v € V(G), then v is incident to precisely the edges in the
disjoint union of the set of edges in E(G) incident to v with the set of jma +1
pendant edges incident to v. Thus wg(v) = wy(v) + c(jma + 1). However,
wg(v) = 0 since ¢ is a zero-sum A-magic labeling of G. And, c(jma4 + 1)=¢
since the order of c divides m4. So wy(v) =c.

We now show (c) — (). Suppose that for some ¢ € A and some non-negative
integer j, there is an A-magic labeling vy of (jma+ 1)-pe(G) with A-magic value
c. Since every vertex in V(G)|JY has weight ¢ under -, and since every edge
in F is incident to precisely one vertex in Y with degree 1, it follows that every
edge in F is labeled ¢ under v (implying c # 0). Now let 7' be the restriction of
~ to E(G). Clearly, 4/ is a labeling of G. Moreover, since every vertex in V(G)
is incident to precisely jma + 1 edges in F' (and at least one edge not in F), we
have w.(v) + c(jma + 1) = w,(v) for every vertex v € V(G). But w,(v) =c¢
by assumption. And, as argued above, ¢(jma + 1) = ¢. Therefore w,(v) =0,
implying that 4’ is a zero-sum A-magic labeling of G. O

2. Constructing Z4-magic multigraphs and V;-magic multigraphs from
multigraphs of maximum degree 3.

We shall begin with a consideration of V3-magic multigraphs, then turn to
Z4-magic multigraphs.

Observation 2.1. Suppose that G is a zero-sum Vg-magic multigraph, and
suppose that v € V(G). If the degree of v is 3, then for every zero-sum Vj-
magic labeling ¢ of G, the three edges incident to v receive the distinct labels
(1,0),(0,1),(1,1) under ¢. If the degree of v is 2, then for every zero-sum Vj-
magic labeling ¢ of G, the two edges incident to v receive the same label under
¢. 0O

Lemma 2.2. Suppose that G is a zero-sum V;-magic multigraph. Then the
subdivision of any edge in G results in a multigraph G’ that is zero-sum Vj-
magic. ‘
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Proof: Let ¢ be a zero-sum V;-magic labeling of G and let G’ be the multigraph
that results by subdividing edge e’ incident to vertices u and v into edges {u,z}
and {z,v}. Then the function ¢' from E(G’) to V;* is easily checked to be a
zero-sum Vj-magic labeling of G', where

s ={ ge) He=lualor {mo)

Theorem 2.3. Let G be a 3-regular multigraph. Then G is zero-sum V;-magic
if and only if the chromatic index of G is 3.

Proof: (—) Suppose G is zero-sum Vj-magic and accordingly let ¢ be a zero-
sum Vj-magic labeling of G. From Observation 2.1, ¢ is a 3-edge coloring of

G.
() Suppose that G has chromatic index 3, and let C be a 3-edge coloring of

G in which the assigned colors are (1,0),(0,1) and (1,1). Then C is a zero-sum
Vi-magic labeling of G since the sum of the 3 distinct colors is 0. O

Corollary 2.4. Let G be a 3-regular multigraph. Then the following are
pairwise equivalent:

(i) G has chromatic index 3

(i) for every non-negative integer j, (2j + 1)-pe(G) is V;-magic

(iii) for some non-negative integer j, (27 + 1)-pe(G) is V3-magic.
Proof: This follows from Theorem 2.3, my, = 2, and Theorem 1.3(ii). O

The next corollary follows from Theorem 2.3 and the well-known result that
every 3-regular multigraph with a cut-edge has chromatic index 4. (See [5].)

Corollary 2.5. Let G be a 3-regular multigraph with a cut-edge. Then G is
not zero-sum Vj-magic. O

We now turn to Z4-magic graphs.

Observation 2.8. Suppose that G is a zero-sum Z4-magic multigraph, and
suppose v € V(G). Let E, denote the set of edges incident to v.

(i) If the degree of v is 3, then for every zero-sum Z4-magic labeling ¢ of
G, either (1) two edges in E, receive the label 1 under ¢ and one edge in E,
receives the label 2 under ¢, or (2) two edges in E, receive the label 3 under ¢
and one edge in E, receives the label 2 under ¢.

(ii) If the degree of v is 2, then for every zero-sum Z4-magic labeling ¢ of G,
either (1) the two edges in E, each receive the label 2 under ¢, or (2) the two
edges in E, receive the labels 1 and 3 under ¢. O

Theorem 2.7. Let G be a 3-regular multigraph. Then G is zero-sum Z4-magic
if and only if G has a 2-regular spanning subgraph.
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Proof: (—) Suppose 7 is a zero-sum Z4-magic labeling of G. From Observation
2.6, every vertex in V(G) is incident to one and only one edge with label 2 under
7. Let M = {e € E(G)|y(e) = 2}. Then G—M is a 2-regular spanning subgraph
of G.

(~) Suppose that H is a 2-regular spanning subgraph of G. Let 7 be the
mapping from E(G) into 2] defined by v(e) = 1 for e € E(H), and 2 otherwise.
Then 7 is a zero-sum Z4-magic labeling of G. O

Corollary 2.8. Let G be a 3-regular multigraph. Then the following are
pairwise equivalent:

(i) G has a 2-regular spanning subgraph

(ii) for every non-negative integer j, (4j + 1)-pe(G) is Z4-magic

(iii) for some non-negative integer j, (47 + 1)-pe(G) is Z4-magic.
Proof: This follows from Theorem 2.7, mz, = 4, and Theorem 1.3(ii). O

Clearly, each multigraph G falls into one of four categories: (1) G is both
Z,-magic and Vj-magic; (2) G is neither Z4-magic nor V;-magic; (3) G is 24-
magic and not Vj-magic; and (4) G is V4-magic and not Z,-magic. Let G be
the collection of all (loopless connected) 3-regular multigraphs, and let G, be
the subset of G containing the simple (multi)graphs in G. Also, let pe(G) denote
the collection of 1-pendant extensions of the multigraphs in G and let pe(G,) be
the subset of pe(G) containing the 1-pendant extensions of simple graphs in G,.
We make the following observations.

The multigraph G; of smallest order in G is the order-3 dipole, which has
chromatic index 3 and contains a 2-regular spanning subgraph. (See Figure 2.)
Thus, by Theorems 2.3 and 2.7, G, is both zero-sum Z4-magic and zero-sum
V,-magic. By Theorem 1.3(i), it therefore follows that pe(G1) is the multigraph
of smallest order in pe(G) that is both Z4-magic and V4-magic.

o~
<<

The multigraph G; of smallest order in G
that is both zero-sum 2Z4-magic and zero-sum Vj-magic.

Figure 2.

Similarly, the simple graph of smallest order in G, with chromatic index
3 and a 2-regular spanning subgraph is K. Thus, by Theorems 2.3, 2.7 and
1.3(i), it follows that pe(K,) is the simple graph of smallest order in pe(Gs)
that is both Z;-magic and V;-magic. We note that there are infinitely many
connected multigraphs in pe(G) that are both Z4-magic and V-magic.

The multigraph G, of smallest order in G with neither chromatic index 3
nor a 2-regular spanning subgraph has order 10 and is displayed in Figure 3.
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(See [5].) It follows (from Theorems 2.3, 2.7, and 1.3(i)) that pe(G,) is the
-multigraph of smallest order in pe(G) that is neither 2;-magic nor Vi-magic.

The multigraph G; of smallest order in G
that is neither zero-sum 2Z4-magic nor zero-sum V;-magic.

Figure 3.

The simple graph G5 of smallest order in G, with neither chromatic index
3 nor a 2-regular spanning subgraph has order 16 and is displayed in Figure 4.
(See [5].) Thus pe(Gs) is the graph of smallest order in pe(G,) that is neither Z-
magic nor V;-magic. Note that there are infinitely many connected multigraphs
in pe(G) that are neither Z,-magic nor V3-magic.

d .

The simple graph G3 of smallest order in G,
that is neither zero-sum Z;-magic nor zero-sum V;-magic.

Figure 4.

The multigraph G4 of smallest order in G that does not have chromatic index
3 yet has a 2-regular spanning subgraph is displayed in Figure 5. Thus re(Gy)
is the multigraph of smallest order in pe(G) that is Z,-magic and not V;-magic.
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The multigraph G, of smallest order in G
that is zero-sum Z4-magic and not zero-sum Vj-magic.

Figure 5.

The two simple graphs Gs and Gg of smallest order in G, that do not have
chromatic index 3 yet have 2-regular spanning subgraphs are displayed in Figure
6. Thus pe(Gs) and pe(Gs) are the graphs of smallest order in pe(G,) that are
Z4-magic and not Vj-magic. There are infinitely many connected multigraphs
in pe(G) with this property.

Gs (the Petersen graph) Gs

Simple graphs of smallest order in G,
that are zero-sum Z;-magic and not zero-sum V;-magic.

Figure 6.

We note that every zero-sum Vg-magic multigraph in G is also zero-sum Z;-
magic. To see this, suppose G is zero-sum Vj-magic. Then by Theorem 2.3, G
has chromatic index 3. Let C be a 3-edge coloring of G with colors e,b and ¢,
and let H,; be the subgraph of G whose edges are colored either a or b under
C. Then H,  is a spanning 2-regular subgraph of G, implying by Theorem 2.7
that G is zero-sum Z4-magic.

In order to establish the existence of multigraphs that are V4-magic but not
2,-magic, we expand our discussion from 3-regular multigraphs to multigraphs
G such that 2 = §(G) < A(G) =3.

We begin with a construction. Let G = (V, E) be a multigraph with a
vertex v of degree 3 incident to distinct edges e, ez, e3. We assume that besides
being incident to v, edge e; is incident to vertex w;. (Since we are dealing with
multigraphs, the vertices wy, w2, w3 need not be pairwise distinct.) Then G(v)
is the graph that results by replacing each edge e;, 1 <4 < 3, by the structure
in Figure 7.
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Zey,2

Ze;,1 Ze;,3 Wi

Structure to replace edges incident to v
in the formation of G(v)

Figure 7.

In Figure 8, we illustrate Gy (v) where G, is order-3 dipole illustrated in Figure
2.

v A

The multigraph G, (v)
Figure 8.

Theorem 2.9. Let G be a 3-regular multigraph with chromatic index 3 and
let v € V(G). Then G(v) is zero-sum V;-magic.

Proof. Let H denote the 3-regular multigraph that results by smoothing each
of the three vertices of degree 2 in G(v). Since G has chromatic index 3, it is
easily checked that H also has chromatic index 3. Thus by Theorem 23, His
zero-sum Vg-magic. Lemma 2.2 then implies that G(v) is zero-sum Vj-magic. O

Corollary 2.10. Let G be a 3-regular multigraph with chromatic index 3 and
let v € V(G). Then for every non-negative integer 7, (27 + 1)-pe(G(v)) is V-
magic. Hence, for every non-negative integer j, (45 + 1)-pe(G(v)) is V-magic.

Proof: This follows from Theorem 2.9, my, = 2, and Theorem 1.3(ii). O

We note that the next theorem does not require the 3-regularity of G, but
rests solely on the existence of a vertex of degree 3.

Theorem 2.11. Let G be a multigraph with vertex v of degree 3. Then G(v)
is not zero-sum Z;-magic.

Proof: Suppose to the contrary that ¢ is a zero-sum Z4-magic labeling of G(v).
By making appeals to Observation 2.6, we note that since v has degree 3, there
exists ¢ such that ¢({v, z.,,1}) = 2. Hence ¢({ze.,1, Zeg2}) = P ({Zes 1) 2e0,3}) =
a € {1,3}, implying ¢({ze, 2, 2,3}) = —a, a contradiction of Observation 2.6
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with respect to the labels of the edges incident to ze,,3. O

Corollary 2.12. Let G be a 3-regular multigraph and let v € V(G). Then for
every non-negative integer j, (4j + 1)-pe(G(v)) is not Z4-magic.

Proof: This follows from Theorem 2.11, mz, = 4, and Theorem 1.3(ii). O

By corollaries 2.10 and 2.12, we are now able to conclude the existence of
infinitely many multigraphs that are V3-magic but not Z4-magic.

Theorem 2.13. Let G be a 3-regular multigraph with chromatic index 3 and let
v € V(G). Then for every non-negative integer j, (4j + 1)-pe(G(v)) is V;-magic
but not Z;-magic. O

As noted earlier, the 3-regular multigraph in G with smallest order is G
(given in Figure 2) with chromatic index 3. So by Theorem 2.13 with j = 0,
pe(G1(v)) (given below in Figure 9) is V;-magic but not Z;-magic. We believe
that among multigraphs with these magic properties, pe(G1(v)) is unique with
smallest order. Moreover, by Lemma 2.2 and theorems 1.3(ii), 2.9, and 2.11,
performing k subdivisions of any edge of Gy will result in a (simple) multigraph
G} such that Gj(v) has a 1-pendant extension with order 2(11 + k) that is
V,-magic but not Z;-magic. We thus have the following:

Theorem 2.14. For all n > 11, there exists a simple connected graph of order
2n that is V;-magic but not Z4-magic. O

N

The multigraph pe(G1(v))
Figure 9.

We observe that although G;(v) is zero-sum Vj-magic and not zero-sum Z,-
magic, it is the case that G1(v) is V;-magic (since G1(v) is zero-sum V4-magic)
and Z,;-magic (since it is easy to construct a labeling of Gy (v) with Z4-magic
value 2).

To this point, our search for multigraphs that are zero-sum Vs-magic but
not zero-sum Z4-magic has focussed upon the structure of connected loopless
multigraphs with vertices of degree 2 or 3. Within the scope of this paragraph,
let us expand the definition of multigraph to include those structures with loops,
and let us assume that G is a connected multigraph such that 2 = §(G) <
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A(G) = 8, the order of G is at least 2, and G has at least one loop. Then it is
easily checked that the (perhaps multiple) subdivision of at least one of those
loops results in a multigraph G’ that is not zero-sum V;-magic. We thus see that
if G’ is zero-sum V;-magic with order at least 2 and 2 < §(G’) < A(G') = 3, the
smoothing of any of its vertices of degree 2 cannot result in a multigraph with
a loop.

3. Additional comments and results.

In the process of developing the ideas that led to the constructions in Section
2, we discovered other related results that may be of interest.

First, we recall that for fixed positive integer y, u-pe(G) is the multigraph
obtained from G by attaching p pendant edges to each vertex of G. This
definition can be generalized in such a way that the number of pendant edges
attached to vertex v is j,, resulting in a multigraph G’ in which not all vertices -
have the same number of attached pendant edges. We note that Theorem 1.3
can be generalized accordingly; for example, it is easy to see that if A is an
abelian group with elements of maximum finite order m 4, and if j, = kyma +1
for some non-negative integer k,, then G is zero-sum A-magic if and only if G'

is A-magic.

Second, Corollary 2.5 indicates that no 3-regular multigraph G with a cut-
edge is zero-sum V;-magic, and is proved using the fact that the chromatic index
of G is necessarily 4. We present a stronger result on multigraphs with cut-edges
for A = @7, 2, (that is, the direct sum of n copies of 2;) for each n > 1.

Theorem 3.1. Let G be a connected multigraph with a cut-edge e* = {z,y}.
Then for all positive integer n, G is not zero-sum @O, Zo-magic.

Proof: If G is isomorphic to K3, then the result is clear. Thus, we may
assume that the multigraph G — {e*} has two components G, and G, where,
with no loss of generality, G, contains vertex = and has order at least 2. We
proceed by contradiction, assuming that for some positive integer n, there exists
a zero-sum @}, Z>-magic labeling ¢ of G. Let E; denote the set of edges in
E(G,) incident to z, and let E; = E(G;) — E;. Noting that wy(v) = 0 for
every v € V(G), we consider 2 0eV(Gs)-{z} Wo(v). This sum, clearly 0, is
equal to ) . B 9(e) + 2 ¢ B, 2¢(e). Since 2z = 0 for every z € @, 2,, it
follows that 3 .z 2¢(e) = 0, implying that 2 ecE, 9(€) = 0. Therefore, since
wy(z) = 0 and w¢(m) = ¢(e*)+3_.c g, #(e), it must be the case that ¢(e*) = 0,
contradicting the definition of labeling. O

Third, as noted in the Introduction, many papers on the topic of group-
magic labelings have concerned themselves with the integer-magic spectrum of
a multigraph G, defined to be the subset im(G) of N such that 1 € im(G) if
and only if G is Z-magic and k > 2 € im(G) if and only if G is Zy-magic.
Analogously, we define the zero-sum integer-magic spectrum of G to be zim(G)
(a subset of N), where 1 € zim(G) if and only if G is zero-sum Z-magic and
k > 2 € 2im(G) if and only if G is zero-sum Zx-magic. We note that for any
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multigraph G, 2 € zim(G) if and only if every vertex in V(G) has even degree.
Additionally, it can be easily checked that for 2V equal to the set of positive
even integers,

) [N ifniseven
zim(Ca) = { 2N ifn is odd.

More generally, for arbitrary nontrivial abelian group A, and for any multi-
graph G that has both even size and an Euler tour, we observe that G is zero-sum
A-magic. (For any a € A*, assign labels a and —a in alternating fashion along
the edges of the tour.) Therefore, 2im(G) = N. It now follows that

Theorem 3.2. For any integer k > 1, every 4k-regular multigraph has a
zero-sum integer-magic spectrum equal to N. O

Now suppose that G is a 3-regular multigraph. We have already observed
above that G cannot be zero-sum Z,-magic. However, if G is zero-sum Z4-
magic, then by Theorem 2.7, G has a 2-regular spanning subgraph H. For fixed
k > 3, we form a zero-sum Zi-magic labeling ¢ of G by assigning 1 to each edge
in H and k—2 to each edge of G— H. Analogously, we form a zero-sum Z-magic
labeling by assigning 1 to each edge in H and —2 to each edge of G — H. Thus
we have

Theorem 3.3. Let G be a 3-regular multigraph. If G is zero-sum Z;-magic,
then 2im(G) =N - {2}. O '

Since the simple graph Gj in Figure 4 is not zero-sum Z;-magic and clearly
not zero-sum Z,-magic, we explored zim(Gs), discovering that 2im(Gs) = N —
{2,4}. To see this, we first note that all 3-regular multigraphs G are zero-sum
Z3-magic with the assignment of 1 to each edge in G; hence 3 € zim(G3). For
k > 5, we form a zero-sum Zx-magic labeling of G3 by assigning

: 1 to each edge of the left and right 5-cycles;

: 4 to the vertical cut-edge and each of the two diagonals in the (middle)
5-cycle that is incident to that vertical cut edge

: k — 2 to all other edges.

Thus k € 2iém(Gs) for k > 5. Finally, by replacing k — 2 with —2 in the above
labeling, we have a zero-sum Z-magic labeling of G3, giving 1 € zim(G3s).

A similar argument shows that zim(Gz) (see Figure 3) is also N — {2,4}.
For k > 5 or k = 0, we assign the label 4 to the vertical cut-edge, the label 1
to the diagonal and vertical edges of the left and right triangles and the two
“multi”-edges of the middle triangle, and k — 2 to the remaining edges. We
conjecture that for any 3-regular multigraph G, zim(G) is either N — {2} or
N -{2,4}.

We now close this section with some results on zero-sum A-magic labelings
of Cartesian products of multigraphs. Recalling that the Cartesian product of
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multigraphs G; and Gy, denoted G10Gg, is a graph with |V(G})| row copies of
G2 and |V(G?2)| column copies of Gy, we note the following theorems, the first
of which is given without proof:

Theorem 3.4. For i = 1,2, if G; is a zero-sum A;-magic multigraph, then
(i) G10G: is zero-sum A; x Az-magic
(ii) if A} = Ap = A, then G,00G is zero-sum A-magic
(iii) zim(G1) [N zim(G2) C zim(G10G,). O

Theorem 8.5. Let Q,, denote the n-dimensional hypercube. For n > 1,

¢ ifn=1
zZm(Qn) =4 N if n is even
N-{2} ifn>3isodd

Proof: Proceeding by induction on the evens, we see that the claim is clearly
true for n = 2 since @ is C4. Now suppose that k is an even integer such that
zim(Qk) = N. Since Qg2 is Qx0Q2, the results follows from Theorem 3.4(ii).
Thus zim(Q,) = N if n is even.

Suppose n is odd. The claim is clearly true if n = 1. Moreover, by Theorem
2.7, Q3 is zero-sum Z4-magic. Thus the claim is true for n = 3 by Theorem 3.3.
Now suppose n is an arbitrary odd integer at least 5. Then Q,, is Q,—_30Qs,
where n — 3 is an even integer at least 2. Since zim(Q3) = N ~ {2} and
zim(Qn-3) = N as previously shown, it follows from Theorem 3.4(jii) that
N — {2} C zim(Q,). But 2 is not in the zero-sum integer-magic spectrum of
any odd regular graph, so the result follows for odd n. O

It is clear that if a multigraph G is zero-sum A-magic for all abelian groups
A, then zim(G) = N. To consider the converse, let A be an arbitrary abelian
group with non-identity element a and suppose that zim(G) = A. Then the
subgroup of A generated by a, denoted < a >, is either isomorphic to Z or
isomorphic to Z; for some integer k > 2. Thus, G is zero-sum < a >-magic,
implying that G is zero-sum A-magic. We have therefore shown

Theorem 3.6. Let G be a multigraph. Then zim(G) = N if and only if G is
zero-sum A-magic for every non-trivial abelian group A. 0

Theorem 3.6 now leads to the following corollary.

Corollary 3.7. Let Q,, denote the n-dimensional hypercube.

(i) If n > 2 is even, then Q,, is zero-sum A-magic for every non-trivial abelian
group A.

(ii) If n > 3 is odd, then Q,, is zero-sum A-magic for every non-trivial abelian
group A except A isomorphic to 2,.
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Proof: (i) This follows from Theorems 3.5 (for even n) and 3.6.

(ii) By Theorem 3.5 for odd n 2> 3, Q,, is not zero-sum Z>-magic. Thus, we
suppose to the contrary that for some odd ng > 3 and some non-trivial abelian
group Ag not isomorphic to Z;, @, is not zero-sum Ag-magic. Then for every
non-trivial subgroup H of Ay, Qn, is not zero-sum H-magic. Thus, every non-
identity element a in A has order 2, implying that Ay is isomorphic to &2, 2,
for some positive integer m > 2. So, since V, is a non-trivial subgroup of &%, 2,
Qq, is not zero-sum V;-magic. But Q3 is zero-sum Vj-magic by Theorem 2.3,
giving no > 5. And, Q; is zero-sum V;-magic by inspection. Thus, by Theorem
3.4(ii) and an inductive argument, Qy, is zero-sum Vy-magic for all odd n > 3,
a contradiction of the conclusion that @, is not zero-sum Vj-magic. O

We close with a result on the Petersen graph.

Theorem 3.8. The Petersen graph is zero-sum A-magic for every non-trivial
abelian group A except for A isomorphic to 23 or Vj.

Proof: Let P denote the Petersen graph. In the discussion surrounding Figure
6, we have established that P is zero-sum Z4-magic and not zero-sum V4-magic.
Thus by Theorem 3.3, zim(P) = N — {2}, implying that P is not zero-sum
Z,-magic and P is zero-sum A-magic for any non-trivial abelian group A with
an element of order k, 3 < k < co. We now claim that except for A isomorphic
to 2, or V4, P is zero-sum A-magic for any non-trivial abelian group with non-
identity elements each of order 2. Since any such group is isomorphic to &7, Z2
for some n > 3, it suffices to show that P is zero-sum ®2_, Z2-magic. We present
such a labeling in Figure 10. O

A zero-sum @3, Z>-magic labeling of the Petersen graph
Figure 10.

The authors wish to thank the referee for comments that resulted in an
improved paper.
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