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Abstract

A starter in an odd order abelian group G is a set of unordered
pairs S = {{si,t:} : 1 < i < (|G] - 1)/2}, for which {s;} U {t;} =
G\ {0} and {*(s;i —t:)} =G\ {0}. If s; +¢; = 8; +t; holds only for
i = j, then the starter is called a strong starter. Only cyclic groups
are considered in this work, where starters and strong starters up
to order 35 and 37, respectively, are classified using an exact cover
algorithm. The results are validated by double counting.

1 Introduction

A starter in an odd order abelian group G is a set of unordered pairs
S = {{s,-,t,-} :1<i < (IGI - 1)/2}, for which {8,‘} U {t,'} = G\ {0} and
{*(si —t:;)} = G\ {0}. If s; +t; = s; + t; holds only for i = j, then the
starter is called a strong starter.

Stanton and Mullin [6] introduced starters about 40 years ago in an
article concerning construction of Room squares. Starters are also useful
in constructing other combinatorial structures, such as Room cubes, How-
ell designs, Kirkman triple systems and Kirkman squares, 1-factorizarions
of Kan, and round robin tournaments [1, 4. They can also be used to
construct cyclic packings, which in turn can be used to construct optimal
optical orthogonal codes.

Pike and Shalaby [5] computed the number of starters in cyclic groups
up to order 31 and the value for Zss can be found in [1]. Strong starters
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up to Zy7 have been enumerated by Kocay, Stinson and Vanstone [4] using
an orderly algorithm.

Two starters S; and S in an abelian group G are equivalent, if there
exists # € Aut(G), such that {8(z),0(y)} € Sz for all {z,y} € S1. An auto-
morphism of a starter S is an element § € Aut(G), such that {6(z),6(y)} €

S for all {z,y} € S.
The automorphisms of a cyclic group of order 7 are given by (7, p. 157]

8(z) = mz (mod n), ged(m,n)=1. (1)
The number of valid multipliers m is ¢(n).

Example 1  The two strong starters in Z7 are S1 = {{1,3},{2,6},{4,5}}
and Sy = {{1,5},{2,3},{4,6}}. These are equivalent; any multiplier m €
{3,5,6} will map one starter onto the other.

In this work, an exact cover algorithm is applied to construct and clas-
sify starters and strong starters in cyclic groups up to order 35 and 37,
respectively. Double counting based on the orbit-stabilizer theorem is uti-
lized to validate the new results. Some incorrect values are detected in the
process of verifying old results.

2 Classification

The classification of starters and strong starters consists of two main prob-
lems, generating all the starters and rejecting equivalent ones, in order to
get the number of inequivalent ones.

Generating all the starters can be considered an instance of the ezact
cover problem. In the exact cover problem, we have a set and a collection
of its subsets, and the task is to cover the set with the given subsets so that
each element of the set is covered exactly once. An instance of the exact
cover problem can be formulated as a system of integer linear equations.

2.1 Exact cover formulation

All nonzero elements of the group G = Z, have to be covered exactly once
by the elements of the pairs of the starter and also by the difference of the
elements in a pair.

Example 2  An exact cover formulation for finding starters in Zs is given
by
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(1 0 0 1 0 1] [z12 [1]
0110 1 0|z 1

1 11000 :2:1’4_1 L.
1001 1 0f|egs| |1 =01}
01010 1f |z 1

0 0 1 0 1 1] [za4 1]

The element z; ; takes value 1 if the pair ,7 is in the starter, and 0
otherwise. The first and the second row declare that the differences 1 and
4, and 2 and 3, respectively, should be covered exactly once. The last four
rows declare that the elements 1, 2, 3 and 4 should occur in exactly one

pair.

When searching for starters in the cyclic group Z, as in Example 2,
the total number of unknowns is (®;) and the number of equations is
(r-1)/2+n—-1=(3n-3)/2.

The instance of the exact cover problem obtained can be solved with the
library 1libexact [2], which is based on Knuth’s Dancing links algorithm
[3).

When searching for strong starters, the algorithm is modified to reject
any partial solutions containing pairs with equal sums.

2.2 Isomorph rejection

Solving the instances as discussed above will output all distinct starters.
In order to find the number of inequivalent starters, isomorph rejection
has to be carried out for each solution found to this aim. The elements
of each pair are multiplied modulo n with the integers m satisfying the
conditions 1 < m < n and ged(m,n) = 1, and the starter is rejected if
the multiplication results in a starter that is lexicographically smaller than
the original one. Otherwise, the starter is accepted, and the size of its
automorphism group is stored.

2.3 Validation of results

Double counting is utilized to validate the results. By the orbit-stabilizer
theorem, the total number of distinct starters of order n is

I8(n)
$(n)
DS(n) = T
(m) 2 TAut(S,)]
where IS(n) is the number of inequivalent starters of order n, ¢(n) is the
order of the group described in (1) acting on starters, and S, Ss, . . . yS18(n)
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are the inequivalent starters of order n. The notations DSS(n) and I1SS(n)
will be used in the discussion of the results for the number of distinct and
inequivalent strong starters of order n, respectively.

3 Results

Starters and strong starters are here classified for cyclic groups up to order

.35 and 37, respectively. The number of distinct and inequivalent starters
and strong starters are presented in Table 1. Some discrepancies in com-
parison with values obtained by Kocay et al. [4] and surveyed in [1] were
encountered. Values differing from the ones presented in previous articles
are marked with a dagger. The distinct strong starters in Z7 and Z;3 are
presented in Example 1 and Table 2, respectively. In Table 2, the first four
and the last four starters form equivalence classes.

Table 1: Distinct and inequivalent starters and strong starters

n -DS(n) IS(n) DSS(n) ISS(n)
3 1 1 0 0
5 1 1 0 0
7 3 2 12 1
9 9 3 0 0
11 25 5 4 2
13 133 14 8 2
15 631 87 32 4
17 3,857 242 224 14
19 25,905 1,453 800 52
21 188,181 15,715 t 6,660 555
23 1,515,283 68,882 27,554 1,257
25 13,376,125 668,812 158,680 7,934
27 128,102,625 7,116,903 1 1,201,626 t 66,757
29 1,317,606,101 47,057,378 9,415,980 336,297

31 14,534,145,947 484,472,150 76,761,968 2,558,804
33  170,922,533,545 8,546,128,509 672,858,900 33,642,945
35 2,138,089,212,789 89,087,066,368  6,015,305,136 250,637,748
37 59,514,095,596 1,653,170,339

The starters and strong starters with nontrivial automorphisms are cat-
egorized by the order of automorphism group in Table 3 and Table 4, re-
spectively. Note that there exists always a patterned starter § = {{—z,z} :
z € G\ {0}}, which has an automorphism group of order ¢(n).
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Table 2: Distinct strong starters in Z;3
{1,104 {2,8} {8,4} {57} {6,11} {9,12}
{1,10} {2,7} {3,4} {511} {6,8} {9,12}
{1,4} {2,8} {3,12} {57} {6,11} {9,10}
{1,4} {2,7} {3,12} {5,11} {6,8} {9,10}
{1,7} {2,12} {3,8} {4,5} {6,10}f {9,11}
{1,2} {3,6} {4,11} {59} {7,12} {8,10}
{1,11} {2,4} {3,7} {510} {6,12} {8,9}
{1,6} {29 {35 {48 {7,10} {11,12}

Classifying the starters in Z35 took about 23 months of CPU time on an
HP CP4000 BL ProLiant supercluster with 2.6 GHz AMD Opteron 64-bit
processors. The CPU time as well as the number of starters increases by a
factor of about ten when the order of the group increases by 2. Therefore,
computing the starters in Z37 would take about 20 years of CPU time on
current hardware and with the current implementation.

Note that an overall speed-up could be obtained by carrying out iso-
morph rejection on certain partial starters as well. However, the order of
the automorphism groups of the groups considered are rather small—for
example, 36 and 24 for Z3; and Zsg, respectively—so, taking the slow-
down mentioned in the previous paragraph into account, one further group
could then be considered. Unfortunately, by using such an approach, the
validation of the results by double counting would not be possible.

Acknowledgements

The authors are grateful to the Computing Center of Helsinki University
of Technology and CSC - The Finnish IT Center for Science for providing
computing resources.

References

(1] J H Dinitz, Starters, in: C J Colbourn, J H Dinitz (Eds.), Handbook of
Combinatorial Designs, Second edition. Chapman & Hall/CRC, Boca
Raton, 2007, pp. 622-628.

[2] P Kaski, O Pottonen, libezact User’s Guide (Version 1.0). HIIT Tech-
nical Reports 2008-1, Helsinki Institute for Information Technology,
2008.

157



Table 3: Nontrivial automorphisms of starters

A\JAut(S)] 2 3 4 5 6 7 8 0 10
3 1
5 1
7 1 1
9 1 1
11 2 1
13 3
15 4 7 1
17
19 14 4
21 33 10 11
23
25 6
27 117 13
29 19
31 836 67
33 3,511 66 25
35 30,543 367 350 49

n\[Aut(S)] 11 12 15 16 18 20 22 24 28 30

3
5
7
9
11
13 1
15
17 1
19 1
21 1
23 5 1
25 1
27 1
29 1
31 7 1
33 1
35 16 1
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Table 4: Nontrivial automorphisms of strong starters
n\|Aut(S)| 3 5 7 90 11 15
7 1
11 2
13 2
15
17
19 6 4
21
23 5
25
27
29 14
31 192 34 7
33
35 68
37 1,500 19
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