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Abstract

We prove that the complete graph K, can be decomposed into
rhombicuboctahedra if and only if v = 1 or 33 (mod 96).

1 Introduction

The spectrum of integers v for which the complete graph K, can be decom-
posed into copies of the graph of one of the Platonic solids is determined for
the tetrahedron, octahedron and cube but only partial results are available
for the icosahedron and dodecahedron. The current state of knowledge, see
also [1], appears to be as follows.

1. Tetrahedron designs are equivalent to Steiner systems S(2,4,v). The
necessary and sufficient condition is v = 1 or 4 (mod 12), [9).

2. Octahedron designs are equivalent to Steiner triple systems S(2, 3, v)
which can be decomposed into Pasch configurations. The necessary
and sufficient condition is v = 1 or 9 (mod 24), v # 9, [8], [2).

3. Cube designs exist if and only if v = 1 or 16 (mod 24), [10], [4].

4. A necessary condition for the existence of icosahedron designs is v =
1, 16, 21 or 36 (mod 60). They are known to exist for v = 1 (mod
60), (3], and for v = 16, [1].

5. A necessary condition for the existence of dodecahedron designs is v =
1, 16, 25 or 40 (mod 60). They are known to exist for v = 1 (mod 60),
3], and for v = 25,40 and 76, [1]. There is no dodecahedron design
of order v = 186, [1].
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A natural extension of the above is to consider decompositions into the
Archimedean graphs, of which there are two infinite families (the prisms
and antiprisms), as well as thirteen further examples. However, the only
one which seems to have received any attention is the cuboctahedron and in
[7]) it was shown that such designs exist if and only if v = 1 or 33 (mod 48).
Our investigations suggest that, although decomposition results for some of
the other Archimedean graphs can be obtained, determining the existence
spectrum completely is not easy. However, in the case of the rhombicuboc-
tahedron we have been successful in obtaining the entire spectrum. It is
easy to show that the admissibility condition for a rhombicuboctahedron
design on v points is v = 1 or 33 (mod 96). We prove the existence of such
systems for all these orders of v. This paper therefore can be regarded as
a companion to {7]. In short, we prove the following theorem.

Theorem 1.1 Rhombicuboctahedron designs exist if and only if v =1 or
33 (mod 96).

2 Construction

We first present rhombicuboctahedron designs of orders 33 and 97, both of
which were obtained by a computer search assuming appropriate cyclic au-
tomorphisms. The rhombicuboctahedron has 24 vertices, 48 edges and 26
faces, and we will represent them by ordered 24-tuples (4, B,C, D, E, F,G,
H,J K,L,M,N,P,Q,R,S,T,U,V,W, X,Y, Z) where the co-ordinates rep-
resent vertices as follows.
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Lemma 2.1 There erists a rhombicuboctahedron design of order 33.
Proof. Let the vertex set of the complete graph be Z;; x Z3. The decom-
position consists of the rhombicuboctahedra
((0,0,(0,1),(0,2),(1,0),(1,1),(2,0),(1,2),(2,2),(4,1),(6,0),(6,1),(9,2),(6,2),(9,0),
(7,0),(3,0),(3,2),(10,1),(4,2),(8,0),(2,1),(7,1),(8,2),(9,1)) under the action of
the mapping (i, ) — (¢ + 1, 7) (mod 11). O

Lemma 2.2 There ezists a rhombicuboctahedron design of order 97.

Proof. Let the vertex set of the complete graph be Zp7. The decomposi-
tion consists of the rhombicuboctahedra (0,4,1,2,6,11,7,18,3,16,34,51,25,5,
27,59,55,96,71,94,52,21,37,73) under the action of the mapping i + i + 1
(mod 97). O

In general our method of proof uses a standard technique (Wilson'’s
fundamental construction). For this we need the concept of a group divisible
design (GDD). Recall therefore that a 3-GDD of type u! is an ordered triple
(V,G, B) where V is a base set of cardinality v = tu, G is a partition of V'
into ¢ subsets of cardinality u called groups and B is a family of subsets of
cardinality 3 called blocks which collectively have the property that every
pair of elements from different groups occurs in precisely one block but
no pair of elements from the same group occurs at all. We will also need
3-GDDs of type u‘w!. These are defined analogously, with the base set V
being of cardinality v = tu + w and the partition G being into ¢ subsets of
cardinality » and one set of cardinality w.

Two of the main ingredients which we will need in applying Wilson’s
fundamental construction are given in the above lemmas, and the third is
a decomposition of the complete tripartite graph K6,16,16 into 16 rhom-
bicuboctahedra. We present this next.

Lemma 2.3 There ezists a decomposition of the complete tripartite graph
K6.16,16 into 16 rhombicuboctahedra.

Proof. Let the three partitions of Kig,i6,6 be {(i,0) : 0 < i < 15},
{(3,1): 0 <4 < 15} and {(¢,2) : 0 < i < 15}. The decomposition consists of
the rhombicuboctahedra ((0,0),(0,1),(0,2),(1,0),(1,2),(2,1), (2,2),(4,0),(7,2),
(10,1),(15,1),(13,0),(9,1),(11,0),(3,2),(3,0),(15,2),(8,1),(5,2),(13,1),(14,0),
(10,2),(10,0),(6,1))

under the action of the mapping (i, ) — (i + 1,) (mod 16). ‘
We will refer to this design as a rhombicuboctahedron-GDD of type 162,

|
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We are now in a position to present the main results.

Lemma 2.4 There ezists a rhombicuboctehedron design of order v = 96t +
1, t>3.

Proof. There exists a 3-GDD of type 6°,t > 3, [11], see also [6]. This
is called the master GDD. Replace each element of the base set V by 16
elements (i.e. inflate by a factor 16) and adjoin a further element, co. On
every inflated group of the 3-GDD, together with the element oo, place the
rhombicuboctahedron design of order 97 from Lemma 2.2. Further, replace
each block of the master GDD by the rhombicuboctahedron-GDD of type
16® from Lemma 2.3, called the slave GDD. 0

Lemma 2.5 There exists a rhombicuboctahedron design of order v = 96t +
33, t>3.

Proof. There exists a 3-GDD of type 6:21,¢ > 3, [5], see also [6]. Asin the
previous lemma, replace each element of the base set V' by 16 elements and
adjoin a further element, co. Again on every inflated group of the 3-GDD,
together with the element oo, place the rhombicuboctahedron design of or-
der 97 from Lemma 2.2 or, in the case of the inflated group of cardinality
32, the rhombicuboctahedron design of order 33 from Lemma 2.1. Finally
replace each block of the master GDD by the slave rhombicuboctahedron
GDD of type 16 from Lemma 2.3. O

The above just leaves the orders v = 129, 193 and 225. Rhombicuboc-
tahedron designs for these orders can be constructed using respectively as
the master GDD, a 3-GDD of type 2¢, 2% and 2%6!, [11], [5], and proceeding
as in the proofs of Lemmas 2.4 and 2.5 using the rhombicuboctahedron de-
sign of order 33 from Lemma 2.1, the rhombicuboctahedron design of order
97 from Lemma 2.2 and the rhombicuboctahedron GDD of type 163 from
Lemma 2.3. We state this formally.

Lemma 2.6 There exist rhombicuboctahedron designs of orders 129, 193
and 225.
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