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Abstract

A set of Hamilton cycles in the complete graph K, is called a
Dudeney set if every path of length two lies on exactly one of the
cycles. It has been conjectured that there is a Dudeney set for every
complete graph. It is known that there exists a Dudeney set for K,
when 7 is even, but the question is still unsettled when 7 is odd.

In this paper, we define a black 1-factor in Kp1 for an odd
prime p, and show that if there exists a black 1-factor in Kpi1, then
we can construct a Dudeney set for Kp12. We also show that if there
is & black 1-factor in K41, then 2 is a quadratic residue modulo p.
Using this result, we obtain some new Dudeney sets for K, when n
is odd.
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1 Introduction

A Dudeney set for the complete graph K, is a set of Hamilton cycles with
the property that every path of length two (2-path) in K, lies on exactly
one of the cycles. We call the problem of constructing a Dudeney set in
K,, for all natural numbers “Dudeney’s round table problem”. Dudeney
posed this problem in 1907 and 1917 in his books; see [2] for a historical
summary. A Dudeney set for K, has been constructed when = is even [4].
In the case that n is odd, a Dudeney set for K, has been constructed in

the following cases:
(1) n=2F+1(k>1)[7);
(2) n=p+2 (p is an odd prime and 2 is a primitive root of GF(p)) [2];
(3) n=p+2 (pis an odd prime and -2 is a primitive root of GF(p)) (3];

(4) n = p+2 (p is an odd prime, 2 is the square of a primitive root of
GF(p) and p = 3 (mod 4)) [3];

(5) n = p+2 (p is an odd prime, 2 is the square of a primitive root of
GF(p), p=1 (mod 4), 3 is not a quadratic residue modulo p) [5};

(6) n=p+2 (p is an odd prime, —2 is the square of a primitive root of
GF(p), and either

(6-1) p=1 (mod 4) and 3 is not a quadratic residue modulo p [5}, or
(6-2) p =3 (mod 4) [5};
(7) some sporadic cases (n = 11,23,45 [2]; 27,29, 35,37 [6}).

In this paper, we define a black 1-factor in Kp4) for an odd prime p, and
we show that if there exists a black 1-factor in K., then we can construct
a Dudeney set for Kpy2. We also show that if there is a black 1-factor
in Kp41, then 2 is a quadratic residue modulo p. Using these results, we
obtain some new Dudeney sets for K,, when n is odd.

2 Notation and preliminaries

From now on, let p be an odd prime > 5 and put n = p+1 and r =
(p — 1)/2. Denote by K, = (V,, E,) the complete graph on n vertices,
where V, = {00} U {0,1,2,...,p — 1} is the vertex set and E, is the edge

set.
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For any integer ¢ (0 < ¢ < p — 1) define the 1-factor
F; = {{o0,i}} U {{a,b} € Ey, | a,b # c0,a + b = 2i (mod p)}.

Let o be the vertex permutation (00)(0 123 ... p—1) and put T = (o).
When C is a set of cycles or circuits in K, define £C = {0*C |0 < t <
p-1,CeC}.

Let H be a subset of {1,2,3,...,p — 1}. We call H a half-set mod p if
HU(-H)={1,2,3,...,p—1} and |H| = (p — 1)/2. It is well-known that
for any half-set H mod p, Z{Fy UF; | i € H} is a Dudeney set of K,,.

For any edge {a,b} € Kn, define the length d(a, b):

_ [min{p—|b—al,|b—al} (if a,b# c0)
d(a,b) = {oo (otherwise),

and define the colour ¢(a, b):
c(ab)=i (f{a,b}eF (0<i<p—1).

Two colours 4, j (0 < 4,5 < p—1) are said to be equivalent if i = j ori+j = p
and we write i ~ j. Note that the lengths of edges are o0, 1,2,...,7; the
colours of edges are 0,1,2,...,p — 1; and the non-equivalent colours of
edges are 0,1,2,...,r. The 1-factor F; (0 < i < p—1) is the 1-factor which
contains all the edges of colour i. In particular, we call the colour 0 white
and call F the white 1-factor.

Put ' =n+1 = p+ 2 and define the complete graph K,/ = (Vyr, En/),
where V. = V, U{A}. Clearly o induces a permutation of the edges in V,;
we will also denote the permutation by o = (c0)(A)(0123 --- p—1).

3 Black 1-factors
A 1-factor B is called a black 1-factor in K, if

(1) FoU B is a Hamilton cycle.
(2) B has all lengths {0, 1,2,...,7}.
(3) B has all non-equivalent colours except 0.

Note that all the lengths of B must be unique, but one colour must appear
twice. Let B be a black 1-factor in K, and put B = {e; = {21, },e2 =
{z2,92},...,€r41 = {Zr41,¥r41}}. Let the colours of the edges be i1, 12,
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... dr41, Tespectively. We may assume i, ~ ir41. Put H = {i1,i2,... yirks
then H is a half-set. So put

C={FoUFi,|1SSS'I‘},

then XC is a Dudeney set of K.
If we insert the vertex X into all the edges in B, we get a set of 2-paths in
K. Denote this set by B*; that is
BA = {(xB)A’yB) l 1 s L S r+ 1}'
- Put
B = Fu BA,

then B” is a circuit of K.
Proposition 3.1 Z(CU {B*}) has every 2-path in K, exactly once.

Proof. Divide the set of all 2-paths in Ky into 8 classes: (i) (a,b,c),
(ii) (a,00,b), (iii) (c0,a,b), (iv) (a,\,d), (v) (A a,b), (Vi) (A,00,a), (vii)
(A, a,00), (viii) (00, A, a), where a,b, ¢ # 0o, A.

(i), (ii), (iii) are also 2-paths in Kp, so they belong to XC.

(iv) Since B has all lengths, we have LB = E,,. Hence any 2-path (a, A, b)
belongs to £{B*}.

(v) We have {a, b}"t € Fy for some t (0 <t < p—1) as Fp has all lengths.
So we can assume that {a,b} € Fy without loss of generality. Therefore we
see that the 2-paths (), a, b) and (), b, a) belong to B*.

(vi), (vii) Similarly, we can assume a = 0. Then the 2-paths (), 0,0) and
(2,0, 00) belong to B*.

(viii) Similarly, we can assume that {00,a}?" = {oo,b} € B for some ¢
(0 £t < p—1). Then the 2-path (oo, A, b) belongs to B

By counting the number of 2-paths, we see that every 2-path appears only
once in Ky-. m]
For any integer s (1 < s < 7+ 1), the edge e, = {z,,y,} belongs to F;,.

Define for an integer s (1 < s <),

Fi,. =F,\ {{zs, yv}} U {{xa’)‘}’ {’\7 Ys}}-
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Put
B = {{271, yl}v vy {:r,., yr}t {xr+11 ’\}) {’\; yr+1}}-

For a set of cycles or circuits C, let 7(C) be the set of the 2-paths in C.

Proposition 8.2 7({RUF], |1<s<r}U{FRUB'}) =n({FRUF, |1<
s <r}U{ Fu B*}).

Proof. Since the set of all edges in (U1<s<rF;)UB? and the set of all edges
in (Ur<s<rF{) U B’ are the same, the proposition holds. n|

Theorem 3.1 H =X({FRUF, |1<s<r}U{FRUB’})is a Dudeney
set of K,.v.

Proof.  From Prop. 3.1 and 3.2, H has every 2-path in K,,: exactly once.
It is trivial that all elements of X are Hamilton cycles. Therefore X is a
Dudeney set of K. ]

We have proved that, if there exists a black 1-factor in Ky41, then we can
construct a Dudeney set of Kp2.

Example Let p=7,n=p+1=8,n"=p+2=9. Then

' B = {{oo,1},{5,6},{2,4},{0,3}}

is a black 1-factor in Kg. Put H = {1,2,3}. Then we have
B’\ = {(OO, A 1)’ (5, A,G)s (2) A 4): (01 A 3)})

and
Fi= {{°°’ Ab{A 1}, {0, 2}, {6,3}, {5, 4}}
Fy = {{00,2},{1,8},{0,4}, {5,2},{),6}}
F:; = {{°°’ 3}r {21 ’\}’ {A’ 4}’ {1’ 5}: {0: 6}}
B’ = {{o0, 1}, {5,6},{2,4},{0, 2}, {}, 3}}.

Thus we obtain a Dudeney set H of Kg:

H=1%{(,0,2,5,4,3,6,1,)),(c0,0,4,3,1,6, ), 5,2),
(00,0,6,1,5,2,),4,3),(0,0,,3,4,2,5,6, 1)}.
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4 Property of black 1-factors

In this section, we will find a necessary condition for the existence of a black
1-factor.

Lemma 4.1 Let p be a prime > 5 and put r = (p — 1)/2. Then we have
i1 i2 =0 (mod p).

Proof. 1t is known that Y .., i = r(r 4+ 1)(2r + 1)/6. Since p # 2,3, we
have 37, 12 = 271371r(r + 1)(2r 4+ 1) = 0 (mod p). o

Theorem 4.1 If there is a black 1-factor in Kp41, then 2 is a quadratic
residue modulo p.

Proof. Let B be a black 1-factor in Kpya:

B= {{001 bO}: {a'll bl}’ {(7.2, b2}7 ceny {ar’ br}}a

where bp # 0. Since B has edges of lengths oo, 1,2,...,r, we have

Z(a.- -b)?= Ziz =0 (mod p). (4.1)

i=1 i=1
Since B has edges of non-equivalent colours 1,2,...,m,¢c(c € {1,2,...,7}),
we have

B+ @ Nau+b) = Ziz +c=c¢ (modp)
i=1 i=1

from Lemma 4.1, that is,

2263 + 5 (as +bi)? = 22 (mod p). (4.2)

i=1

Adding (4.1) and (4.2), we have

r
2282 + 22(43 +52) =22 (mod p).

i=1
Since
r p—-1 r
B+ (a?+8) = >y = 2) i#=0 (mod p),
i=1 =0 i=1
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we have
262 = 22¢% (mod p).

Therefore 2 is a quadratic residue modulo p. o

It is unsettled whether the converse of the statement of Theorem 4.1 holds
or not. No counterexample has been found so far.

5 New Dudeney sets

To obtain a black 1-factor in K41, 2 must be a quadratic residue modulo p.
We see that there are infinitely many primes such that 2 is a quadratic
residue modulo p from the following Lemmas.

Lemma 5.1 [1, Theorem 95 (p. 75)] Let p be an odd prime. Then 2 is a
quadratic residue modulo p if and only if p = 41 (mod 8).

Lemma 5.2 [1, Theorem 15 (p. 13)] Let a be an integer # 0 and m a
positive integer. If a and m are relatively prime, then there are infinitely
many primes p such that p = a (mod m).

The primes less than 100 such that 2 is a quadratic residue modulo p are
as follows:

p=17,17,23,31,41,47,71,73, 79, 89, 97.
We found black 1-factors for all of the above primes except p = 97. There-
fore we obtain Dudeney sets of n = p + 2:

n=9,19,25,33,43,49,73,75,81,91.

Referring to the list of cases in the Introduction, n = 9,33 belong to (1),
n = 25,49, 73, 81 belong to (3), and n = 19,43 belong to (5). The values
n = 75,91 don’t belong to any of the cases. Thus we obtain Dudeney sets
of K75 and Kg,, for which the existence of Dudeney sets has been in doubt.

We finish by showing black 1-factors for p = 73, 89.

p=13:

0-32, 1-o0, 2-40, 3-71, 4-63, 5-57, 6-70, 7-50, 8-28, 9-69, 10-67, 11-42,
12-31, 13-68, 14-47, 15-39, 16-64, 17-29, 18-41, 19-21, 20-66, 22-26, 23—
60, 24-25, 27-37, 30-58, 33-72, 34-56, 35-61, 36-65, 38-53, 43-51, 44-55,
45-62, 46-49, 48-54, 52-59,
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p= 89:

50-35, 54-14, 75-84, 5-19, 70-72, 17-79, 10-44, 45-21, 68-18, 7148, 41—
42, 47-30, 59-1, 88-82, 7-27, 62-67, 22-81, 8-15, 74-66, 23-77, 12-64,
25-63, 26-38, 51-55, 34-16, 73-31, 58-87, 2-69, 20-53, 36-80, 9-52, 37-78,
11-32, 57-0, co—-65, 24-43, 46-33, 56-28, 61-86, 3-6, 834, 85—49, 40-29,
60-76, 13-39.
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