Black 1-factors and Dudeney sets

Midori Kobayashi¹
University of Shizuoka
Shizuoka, 422-8526, JAPAN
midori@u-shizuoka-ken.ac.jp

Brendan D. McKay
School of Computer Science,
Australian National University
Canberra, ACT, 0200, AUSTRALIA
bdm@cs.anu.edu.au

Nobuaki Mutoh University of Shizuoka Shizuoka, 422-8526, JAPAN muto@u-shizuoka-ken.ac.jp

Gisaku Nakamura Tokai University Shibuya-ku, Tokyo, 151-0063, JAPAN

Abstract

A set of Hamilton cycles in the complete graph K_n is called a Dudeney set if every path of length two lies on exactly one of the cycles. It has been conjectured that there is a Dudeney set for every complete graph. It is known that there exists a Dudeney set for K_n when n is even, but the question is still unsettled when n is odd.

In this paper, we define a black 1-factor in K_{p+1} for an odd prime p, and show that if there exists a black 1-factor in K_{p+1} , then we can construct a Dudeney set for K_{p+2} . We also show that if there is a black 1-factor in K_{p+1} , then 2 is a quadratic residue modulo p. Using this result, we obtain some new Dudeney sets for K_n when n is odd.

¹This research was supported in part by Grant-in-Aid for Scientific Research (C).

1 Introduction

A Dudeney set for the complete graph K_n is a set of Hamilton cycles with the property that every path of length two (2-path) in K_n lies on exactly one of the cycles. We call the problem of constructing a Dudeney set in K_n for all natural numbers "Dudeney's round table problem". Dudeney posed this problem in 1907 and 1917 in his books; see [2] for a historical summary. A Dudeney set for K_n has been constructed when n is even [4]. In the case that n is odd, a Dudeney set for K_n has been constructed in the following cases:

- (1) $n=2^k+1 \ (k \ge 1)$ [7];
- (2) n = p + 2 (p is an odd prime and 2 is a primitive root of GF(p)) [2];
- (3) n = p + 2 (p is an odd prime and -2 is a primitive root of GF(p)) [3];
- (4) n = p + 2 (p is an odd prime, 2 is the square of a primitive root of GF(p) and $p \equiv 3 \pmod{4}$) [3];
- (5) n = p + 2 (p is an odd prime, 2 is the square of a primitive root of GF(p), $p \equiv 1 \pmod{4}$, 3 is not a quadratic residue modulo p) [5];
- (6) n = p + 2 (p is an odd prime, -2 is the square of a primitive root of GF(p), and either
 - (6-1) $p \equiv 1 \pmod{4}$ and 3 is not a quadratic residue modulo $p \in [5]$, or (6-2) $p \equiv 3 \pmod{4} = [5]$;
- (7) some sporadic cases (n = 11, 23, 45 [2]; 27, 29, 35, 37 [6]).

In this paper, we define a black 1-factor in K_{p+1} for an odd prime p, and we show that if there exists a black 1-factor in K_{p+1} , then we can construct a Dudeney set for K_{p+2} . We also show that if there is a black 1-factor in K_{p+1} , then 2 is a quadratic residue modulo p. Using these results, we obtain some new Dudeney sets for K_n when n is odd.

2 Notation and preliminaries

From now on, let p be an odd prime ≥ 5 and put n=p+1 and r=(p-1)/2. Denote by $K_n=(V_n,E_n)$ the complete graph on n vertices, where $V_n=\{\infty\}\cup\{0,1,2,\ldots,p-1\}$ is the vertex set and E_n is the edge set.

For any integer i $(0 \le i \le p-1)$ define the 1-factor

$$F_i = \{\{\infty, i\}\} \cup \{\{a, b\} \in E_n \mid a, b \neq \infty, a + b \equiv 2i \pmod{p}\}.$$

Let σ be the vertex permutation $(\infty)(0\ 1\ 2\ 3\ \dots\ p-1)$ and put $\Sigma = \langle \sigma \rangle$. When C is a set of cycles or circuits in K_n , define $\Sigma C = \{\sigma^t C \mid 0 \le t \le p-1, C \in C\}$.

Let H be a subset of $\{1, 2, 3, \ldots, p-1\}$. We call H a half-set mod p if $H \cup (-H) = \{1, 2, 3, \ldots, p-1\}$ and |H| = (p-1)/2. It is well-known that for any half-set H mod p, $\Sigma\{F_0 \cup F_i \mid i \in H\}$ is a Dudeney set of K_n .

For any edge $\{a,b\} \in K_n$, define the length d(a,b):

$$d(a,b) = \begin{cases} \min\{p - |b - a|, |b - a|\} & \text{(if } a, b \neq \infty) \\ \infty & \text{(otherwise),} \end{cases}$$

and define the colour c(a, b):

$$c(a,b) = i \quad (\text{if } \{a,b\} \in F_i \ (0 \le i \le p-1)).$$

Two colours $i, j \ (0 \le i, j \le p-1)$ are said to be equivalent if i = j or i+j = p and we write $i \sim j$. Note that the lengths of edges are $\infty, 1, 2, \ldots, r$; the colours of edges are $0, 1, 2, \ldots, p-1$; and the non-equivalent colours of edges are $0, 1, 2, \ldots, r$. The 1-factor $F_i \ (0 \le i \le p-1)$ is the 1-factor which contains all the edges of colour i. In particular, we call the colour 0 white and call F_0 the white 1-factor.

Put n'=n+1=p+2 and define the complete graph $K_{n'}=(V_{n'},E_{n'})$, where $V_{n'}=V_n\cup\{\lambda\}$. Clearly σ induces a permutation of the edges in $V_{n'}$; we will also denote the permutation by $\sigma=(\infty)(\lambda)(0\ 1\ 2\ 3\ \cdots\ p-1)$.

3 Black 1-factors

A 1-factor B is called a black 1-factor in K_n if

- (1) $F_0 \cup B$ is a Hamilton cycle.
- (2) B has all lengths $\{\infty, 1, 2, \ldots, r\}$.
- (3) B has all non-equivalent colours except 0.

Note that all the lengths of B must be unique, but one colour must appear twice. Let B be a black 1-factor in K_n and put $B = \{e_1 = \{x_1, y_1\}, e_2 = \{x_2, y_2\}, \ldots, e_{r+1} = \{x_{r+1}, y_{r+1}\}$. Let the colours of the edges be i_1, i_2 ,

 \ldots, i_{r+1} , respectively. We may assume $i_r \sim i_{r+1}$. Put $H = \{i_1, i_2, \ldots, i_r\}$; then H is a half-set. So put

$$C = \{F_0 \cup F_{i_*} \mid 1 \le s \le r\},\$$

then ΣC is a Dudeney set of K_n .

If we insert the vertex λ into all the edges in B, we get a set of 2-paths in $K_{n'}$. Denote this set by B^{λ} ; that is

$$B^{\lambda} = \{(x_s, \lambda, y_s) \mid 1 \le s \le r + 1\}.$$

Put

$$\mathcal{B}^{\lambda} = F_0 \cup B^{\lambda},$$

then \mathcal{B}^{λ} is a circuit of $K_{n'}$.

Proposition 3.1 $\Sigma(\mathcal{C} \cup \{\mathcal{B}^{\lambda}\})$ has every 2-path in $K_{n'}$ exactly once.

Proof. Divide the set of all 2-paths in $K_{n'}$ into 8 classes: (i) (a,b,c), (ii) (a,∞,b) , (iii) (∞,a,b) , (iv) (a,λ,b) , (v) (λ,a,b) , (vi) (λ,∞,a) , (vii) (λ,a,∞) , (viii) (∞,λ,a) , where $a,b,c\neq\infty,\lambda$.

(i), (ii), (iii) are also 2-paths in K_n , so they belong to ΣC .

(iv) Since B has all lengths, we have $\Sigma B = E_n$. Hence any 2-path (a, λ, b) belongs to $\Sigma \{B^{\lambda}\}$.

(v) We have $\{a,b\}^{\sigma^t} \in F_0$ for some $t \ (0 \le t \le p-1)$ as F_0 has all lengths. So we can assume that $\{a,b\} \in F_0$ without loss of generality. Therefore we see that the 2-paths (λ,a,b) and (λ,b,a) belong to \mathcal{B}^{λ} .

(vi), (vii) Similarly, we can assume a=0. Then the 2-paths $(\lambda, \infty, 0)$ and $(\lambda, 0, \infty)$ belong to \mathcal{B}^{λ} .

(viii) Similarly, we can assume that $\{\infty,a\}^{\sigma^t}=\{\infty,b\}\in B$ for some t $(0\leq t\leq p-1)$. Then the 2-path (∞,λ,b) belongs to \mathcal{B}^{λ} .

By counting the number of 2-paths, we see that every 2-path appears only once in $K_{n'}$.

For any integer s $(1 \le s \le r+1)$, the edge $e_s = \{x_s, y_s\}$ belongs to F_{i_s} . Define for an integer s $(1 \le s \le r)$,

$$F'_{i_s} = F_{i_s} \setminus \{\{x_s, y_s\}\} \cup \{\{x_s, \lambda\}, \{\lambda, y_s\}\}.$$

Put

$$B' = \{\{x_1, y_1\}, \dots, \{x_r, y_r\}, \{x_{r+1}, \lambda\}, \{\lambda, y_{r+1}\}\}.$$

For a set of cycles or circuits C, let $\pi(C)$ be the set of the 2-paths in C.

Proposition 3.2 $\pi(\{F_0 \cup F'_{i_s} \mid 1 \le s \le r\} \cup \{F_0 \cup B'\}) = \pi(\{F_0 \cup F_{i_s} \mid 1 \le s \le r\} \cup \{F_0 \cup B^{\lambda}\}).$

Proof. Since the set of all edges in $(\bigcup_{1 \le s \le r} F_i) \cup B^{\lambda}$ and the set of all edges in $(\bigcup_{1 \le s \le r} F'_i) \cup B'$ are the same, the proposition holds.

Theorem 3.1 $\mathcal{H} = \Sigma(\{F_0 \cup F'_{i_s} \mid 1 \leq s \leq r\} \cup \{F_0 \cup B'\})$ is a Dudeney set of $K_{n'}$.

Proof. From Prop. 3.1 and 3.2, \mathcal{H} has every 2-path in $K_{n'}$ exactly once. It is trivial that all elements of \mathcal{H} are Hamilton cycles. Therefore \mathcal{H} is a Dudeney set of $K_{n'}$.

We have proved that, if there exists a black 1-factor in K_{p+1} , then we can construct a Dudeney set of K_{p+2} .

Example Let p = 7, n = p + 1 = 8, n' = p + 2 = 9. Then

$$B = \{\{\infty, 1\}, \{5, 6\}, \{2, 4\}, \{0, 3\}\}$$

is a black 1-factor in K_8 . Put $H = \{1, 2, 3\}$. Then we have

$$B^{\lambda} = \{(\infty, \lambda, 1), (5, \lambda, 6), (2, \lambda, 4), (0, \lambda, 3)\},\$$

and

$$\begin{split} F_1' &= \{\{\infty,\lambda\},\{\lambda,1\},\{0,2\},\{6,3\},\{5,4\}\} \\ F_2' &= \{\{\infty,2\},\{1,3\},\{0,4\},\{5,\lambda\},\{\lambda,6\}\} \\ F_3' &= \{\{\infty,3\},\{2,\lambda\},\{\lambda,4\},\{1,5\},\{0,6\}\} \\ B' &= \{\{\infty,1\},\{5,6\},\{2,4\},\{0,\lambda\},\{\lambda,3\}\}. \end{split}$$

Thus we obtain a Dudeney set \mathcal{H} of K_9 :

$$\mathcal{H} = \Sigma \{ (\infty, 0, 2, 5, 4, 3, 6, 1, \lambda), (\infty, 0, 4, 3, 1, 6, \lambda, 5, 2), (\infty, 0, 6, 1, 5, 2, \lambda, 4, 3), (\infty, 0, \lambda, 3, 4, 2, 5, 6, 1) \}.$$

4 Property of black 1-factors

In this section, we will find a necessary condition for the existence of a black 1-factor.

Lemma 4.1 Let p be a prime ≥ 5 and put r = (p-1)/2. Then we have $\sum_{i=1}^{r} i^2 \equiv 0 \pmod{p}$.

Proof. It is known that $\sum_{i=1}^{r} i^2 = r(r+1)(2r+1)/6$. Since $p \neq 2, 3$, we have $\sum_{i=1}^{r} i^2 \equiv 2^{-1}3^{-1}r(r+1)(2r+1) \equiv 0 \pmod{p}$.

Theorem 4.1 If there is a black 1-factor in K_{p+1} , then 2 is a quadratic residue modulo p.

Proof. Let B be a black 1-factor in K_{p+1} :

$$B = \{\{\infty, b_0\}, \{a_1, b_1\}, \{a_2, b_2\}, \dots, \{a_r, b_r\}\},\$$

where $b_0 \neq 0$. Since B has edges of lengths $\infty, 1, 2, \dots, r$, we have

$$\sum_{i=1}^{r} (a_i - b_i)^2 \equiv \sum_{i=1}^{r} i^2 \equiv 0 \pmod{p}.$$
 (4.1)

Since B has edges of non-equivalent colours 1, 2, ..., r, c ($c \in \{1, 2, ..., r\}$), we have

$$b_0^2 + \sum_{i=1}^r (2^{-1}(a_i + b_i))^2 \equiv \sum_{i=1}^r i^2 + c^2 \equiv c^2 \pmod{p}$$

from Lemma 4.1, that is,

$$2^{2}b_{0}^{2} + \sum_{i=1}^{r} (a_{i} + b_{i})^{2} \equiv 2^{2}c^{2} \pmod{p}. \tag{4.2}$$

Adding (4.1) and (4.2), we have

$$2^2b_0^2 + 2\sum_{i=1}^r (a_i^2 + b_i^2) \equiv 2^2c^2 \pmod{p}.$$

Since

$$b_0^2 + \sum_{i=1}^r (a_i^2 + b_i^2) \equiv \sum_{i=0}^{p-1} i^2 \equiv 2 \sum_{i=1}^r i^2 \equiv 0 \pmod{p},$$

we have

$$2b_0^2 \equiv 2^2c^2 \pmod{p}.$$

Therefore 2 is a quadratic residue modulo p.

It is unsettled whether the converse of the statement of Theorem 4.1 holds or not. No counterexample has been found so far.

5 New Dudeney sets

To obtain a black 1-factor in K_{p+1} , 2 must be a quadratic residue modulo p. We see that there are infinitely many primes such that 2 is a quadratic residue modulo p from the following Lemmas.

Lemma 5.1 [1, Theorem 95 (p. 75)] Let p be an odd prime. Then 2 is a quadratic residue modulo p if and only if $p \equiv \pm 1 \pmod{8}$.

Lemma 5.2 [1, Theorem 15 (p. 13)] Let a be an integer $\neq 0$ and m a positive integer. If a and m are relatively prime, then there are infinitely many primes p such that $p \equiv a \pmod{m}$.

The primes less than 100 such that 2 is a quadratic residue modulo p are as follows:

$$p = 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97.$$

We found black 1-factors for all of the above primes except p=97. Therefore we obtain Dudeney sets of n=p+2:

$$n = 9, 19, 25, 33, 43, 49, 73, 75, 81, 91.$$

Referring to the list of cases in the Introduction, n = 9,33 belong to (1), n = 25,49,73,81 belong to (3), and n = 19,43 belong to (5). The values n = 75,91 don't belong to any of the cases. Thus we obtain Dudeney sets of K_{75} and K_{91} , for which the existence of Dudeney sets has been in doubt.

We finish by showing black 1-factors for p = 73,89.

p = 73:

 $\begin{array}{l} 0-32,\ 1-\infty,\ 2-40,\ 3-71,\ 4-63,\ 5-57,\ 6-70,\ 7-50,\ 8-28,\ 9-69,\ 10-67,\ 11-42,\\ 12-31,\ 13-68,\ 14-47,\ 15-39,\ 16-64,\ 17-29,\ 18-41,\ 19-21,\ 20-66,\ 22-26,\ 23-60,\ 24-25,\ 27-37,\ 30-58,\ 33-72,\ 34-56,\ 35-61,\ 36-65,\ 38-53,\ 43-51,\ 44-55,\\ 45-62,\ 46-49,\ 48-54,\ 52-59. \end{array}$

p = 89:

Acknowledgment

The authors would like to express their thanks to the late Professor Kiyasu-Zen'iti for his valuable comments in preparing the paper.

References

- [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition (Oxford University Press, Oxford, 1979).
- [2] K. Heinrich, M. Kobayashi and G. Nakamura, Dudeney's round table problem. Ann. Discrete Math. 92 (1991), 107-125.
- [3] M. Kobayashi, J. Akiyama and G. Nakamura, On Dudeney's round table problem for p+2. Ars Combin. 62 (2001), 145-154.
- [4] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney's round table problem for an even number of people. J. Combin. Theory. Ser. A 62 (1993), 26-42.
- [5] M. Kobayashi, N. Mutoh, Kiyasu-Z. and G. Nakamura, New series of Dudeney sets for p+2 vertices. Ars Combin. 65 (2002), 3-20.
- [6] N. Mutoh, Some results about symmetry Dudeney sets. Manuscript (2002).
- [7] G. Nakamura, Kiyasu-Z. and N. Ikeno, Solution of the round table problem for the case of $p^k + 1$ persons. Comment. Math. Univ. St. Pauli 29 (1980), 7-20.