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Abstract

An avoidance problem of configurations in 4-cycle systems is investigated
by generalizing the notion of sparseness, which is originally from Erd6s’
r-sparse conjecture on Steiner triple systems. A 4-cycle system of order
v, 4CS(v), is said to be r-sparse if for every integer j satisfying 2 < j < r
it contains no configurations consisting of j 4-cycles whose union contains
precisely j+ 3 vertices. If an r-sparse 4CS(v) is also free from copies of a
configuration on two 4-cycles sharing a diagonal, called the double-diamond,
we say it is strictly r-sparse. In this paper, we show that for every admissible
order v there exists a strictly 4-sparse 4CS(v). We also prove that for any
positive integer » > 2 and sufficiently large integer v there exists a constant
number c¢ such that there exists a strictly r-sparse 4-cycle packing of order v
with ¢ -v2 4-cycles.
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1 Introduction

A 4-cycle system of order v, denoted by 4CS(v), is an ordered pair (V,C), where
V =V(K,), the vertex set of the complete graph KX,, and C is a collection of edge-
disjoint cycles of length four whose edges partition the edge set of the complete
graph. It is well-known that a necessary and sufficient condition for the existence
of a 4CS(v) is that v = 1 (mod 8) (see, for example, Rodger [14]). Such orders are
said to be admissible. Following the usual terminology of cycle systems, we call
a cycle of length four a 4-cycle.
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A 4-cycle system is a natural generalization of the classical combinatorial de-
sign called a Steiner triple system, briefly STS, since an STS is just an edge-
disjoint decomposition of a complete graph into triangles. A Steiner triple system
of order v exists if and only if v = 1,3 (mod 6). In other words, the set of all
admissible orders of an STS consists of all the positive integers v = 1,3 (mod 6).

As is the case with Steiner triple systems, various properties which may appear
in a 4-cycle system have also been studied (see, for example, Mishima and Fu
[13] and references therein). Such properties of cycle systems have also been
investigated as a special graph design (see, for example, Jimbo and Kuriki [11]).
Among many characteristics of STSs, the numbers of occurrences of particular
substructures have been of interest to various areas (see Colbourn and Rosa [3]).
In the current paper, we consider an extreme case for 4CSs, namely, avoidance
of particular configurations. We first recall a long-standing conjecture on STSs
posed by Erd6s.

A (k,I)-configuration in an STS is a set of ! triangles whose union contains
precisely k vertices. In 1973, Erd6s [4] conjectured that for every integer r > 4,
there exists vo(r) such that if v > vg(r) and if v is admissible, then there exists
a Steiner triple system of order v with the property that it contains no (j +2, j)-
configurations for any j satisfying 2 < j < r. Such an STS is said to be r-sparse.
Many results on the r-sparse conjecture and related problems have been since
developed. In particular, after major progress due to Ling et al. [12] and earlier
development found in their references, the simplest case when r = 4, as it is some-
times called the anti-Pasch conjecture, was eventually settled in the affirmative by
Grannell et al. [10].

Theorem 1.1 (Grannell, Griggs and Whitehead [10]) There exists a 4-sparse
Steiner triple system of order v if and only if v=1,3 (mod 6) and v # 7,13.

As far as the authors are aware, the r-sparse conjecture for r > 5 is still un-
settled. In fact, no 7-sparse STS is realized for v > 3. Very recent results on
sparseness and related problems are found in a series of papers: Forbes et al. [5],
Wolf [15, 16] and the first author [6, 7, 8, 9]. For general background on con-
figurations and sparseness in triple systems, the interested reader is referred to
Colbourn and Rosa [3].

With regard to 4-cycle systems, the relating result is due to Bryant et al. [1],
who investigated the numbers of occurrences of configurations consisting of two
4-cycles. They presented a formula for the number of occurrences of such config-
urations and studied avoidance and maximizing problems.

Our primary focus in the current paper is on existence of 4-cycle systems
which are “sparse” in the sense that they do not contain configurations that consist
of many 4-cycles on a small number of vertices in relative terms. In this sense, for
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a given integer w < v the “densest” configurations on w vertices in a 4CS(v) are
ones that contain as many 4-cycles as possible. In terms of combinatorial design
theory, such a configuration is said to be a maximum 4-cycle packing of order w.
More formally, a 4-cycle packing of order w is an ordered pair (W, D) such that
[W| =w and D is a set of 4-cycles sharing no common edges, where vertices of
a 4-cycle in D are elements of W. A 4-cycle packing is said to be maximum if
no other 4-cycle packing of the same order contains a larger number of 4-cycles.
Obviously, if w is admissible, 2 maximum 4-cycle packing of order w is just a
4CS(w).

The term (k,!)-configuration will also be used for substructures in 4CSs and
is defined as a set of / 4-cycles on precisely k vertices where no pair of distinct 4-
cycles share the same edge. We denote the set of vertices in a configuration A by
V(A). Two configurations .4 and B are said to be isomorphic, denoted as A & B,
if there exists a bijection ¢ : V(.A) — V(B) such that for each 4-cycle C € A, the
image ¢ (C) is a 4-cycle in B.

In the case of STSs, sparseness is measured by lack of (j+2, j)-configurations;
one of reasons may be that they are possibly avoidable and form the essential por-
tions of dense configurations (see Forbes, Grannell and Griggs [5]). Based on the
following proposition and subsequent observation on (j+ 3, j)-configurations, we
propose an avoidance problem similar to the r-sparse conjecture on STSs.

Proposition 1 For any positive integers j and d, any (j+ 3, j+d)-configuration
in a 4CS contains a (j + 3, j)-configuration as a substructure.

Proof. Ifa (j+ 3, j+d)-configuration contains a 4-cycle, say C, in which each
vertex is also contained in another 4-cycle, then by discarding C we obtain a G+
3,j+d - 1)-configuration. We prove that for any positive integerd a (j+3, j +d)-
configuration contains such a 4-cycle. Suppose to the contrary that each 4-cycle in
a given (j+3, j+d)-configuration A has at least one vertex appearing in no other
4-cycles. If d > 4, the total number of vertices exceeds j+ 3, a contradiction.
Hence, we have d = 1, 2 or 3. However, by counting the total number of vertices,
it is easy to see that each case yields a contradiction. ]

Proposition 1 says that any denser configuration on j+ 3 vertices, including a
4CS or a maximum packing, contains a (j+ 3, j)-configuration as its substructure.
On the other hand, for j =2 and 1 < e < 3 every nontrivial 4CS(v) contains
(j + 3 +e, j)-configurations (see Bryant et al. [1]). However, as we will see in
the next section, we can construct a 4CS containing no (j + 3, j)-configurations
for any j satisfying 2 < j < 4. Therefore, it may be natural to ask the following
question similar to Erds’ conjecture: ‘
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Problem 1.2 Does there exist for every integer r > 3 a constant number vo(r)
such that if v > vo(r) and v is admissible, then there exists a 4CS(v) containing
no (j+ 3, j)-configurations for any j satisfying2 < j <r?

Remark. While for any positive integers e and j every nontrivial STS on a suffi-
ciently large number of vertices contains a (j + 2 + e, j)-configuration, we do not
know in general the behavior of (j+ 3 +e, j)-configurations except for j = 2. We
briefly discuss in Section 3 the maximum number of 4-cycles of a 4-cycle packing
avoiding (j + 3, j)-configurations.

Following the terminology of STSs, we say that a 4CS is r-sparse if it con-
tains no (j + 3, j)-configuration for any j satisfying 2 < j < r. Every r-sparse
4CS is also (r — 1)-sparse for r > 3. Since no (5,2)-configuration can appear in a
4CS, every 4CS is 2-sparse. Up to isomorphism, there are two kinds of (6,3)-
configuration described by three 4-cycles (a,b,c,d), (a,e,c, f) and (bye, f,d),
and (a,b,c,d), (a,e,c, f) and (b,e,d, f) respectively. A routine argument proves
that any (7,4)-configuration is isomorphic and can be described by four 4-cycles
(a,b,c,d), (a,e,b,f), (c,f,d,g) and (a,c,e,g). Hence, a 4CS is 3-sparse if it
lacks the two types of (6,3)-configuration, and it is 4-sparse if it also avoids the
unique type of (7,4)-configuration simultaneously.

Our results presented in the next section give resolution for the existence prob-
lem of a 4-sparse 4CS(v).

Theorem 1.3 There exists a 4-sparse ACS(v) if and only if v =1 (mod 8).

Up to isomorphism, there are four possible configurations formed by two 4-
cycles in a 4CS, the numbers of vertices ranging from six to eight. While there
are two kinds of (6,2)-configuration, both (7,2)- and (8,2)-configurations are
unique. A (6,2)-configuration sharing a common diagonal, described by two 4-
cycles (a,b,c,d) and (a,e,c, f), is called the double-diamond configuration. A
4-cycle system is said to be D-avoiding if it contains no double-diamond configu-
rations.

Bryant et al. [1] showed that for every admissible order v there exists a D-
avoiding 4CS(v).

Theorem 1.4 (Bryant et al.) [1] There exists a D-avoiding 4CS(v) for all v=1
(mod 8).

Since a double-diamond configuration appears in both types of (6,3)-configuration,
every D-avoiding 4CS is 3-sparse but the converse does not hold. In fact, for ev-
ery small admissible order v one can easily find a 3-sparse 4CS(v) which is not
D-avoiding. On the other hand, Bryant et al. [1] showed that the other type of
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(6,2)-configuration appears constantly depending only on the order v, that is, the
number of occurrences is unique between 4CSs of the same order. Considering
these facts, we say that a 4CS is strictly r-sparse if it is both r-sparse and D-
avoiding.

In Section 2, we give a proof of existence of a strictly 4-sparse 4CS(v) for
every admissible order v.

Theorem 1.5 There exists a strictly 4-sparse 4CS(v) if and only if v= 1 (mod 8).

We also study in Section 3 the maximum number of 4-cycles of a 4-cycle
packing avoiding (j + 3, j)-configurations.

Let ex(v, r) be the maximum number of 4-cycles of a 4-cycle packing of order
v containing neither double-diamond configurations nor (j + 3, j)-configurations
for every 2 < j < r. By probabilistic methods, we prove that for any positive
integer r > 2 the maximum number ex(v,r) = O(v?).

2 Strictly 4-sparse 4-cycle systems

In this section, we present a proof of Theorem 1.5. Obviously, the proof also
verifies Theorem 1.3. To show Theorem 1.5, we first prove two lemmas.

A jointed-diamond configuration in a 4CS is a (7, 3)-configuration described
by three 4-cycles (a,b,c,d), (a,e,b,g) and (¢, f,d, 8); the 4-cycle (a, b, c,d) is re-
ferred to as a joint 4-cycle. Every (7,4)-configuration contains a jointed-diamond
configuration as its substructure.

Lemma 2.1 Let g be a prime power satisfying q = 1 (mod 8) and not a power of
three. Then there exists a strictly 4-sparse 4CS(q).

Proof. Let g be a prime power satisfying ¢ = 1 (mod 8) and not a power of
three. Let ), be a multiplicative character of order four of GF(q) such that  (x) has
possible values 1, —1, i, —i for x # 0. Then there exists a 4-cycle (0,x,x — 1,x2),
x € GF(g), such that x (x?) = —1,  (x22 —x+1)?) = —1, and x (x(:2 - x+1))) = 1
(see Bryant et al. [1]). Considering these conditions, we have either x(x) =1,
X(x2—x+1)=—i, and g (x(x—1)) = i-x(x— 1), or x(x) = —i, x(x®* —x+
1) =14, and x(x(x—1)) = —i-x(x—1). Also, since g =1 (mod 8), we have
%(—1) = 1. Let a be a primitive element of GF(g) and V the set of all elements
of GF(g). Define a set C of 4-cycles as {y,x- &% +y,(x—1)-a*" +y,x2 . a% +y:
y € GF(g),0 < n < % —1}. Then (V,C) forms a D-avoiding 4CS(q). In fact,
C is developed from the 4-cycle (0,x,x — 1,x%) by the group G = {z—z-a* +
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y:52€GF(g),0<n< 131 —1}. To prove that (V,C) is strictly 4-sparse, it
suffices to show that (V,C) contains no jointed-diamond configurations. Suppose
to the contrary that it contains a jointed-diamond configuration J described by
three 4-cycles (a,b,c,d), (a,e,b,g) and (c, f,d,g). Since every 4-cycle in C can
be obtained from (0,x,x — 1,x%) by the group G, considering the joint 4-cycle
(a,b,c,d), we have x(a —b) = —x(c —d). However, since the edges {a,b} and
{c,d} lie in diagonals of (a,e,b,g) and (c, f,d,g) respectively, we have X (a—
b) =y (c—d),i-x(c—d) or —i ¥ (c—d), acontradiction. The proof is complete.
O

Lemma 2.2 There exists a strictly 4-sparse 4CS(9).

Proof. LetV = {0,1,2,...,8} be the set of elements of the cyclic group Zy.
Define a set C of 4-cycles as {(0+a,1+a,8+a,5+a) : a € Zg}. The pair (V,C)
forms a 4CS(9) under the transitive action of Zg on the vertex set V. Since C has
only one 4-cycle orbit, (V,C) is D-avoiding, and hence it is 3-sparse.

Suppose to the contrary that (V,C) is not 4-sparse and contains a jointed-
diamond. Take a representative, say C = (0,1,8,5), of the 4-cycle orbit. The
two differences of the vertices in a diagonal of C are +1 and F4 respectively.
Hence, the joint 4-cycle in a jointed-diamond lying in C has the form (a, b,¢,d),
where the differences @ — b and c —d are each 1, —1, 4 or —4. However, consid-

ering the four differences of the adjacent vertices in C, this is a contradiction.
0

We now return to the proof of Theorem 1.5. The proof employs a special
decomposition of the complete graph into smaller complete graphs.

A group divisible design with index one is a triple (V,G, B), where

(i) V is a finite set of elements called points,
(i) G is a family of subsets of V, called groups, which partition V,

(iii) B is a collection of subsets of V, called blocks, such that every pair of points
from distinct groups occurs in exactly one blocks,

(iv) |GNB| < 1forall G€Gand B B.

When all blocks are of the same size k and the number of groups of size n; is t;, one
refers to the design as a k-GDD of type nin{ --- n?:} ,where fo+t; +-+-+1fp_) =
|G|. We need 4-GDDs and the required types are of 12° (t > 4), 43+! (r > 1), 83*!
(t > 1), and 235! (¢ > 3). For their existence, we refer the reader to Colbourn and

Dinitz [2].
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Proof of Theorem 1.5. A strictly 4-sparse 4CS(v) is necessarily D-avoiding.
We follow a part of the proof of existence of a D-avoiding 4CS(v) by Bryant et al.
[1] and consider four cases:

Case (1) : v=1 (mod 24). Lemma 2.1 gives a strictly 4-sparse 4CS(v) for
v <73 and v= 1 (mod 24). We consider the case v > 73. Take a 4-GDD (V, B,G)
of type 12 for ¢ > 4. For each group G € G, take (G x {0, 1}) U {e} by replacing
each point by two new points and adding a new point «. Let Hg be a copy of
the strictly 4-sparse 4CS(25) given in Lemma 2.1 on (G x {0,1}) U {e}. For
each block B = {a,b,c,d} € B, construct a 4-cycle decomposition Cp of a copy
of K322 on B x {0, 1} by developing a 4-cycle ((a,0), (b,0),(c,1),(d,0)) under
the group ((d)(a b c)) x Z,. Let W = (V x {0,1}) U{eo} and D = (Ugeg Ho) U
(UsesCB). Then (W,D) forms a 4CS(24r +1). Since no pair of 4-cycles in D
shares a common diagonal, (W, D) is D-avoiding.

It remains to establish that the 4CS contains no (7,4)-configuration. Suppose
to the contrary that (W, D) contains a (7,4)-configuration. Then it contains a
jointed-diamond configuration J. If the joint 4-cycle in J lies in Hg, the other two
4-cyclesin J are also in Hg. Since H is a copy of a strictly 4-sparse 4CS(25), this
is a contradiction. If the joint 4-cycle in J lies in Cp, again the other two 4-cycles
in J are in Cp. A routine argument proves that Cg contains no jointed-diamond
configuration.

Case (2) : v=9 (mod 24). Lemma 2.2 gives a strictly 4-sparse 4CS(9). Take a
4-GDD (V, B,G) of type 43**! for t > 1. As in Case (1), construct a 4CS(24¢ +9)
on (V x {0,1}) U {eo} by placing a copy of the strictly 4-sparse 4CS(9) given in
Lemma 2.2 and decomposing K 2 2s into 4-cycles. By following the argument
in Case (1), the resulting 4CS(24¢ +9) is strictly 4-sparse.

Case (3) : v =17 (mod 48). Employing the strictly 4-sparse 4CS(17) con-
structed in Lemma 2.1 and a 4-GDD of type 8%*+! for¢ > 1, we obtain the required
strictly 4-sparse 4CSs by the same technique as in Case (1).

Case (4) : v =41 (mod 48). Lemma 2.1 gives a strictly 4-sparse 4CS(v) for
v < 137 and v = 41 (mod 48). We consider the case v > 137. Take a 4-GDD
(V,B,G) of type 2*5! for ¢ > 3. For each block B = {a,b,c,d} € B, replace
each point in B by four new points and define A; = {i} x {0,1,2,3} for i € B.
The points and lines of an affine space over GF(22) of dimension 2 form a 4-
GDD of type 4*. For each B € B, place a 4-GDD of type 4* on B x {0,1,2,3}
such that the set of groups is {A; : i € B} and let Cp be the resulting blocks
of the 4-GDD on B x {0,1,2,3}. For each Cp, B € B, construct a 4-cycle de-
composition De, of a copy of K322 on Cp x {0,1} by developing a 4-cycle
((a,4,0), (b,/,0), (c,k, 1), (d, 1,0)) under the group (((d,1))((a,i) (b, /) (c,k))) x
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Z,. For each group G € G, take (G x {0,1,2,3} x {0,1}) U {eo} and let Hg
be a copy of either the strictly 4-sparse 4CS(17) or 4CS(41) given in Lemma
2.1 on (G x {0,1,...,7}) U {e} according to the group size |G|, that is, place
a copy of the 4CS(17) if |G| = 2, otherwise put a copy of the 4CS(41). Let
W = (V x {0,1,2,3} x {0,1}) U{e} and € = (Ugeg ") U (Uses Des)- It is
straightforward to see that (W,€) forms a 4CS(48¢ 4-41). The same argument as
in Case (1) proves that (W,£) is strictly 4-sparse. m}

3 r-Sparse 4-cycle packing

In this section, we consider the maximum number of 4-cycles in a 4-cycle packing
of order v avoiding (j + 3, j)-configurations. As with a 4CS, a 4-cycle packing is
said to be r-sparse if it contains no (j+ 3, j)-configuration for any ;j satisfying
2 < j < r. Alsoif it is r-sparse and D-avoiding, we say that it is strictly r-sparse.
We prove that for any positive integer r > 2 and sufficiently large integer v there
exists a constant number c such that there exists a strictly r-sparse 4-cycle packing
of order v with ¢ -2 4-cycles. It is notable that a resolution for the analogous
problem to the r-sparse conjecture on STSs would prove that ¢ ~ %

Let F be a set of configurations of 4-cycles and ex(v,F) the largest positive
integer n such that there exists a set C of n 4-cycles on a finite set V of cardinality v
having property that C contains no configuration which is isomorphic to a member
FeF.

Theorem 3.1 For any positive integer r 2> 2 and sufficiently large integer v there
exists a constant number ¢ such that there exists an r-sparse 4-cycle packing of
order v with ¢ +V* 4-cycles.

Proof. Let V be a finite set of cardinality v. Define ' as the set of all noniso-
morphic (j + 3, j)-configurations for 2 < j < r and F” as the set of all noniso-
morphic (4,2)- and (6,2)-configurations. Let F = F'UF". It is easy to see that
if ex(v, F) > c -2 for some constant c, then the assertion of Theorem 3.1 follows.

Pick uniformly at random 4-cycles from V with probability p = ffz, indepen-
dently of the others, where ¢’ satisfies 0 < ¢’ < 2. Let bc be a random variable
counting the number of configurations isomorphic to C in the resulting set of 4-
cycles and E(bc) its expected value. Then
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E(ngerbc) < (:).(3-2(3)),1,2 _!_.(;).(3.2(2))?2

IA

+ — o+
o<
~ o 1
+
N <
N’

= '“.s_cn'vz"l'f(v)a

where f(v) = O(v). By Markov’s Inequality,

P( Yy bczz-E( Y bc))g
C~FeF CxFeF

ll:a~v2+2-f(v)) >

N -

Hence,
1

P(CZ bc <

~FeF

(]

Let 1 be a random variable counting the number of 4-cycles and E(¢) its ex-
pected value. Then

E(t)=p-3- (:) = %wz—g(V),

where g(v) = O(v). Since t is a binomial random variable, we have for sufficiently

large v
E(r) -Ep 1
P(t < T) < e < '2'.

Hence, if v is sufficiently large, then we have, with positive probability, a set
S of 4-cycles with the property that |S| > %Q and the number of configurations

in S which are isomorphic to a member of F is at most %ﬁ -v2 42 f(v). Since
f(v), g(v) = O(v), by deleting a 4-cycle from each configuration isomorphic to a
member of F, we have

ey )2 SU=H4:0)

where h(v) = O(v). The proof is complete. O

Vv —h(v),
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