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Abstract

Let G = (V, E) be a connected graph. A subset S of V is called a
degree equitable set if the degrees of any two vertices in S differ by at
most one. The minimum order of a partition of V into independent
degree equitable sets is called the degree equitable chromatic number
of G and is denoted by x¢e(G). In this paper we initiate a study of
this new coloring parameter.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected and connected graph
with neither loops nor multiple edges. The order and size of G are de-
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noted by n and m respectively. For graph theoretic terminology we refer
to Chartrand and Lesniak [1].

Graph coloring theory has a central position in discrete mathematics
and is of interest for its applications in several areas. The fundamental
parameter in the theory of graph coloring is the chromatic number x(G) of
a graph G which is defined to be the minimum number of colors required
to color the vertices of G in such a way that no two adjacent vertices of G
receive the same color.

Several variations of graph colorings such as edge coloring, total coloring,
acyclic coloring, list coloring, star chromatic number, achromatic
number, subchromatic number, T-colorings, equitable coloring and game
chromatic number have been investigated by several authors and for a
survey of graph coloring problems one may refer to the book by Jensen and
Toft [3].

In this paper we introduce another type of coloring which is based on
the fundamental concept of the degree of a vertex, called degree equitable
coloring and initiate a study of the corresponding parameter. We need the
following definitions and results.

Definition 1.1.  The degree set of a graph G 1is defined to be the set of
all distinct degrees of the vertices of G and is denoted by D(G).

Definition 1.2. A caterpillar is a tree T with the property that the re-
moval of the leaves of T results in a path. This path is referred to as the
spine of the caterpillar. .

Definition 1.8.  The cliqgue number of a graph G, denoted by w(G), is
the mazimum number of vertices in a complete subgraph of G.

Definition 1.4. A graph G is called chordal if every cycle of G of length
greater than three has a chord.

Theorem 1.5. ([1], Page 202) For any chordal graph G, x(G) = w(G).

Definition 1.6.  The independence number of a graph G, is the mazimum
cardinality of an independent set of vertices and is denoted by Bo(G).

The following result is due to Nordhaus and Gaddum [4].
Theorem 1.7. If G is a graph of order n, then
(i) 24/ < x(G) +x(G) Sn+1
(i) n < X(@x(©@) < (%)’

Theorem 1.8. ([2], Page 191) For any fized integer k > 3, k-colorability
is N P-complete.
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2 Main Results

Definition 2.1. Let G = (V,E) be a graph. A subset S of V is called a
degree equitable set if the degrees of any two vertices in S differ by at most
one. A degree equitable k-coloring of G is a partition of V into subsets
V1,Va,..., Vi such that each V; is an independent set and also a degree
equitable set in G. Each V; is called a de-color class. The degree equitable
chromatic number x4.(G) of a graph G is defined to be the minimum k such
that G admits a degree equitable k-coloring.

Remark 2.2.  Let G be a graph with x4.(G) = k. Let {W\,V4,...,Vi}
be a degree equitable k-coloring of G. Then for any two distinct de-color
classes V; and V;, there exist vertices u € V; and v € V; such that either u
and v are adjacent or |deg u — deg v| > 2.

Remark 2.3.  For any graph G, we have 1 < xqe(G) < n. Further
Xde(G) = 1 if and only if G = K,, and x4(G) = n if and only if for any
two vertices u and v, either u and v are adjacent or |deg u — deg v| > 2.
This observation motivates the following definition.

Definition 2.4. A graph is called de-complete if for any two distinct
vertices u,v either u and v are adjacent or |deg u — deg v| > 2.

Example 2.5. Any block graph G with at least two blocks in which the
order of any two blocks differ by at least two is de-complete and is not
complete. The graph G consisting of a copy of K,, and a copy of K, with
[n1=ngz| 2 2 and V(K,, )NV (Kp,) = {z,y} is a block which is de-complete
and is not complete.

Proposition 2.6.  For any graph G, let S; = {v € V : deg v = i or
i+ 1}, where § <i < A —1. Then G is de-complete if and only if for each
it with S; # 0, the induced subgraph (S;) is complete.

Proof.  Suppose G is de-complete. For any two vertices u,v € S;, we have
|deg u — deg v| < 1, and hence it follows that « and v are adjacent in G.
Thus (S;) is complete. Conversely, suppose (S;) is complete for each i with
S; # 0. Let u,v € V(G). If u,v € S; for some 4, then u and v are adjacent
in G. Otherwise |deg u — deg v| > 2. Hence G is de-complete. O

In the following propositions we determine all graphs of order 5 and 6
which are de-complete but not complete.

Proposition 2.7. Let G be a connected de-complete graph which is not
complete. Then |V(G)| > 5. Further the graph G, given in Figure 1 is the
only graph of order 5 which is de-complete but not complete.

189



Gll

Figure 1

Proof. Let G be a de-complete graph which is not complete. Then there
exist two non-adjacent vertices u and v such that |deg u — deg v| > 2 and
hence |V(G)| > 5. Now, suppose [V(G)| = 5. Then § = 1, G has a unique
pendant vertex u and all the three vertices which are non-adjacent to u
have degree 3. Hence it follows that (V(G) — {u}) is complete and hence
G is isomorphic to Gj. O

Proposition 2.8. Let G be a graph of order 6 which is de-complete
but not complete. Then G is isomorphic to the graph G1 or G, given in
Figure 2.
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Figure 2

Proof. Let V(G) = {v1,v2,vs, 4, vs, v6}. Since there exist two non-adjacent
vertices in G whose degrees differ by at least two we have § =1 or 2.
Casei. d=1

Let deg v1 = 1 and N(v1) = {v2}. Then deg v; > 3 for 3 < i < 6,
(va,v4,vs,ve) is complete and deg vz > 2. If vz is not adjacent to v; for
some i, 3 < i < 6, then v, and v; can be assigned the same color in a degree
equitable coloring of G, so that x4.(G) < 6, which is a contradiction. Hence
(G - {v1}) is complete and G is isomorphic to G;.
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Case ii. d=2.

Let deg v1 = 2 and N(v1) = {vs,v3}. Then the vertices v4,vs and vg
all have degree 4 and hence (G — {v1}) is complete. Thus G is isomorphic
to Gs. 0O

The following problems naturally arise.

Problem 2.9. Given a positive integer n, find the number of graphs of
order n which are de-complete but not complete.

Problem 2.10.  What is the minimum (mazimum) size of a graph of
order n which is de-complete but not complete?

Remark 2.11.  Obviously for any graph G, x(G) £ Xde(G). Purther if
G is regular or the degree set of G is given by D(G) = {r,r + 1} for some
r 2 1, then x(G) = xd4e(G). However the difference between x(G) and
Xde(G) can be made arbitrarily large. For example consider the caterpillar
T whose spine P = (v1,v2,...,V,) is such that deg v; = 2i + 1. Then in
any degree equitable coloring of T, each {v;} is a de-color class, and hence
Xde(T) =n+ 1 whereas x(T) = 2.

In fact we have the following proposition.

Proposition 2.12.  Ifa and b are positive integers with a < b, then there
erists a graph G with x(G) = a and x4.(G) = b.

Proof. If a = b, then we take G to be the complete graph K,. Suppose
a<b

Case 1. a=2.
For the caterpillar T} with spine P = (vy,v2,...,v5—1) and deg v; =
2i + 1, we have x(T) = 2 = a and Xqe(T3) = b.

Case 2, a=3andb=4.
For the graph G obtained by joining a vertex of K with a vertex on the
rim of the wheel W,,, where n is odd, we have x(G) = 3 and x4.(G) = 4.

Case 3. ¢=3andb>a+1.

Let T be the caterpillar with spine P = (v;,vs,..., vp-3) and deg v; =
2i + 2. Then for the graph G obtained by joining a leaf of T" with a vertex
of K3, we have x(G) = 3 and x4.(G) = b.

Case 4. a>3andb=a+1.
For the graph G obtained by joining the centre of the star K- 1,a—1 With
a vertex of K,, we have x(G) = a and x4.(G) =a+1=1b.

Case 5. a>3andb>a+1.
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Let T be the caterpillar with spine P = (v1,v2,...,V-(a+1)) and
deg v; = a + 2i + 1. Then for the graph G obtained by joining a leaf
of T with a vertex of K, we have x(G) = @ and x4e(G) = b. O

Definition 2.18. A graph G with xq4.(G) = 2 is called a de-bipartite
graph.

In the following theorems we characterize trees and unicyclic graphs
which are de-bipartite.

Theorem 2.14. A tree T is de-bipartite if and only if T € F, where
[ -]
F = |J Fi and F; is the family of trees defined recursively as follows.

i=0
Fo= {Kl,,. n> 3}U{P,, n2 2}. Fori >0, F; = Fi-1UGi—1, where Gi-1
is the family of all trees obtained from two trees Ty, T2 € F;—1 by identifying
a leaf of Ty with a leaf of Ta, subject to the following restrictions.

() A(T1) 2 3, A(Ty) 2 A(T2) and D(T2) € D(Ty) U{A(T1) — 1}
() If Ty is a path, then its length is even.

Proof. Let T € F. Let i > 0 be the least integer such that T € F;. We
prove that T is de-bipartite by induction on 4. If i = 0 then T is either a
path or a star and trivially T is de-bipartite. Suppose ¢ > 0 and the result
is true for ¢ — 1. Since T € F;, there exist trees T1,Te € F;_,, satisfying
the conditions (i) and (ii) of the theorem such that T is obtained from T}
and T, by identifying a leaf vy of T with a leaf vy of T> and let v denote
the corresponding vertex of degree 2 in T. By induction T and T2 are
de-bipartite. Let C; = {V4,W;} and C; = {V2, W2} be degree equitable
colorings of Ty and T, respectively with v; € V; and v; € Va.

Let X1 = (Vi = {n1}) U (V2 — {v2}) U {v} and Xo = W; U W,. Since
A(Ty) > 3, Vi contains all the leaves of T}. If A(T3) > 3, then trivially V3
also contains all the leaves of Tb. Also if A(T) = 2, then T3 is a path of
even length and since v, € V; it follows that V; contains both the leaves
of Ty. Hence degree of each vertex in X is 1 or 2, so that X; is degree
equitable and independent in 7' Also it follows from (i) that degree of each
vertex of X is A(Ty) — 1 or A(T}). Hence X3 is also degree equitable and
independent in T and C = {X;, X2} is a degree equitable coloring of T.
Thus T is de-bipartite.

Conversely, let T be a de-bipartite tree. We use induction on the order
of T to prove that T € F. This is trivial if T is a path or a star. We
now assume that the result is true for all trees of order less than n and let
T be a tree of order n such that T is neither a star nor a path and T is
de-bipartite. Hence A(T) > 3 and let deg w = A(T). Let C = {V1, 12}
be a degree equitable coloring of T'. Since A(T) > 3, we may assume that
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V1 contains all the leaves of T, so that w € V5. Since T is not a star, the
vertex w has a neighbour v; which is not a leaf and v; € V;. Since V] is
a degree equitable set, it follows that deg v; = 2. Let T} and T be the
subtrees of T induced by the sets AU {v;} and BU {v;} where A and B are
the vertex sets of the two components T — {v;} and let A(T}) = A(T), so
that A(T}) > A(T2) and A(T}) > 3. Clearly C; = {VinV(T1),VanV(Ty)}
and C; = {Vj N V(T2), V2 N V(T;)} are degree equitable colorings of T}
and T5 respectively. By induction hypothesis T; and T, are in F. Let
% > 0 be the smallest integer such that both 73 and T, are in JF;. Since
T is de-bipartite, it follows that D(T) — {1,2} C {A(T), A(T) — 1}, hence
D(T;) € D(T1) U {A(Ty) — 1}. Also if T is a path, then both its end
vertices are in V] NV (T3), it follows that T5 is a path of even length. Hence
TeF CF. O

Theorem 2.15. Let G be a unicyclic graph with even cycle C. Then G
is de-bipartite if and only if G = C or G can be obtained from a de-bipartite
tree T' by identifying two of its leaves whose adjacent support vertices are
distinct.

Proof.  Suppose G is de-bipartite. If G = C, there is nothing to prove.
Suppose G # C. Let C = {4, V,} be a degree equitable coloring of G such
that degree of every vertex in V) is 1 or 2. Since G is de-bipartite, there
exists at least one vertex v on C with deg v = 2, such that v € V;. Let T be
the tree obtained from G by replacing v by two new vertices w; and w, and
joining w; to one neighbor of v and w; to another neighbor of v. Clearly
{(V1 = {v}) U {wy, w}, V2} is a degree equitable coloring of T. Hence T is
de-bipartite and G can be obtained from T by identifying the leaves w, and
Wa.

Conversely, suppose G # C and G is obtained from a de-bipartite tree
T by identifying two of its leaves w;, w, whose adjacent support vertices
are distinct and let v be the corresponding degree 2 vertex in G. Let C =
{V1,V2} be a degree equitable coloring of T. Since G # C and T is not
a path and all the leaves of T are in the same color class, say V;. Now
{(Vi = {w1,w2}) U {v}, V2} is a degree equitable coloring of G and hence G
is de-bipartite. 0

Remark 2.16.  Using repeatedly the construction given in Theorem 2.15,
we can obtain several families of de-bipartite graphs. In fact if G is any
de-bipartite graph with § = 1, A > 3 and having at least two distinct support
vertices, then the graph obtained from G by identifying two leaves at distinct
support vertices gives a de-bipartite graph H with 6(H) = 1 or 2. Further
any de-bipartite graph H with § = 1 and A > 3 can be obtained in this
way. In fact, if C = {V1,Va} is a de-coloring of H where V; contains all
the leaves of H, then Vi contains a vertez v of degree 2. If G is the graph
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obtained from H by replacing v by two new vertices wy and we and joining
wy to one neighbour of v and wo to the other neighbour of v, then G is a
de-bipartite graph and H is obtained from G by identifying the leaves wy
and ws.

Remark 2.17.  Obviously if G is a bipartite graph with bipartition X,Y
then x(G) = x4e(G) = 2 if and only if there exist two positive integers r
and s such that deg u =1 orr+1, for allu € X anddeg v =s or s+1, for
all v € Y. In particular if G is any graph which is either regular or D(G) =
{r,7+1} for some positive integer r, then x(S(G)) = xde(S(G)) = 2 where
S(G) is the subdivision of G, obtained by subdividing each edge of G ezactly
once.

The problem of characterizing graphs for which x4e(G) = x(G) when
x(G) > 3 is a difficult problem in view of the following theorem.

Theorem 2.18.  Given a positive integer k > 3, the problem of deciding
whether Xae(G) > k is NP-complete for any graph G with x(G) > 3.

Proof. Let G be a graph with x(G) > 3. Let G; be the graph obtained
from G by attaching suitable number of pendant vertices at each vertex of
‘G so that degree of any vertex of G in Gy is A(G) + 1. Clearly x¢.(G1) =
x(G) + 1. Hence the result follows from Theorem 1.8. 0O

We now proceed to obtain bounds for x4. for several classes of graphs.

Theorem 2.19. Let T be a tree with at least three vertices and having k
distinct degrees. Then [g] < xde(T) < 2k — 1. Further given two positive
integers k and a such that k > 3 and [g] < a < 2k — 1, there exists a tree
T such that |D(T)| = k and x4.(T) = a.

Proof. Let {Vi,Va,...,Vm} be a degree equitable coloring of T'. Since
each V;, where 1 < i < m, covers vertices of at most two distinct degrees,
we have m > [£]. Hence [£] < x4e(T). Now, let {dy,do,...,di} be the
degreeset of G withdy = 1.Let A; ={v €V :degv=d;} where1 <i < k.
Since A; is independent, we assign one color to all the vertices of A;. Also,
since (A;) is a forest all the vertices of (A;) can be colored with at most
two colors, where 2 < i < k. Hence xq.(T) <2k —1.
Now, let a and k be two positive integers such that [-’5] <a<2k-1.

Casei. a<k.

If k = 3 and a = 2, then let T be the caterpillar whose spine is the path
(v1,v2,v3) with degrees 3, 2 and 3 in this order. f k=4 and a =2, let T
be the caterpillar whose spine is the path (vq,v2,v3) with degrees 3, 2 and
4 in this order. Now suppose a > 3. Let P = (v1,v2,...,Vk-1) be a path on
k — 1 vertices. Let T be the caterpillar with spine P such that the degrees
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of v; are (3,7,11,...,3 + 4(a - 2),4,8,...,4 + 4(k — a — 1)) in this order.
Clearly T has k distinct degrees and xg.(T) = a.

Case ii. a>k.

Let @ = k+r, where r > 0. Let P = (v1,v2,...,v05-1) beapathona—-1
vertices. Let T be the tree obtained from P by attaching suitable number of
pendant vertices at each v; so that the degrees of v; are (3,7,11,...,4k—5)
in this order if » = 0 and (3,3,7,7,...,3 +4r — 4,3 + 4r - 4,3 + 4,3 +
dr+4,...,4k—5) if r > 0. Clearly T has k distinct degrees and any degree
equitable coloring of T" has a — 1 de-color classes with one element and one
de-color class which consists of all pendant vertices. Therefore T is the
required tree with k distinct degrees and x4.(T') = a. O

In the following theorems, we characterize trees with k distinct degrees
for which x4.(T') = 2k — 1 and x4.(T) = [g] .

Theorem 2.20.  Let T be a tree with degree set D(T') = {1 = dy, dy,. .., dx}.
Let U; = {v € V : deg v = d;}. Then x4e(T) = 2k — 1 if and only if the
following conditions are satisfied:

(a) U; is not independent fori=2,3,...,k.
(b) ldi —dj| =22, if i # 5.

Proof.  Suppose (a) and (b) are satisfied. Consider any degree equitable -
coloring of T' with xg. colors. Clearly U, is a de-color class. Alsoif 2 <i <
k, then (U;) is a forest with at least one edge and hence is a union of two
de-color classes. Further, since |d; — d;| > 2, the two colors used for (U:)
and the two colors used for (U;) are different. Thus x4e(T) = 2k — 1.
Conversely, let x4e(T) = 2k — 1. If U; is an independent set for some i,
2 < i < k, then there exists a de-coloring of T in which U; and U; are color
classes and each of the remaining Uj is a union of at most two color classes,
so that x4e(T) < 2k — 1, which is a contradiction. Also if |d; — dil <1
for ¢ # j, then there exists a de-coloring of T in which U, is a color class,
U; UUj is a union of two color classes and each of the remaining k — 3 sets
U, is a union of at most two color classes, so that Xde(T) < 2k — 1, which
is again contradiction. Hence conditions (a) and (b) are satisfied. O

Theorem 2.21.  LetT be a tree with degree set D(T) = {1 = dy, do, . .., dr}.
Then xae(T) = [%] if and only if the following conditions are satisfied:

(a) There ezist |X| disjoint subsets 51,52,---,5[.§ | of D(T) such that
Si = {ri,7s + 1} for some integer r;, 1 <3 < [g] .

(b) The set X; of all vertices of T with degreer; or r;+1 is an independent
set, where 1 <i < I_%J
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15]
(c) If k is odd and D(T)— | U Si | = {d;} for some j, then the set X
i=1
of all vertices of T with degree d; is independent.

Proof. Suppose (a), (b) and (c) are satisfied. ThenC = {Xl,Xz, . ¢ 15 J}
if k is even and {X11X2v-"’X[§J’X} if k is odd, is a degree equitable
coloring of T using [£] colors. Hence it follows that x4e(T) = [£]. Con-

versely, let T be a tree with x4e(T) = [§]. Let C = {Xl,Xg,...,Xl-ﬂ}
be a degree equitable coloring of T. Then any de-color class X;, except
possibly one de-color class, when k is odd, must contain all vertices of T
whose degrees are two consecutive integers. Hence conditions (a), (b) and
(c) of the theorem are satisfied.

Proposition 2.22. Let G be any connected graph with degree set
{dl,dg, e ,dk}. Then Xde(G) < kx(G).

k
Proof. LetV; = {v € V :deg v = d;}. Clearly x4(G) < Y x({Vi)) <
=
kx(G). ' D
Corollary 2.23.  For any connected planar graph G, with k distinct de-
grees xde(G) < 4k.
Corollary 2.24.  For any chordal graph G with k distinct degrees,
xde(G) < kw(G), where w(G) is the clique number of G.

We now proceed to prove that the bounds given in Proposition 2.22
and Corollary 2.23 are sharp.

Proposition 2.25.  Given any positive integer k, there ezists a connected
graph G with k distinct degrees such that xae(G) = kx(G).

Proof.  Let G; denote the complete m-partite graph with each part having
2i+1 yertices, where 1 < i < k. Let V;,,V;,,..., V;,, be the partition of the
vertex set of G; into independent sets with |V;;| = 2:+1. Let G be the graph
obtained from Gy, G2, . .., Gk by joining each vertex of V;; with two vertices
of Vis41)j, where 1 < i < k—land1<j<m. Clearly G is a m-partite
graph with k distinct degrees and x(G) = m and x4e(G) = km. a

Proposition 2.26.  Given any positive integer k, there ezists a connected
planar graph G with k distinct degrees such that x4e(G) = 4k.

Proof. Let H denote the icosahedron given in Figure 3.
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Figure 3

We construct a graph G as follows. Take k — 1 copies of K, say
G1,Ga,...,Gi—1. Choose vertices vy, vs,...,var_4 such that v; € V(Gh),
vok—4 € V(Gr-1) and vg;_p,v9_1 € V(G;), where 2 < i < k — 2. Take
k — 2 copies of H, say Hy, Ha,..., Hy—2 and identify the vertices a, b of H;
with the vertices vo;_1, vo; respectively. Now attach one copy of H at each
vertex in V(G1) — {v;} for each i with 2 < ¢ < k-2, attach i copies of H at
each vertex in V(G;) — {vzi_2,v2i-1}, and i — 1 copies of H at vg;_, U2i_1,
attach k — 1 copies of H at each vertex in V(Gx_,) - {v2k—4} and attach
k —2 copies of H at vgk_4. It can be easily verified that the resulting graph
G is a connected planar graph with x4.(G) = 4k. O

Proposition 2.27.  Given any positive integer k, there erists a chordal
graph G with k distinct degrees such that xae(G) = kw(G) — 1, where w(G)
is the cliqgue number of G.

Proof.  Let G be the graph obtained as in the proof of Proposition 2.26
where we take H to be a copy of K, and G,Gy,...,Gr—; to be k — 1
copies of K,,. The resulting graph G is a connected chordal graph with
Xde(G) = kw(G) — 1. O

The following problem naturally arises:

Problem 2.28.  Does there exist a chordal graph G for which xg. (@) =
kw(G), where k is the number of distinct degrees in G and w(G) is the clique
number of G?

Definition 2.29. A subset S of V is called @ mazimal independent degree
equitable set if S is both independent and degree equitable and for any proper
superset Sy D S, we have either Sy is not independent or S; is not degree
equitable.
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Definition 2.30. Let G be a graph. The mazimum cardinality of a
mazimal independent degree equitable set in G is called the independent
degree equitable number of G and is denoted by D;e(G). The minimum
cardinality of a mazimal independent degree equitable set in G is called the
lower independent degree equitable number of G and is denoted by di.(G).

Example 2.81.  For the complete bipartite graph Kmn, we have
Die(Kpmn) = max{m,n} and die(Kmn) = min{m,n}. Hence the differ-
ence between the parameters D;(G) end die(G) can be made arbitrarily
large.

Proposition 2.32. Let G be a graph on n-vertices. Then plgy <
Xae(G) £ n— Di(G) + 1.

Proof. Let x4e(G) = k. Let {V4,V2,...,Vi} be a degree equitable color-
ing of G. Then |V;| < D;(G) and |Vi| + |V2| + + + |[Vi| = n. Hence n <
kD;.(G) so that D:'%-@; < k = x4e(G). Now, let V; be an independent degree
equitable subset of V with |V}| = D;(G). Let V1 = {v1,v2,...,vp,.}. Then

) (Vla {vDu+1}’ {”D¢e+2}1
...»{vs)}) is a degree equitable coloring of G and hence Xde(G) £ n —

D;(G) + 1. m]

Remark 2.33.  The bounds given in the above proposition are sharp. For
the complete graph K, Die =1 and x4e = ﬁ =n— D + 1.

Proposition 2.34.  For any graph G,
(i) 2v/7 < Xde(G) + Xae(G) < k(n +1) and

(i) n < Xde(@)Xae(G) < k? (-’l'-é'—l-)2 , where k is the number of distinct
degrees in G.

Proof. Since x(G) < Xae(G) < kx(G), the result follows from Theorem 1.7.
O

Remark 2.35. The bounds given in the above proposition are sharp.

1 For the graphs Py and Cy4, Xde = Xge = 2, 50 that Xde+Xg. =4 = 2y/n
and Xde * Xge =4 = 1.

2 Also for the graph Cs, k = 1, Xde = Xge = 3 and hence Xde + Xge =
6 =k(n+1).

Conclusion and scope. In this paper we have initiated a study of a
new coloring parameter which depends just on the fundamental concept of
the degree of a vertex. There is abundant scope for further research on
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this topic. Work on criticality concepts, effect of edge removal on xge, Xde-
perfect graphs and degree equitable edge chromatic number will be reported
in subsequent papers.
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