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Abstract

Let B C 2™l be an antichain of size |B| =: n. 2™ is ordered by inclusion. An
antichain B is called k-regular (k € N), if for each i € [m) there are exactly k
sets By, By, ..., By € B containing . In this case we say that B is a (kym,n)-
antichain.

Let m > 2 be an arbitrary natural number. In this note we show that an (m —
1,7, n)-antichain exists if and only if n € [m + 2, (7) — 2] U {m, (3)}.

Keywords: (Regular) antichain; Completely separating system; Extremal set the-
ory

1 Introduction

1.1 Notations

For nonnegative integers k < m, the sets [k, m] and [m)] are defined by [k, m] :=
{k;k+1,...,m — 1,m} and [m] := [1,m]. Let B be a subset of 2[™), the
power set of [m]. The size of B is'n := |B|. We call B an antichain (AC) if
there are no two sets in B which are comparable under set inclusion. An an-
tichain B is called k-regular (k € N), if for each i € [m] there are exactly &
sets By, By, ..., By € B containing i. In this case we say that B is a (k, m, n)-
antichain.

A Completely Separating System (CSS) C on [n] is a collection of blocks of
[n] such that for any pair of points z,y € [n], there exist blocks A, B € C such
thatz € A,y € Aandy € B,z ¢ B. A CSS on [n] without restrictions on
the size of the blocks in the collection is said to be an (n)CSS. Let £ < n. An
(n, k)Completely Separating System ((n, k)CSS ) is an (n)CSS in which each
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block is of size k.

The volume of a collection of sets B is v(B) := 3 4cg|Al. For a (k,m,n)-
antichain B, v(B) = km and for an (n,k)CSS C, v(C) = k|C|. Let B :=
{Bi1,Bs,...,Bm} be a subset of 2("l. The complement B of B is defined by
B:={B),Ba,..., Bn} where B; := [n]\B;. Often we omit brackets and com-
mas in our notation for sets. For example we write 1345 instead of {1,3,4,5}. A
set is called a ¢-set, if it contains ¢ elements.

1.2 Motivation

Regular antichains have a strong connection to CSS’s. In 1961, Rényi [8] found
minimum Separating Systems in the context of solving certain problems in infor-
mation theory, and in 1969, Dickson [3] introduced the notion of a Completely
Separating System. Spencer [6] showed that antichains are the duals of Com-
pletely Separating Systems.

Definition (dual). Let M = {M;, My, ..., My, } be a collection of subsets of [n].
We define the dual M* of M to be the collection M* := {M{, M3,..., M;} of
subsets of [m] givenby M} :={j € [m]:i € M;} (i=1,...,n).

Lemma 1 ([6]). If M is a CSS then its dual M* is an antichain and vice versa.

Lemma 2. If M is a (n,k)CSS of size m then its dual M* is a (k,m,n)-
antichain and vice versa.

Completely Separating Systems are studied in a lot of papers: In 1973, Katona
[4] studied combinatorial search problems in general; Cai [2], Ramsay et al. (7]
and Roberts et al. [10] studied Completely Separating Systems with restrictions.
The relevant CSSs for the motivation of this paper are the (n, k)CSSs. Much of
the recent CSS work is on the minimum size of these.

1.3 Facts

Before we start with our results, we want to list some basic results, which are
already known or easy to prove.

Lemma 3 ([5)). A collection B = {B1,Ba, ..., Bn} of sets is an antichain if and
only if B is an antichain.

Lemma 4. A (k,m,n)-AC B exists if and only if an (n — k,m,n)-AC C exists.

Lemma 5. Letl < k < n — 1 and B be a (k,m,n)-AC. Then there exists no set
BinBwith|B|=1,|B|l=m—1or|B|=m.

Lemma 6. Let B be a (k,m,n)-AC. Then there exists a (k,m + 1,n)-AC B'.
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n example for an (m — 1, m,n)-AC
0
1 12
2 1,2
3 12, 13,23
4 123,124, 134, 234
6 12,13, 14, 23, 24, 34
5 1234, 1235, 1245, 1345, 2345
7 12, 134, 135, 145, 234, 235, 245
8 12,13, 14, 15, 234, 235, 245, 345
10 12, 13, 14, 15, 23, 24, 25, 34, 35, 45
6 12345, 12346, 12356, 12456, 13456, 23456
8 123, 124, 1256, 1356, 1456, 2345, 2346, 3456
9 123, 126, 156, 234, 345, 456, 1245, 1346, 2356
10 123, 124, 135, 136, 146, 245, 246, 256, 345, 356
11 12, 34, 56, 135, 136, 145, 146, 235, 236, 245, 246
12 12, 16, 26, 36, 46, 56, 134, 135, 145, 234, 235, 245
13 12, 13, 14, 15, 16, 28, 36, 46, 56, 234, 235, 245, 345
15 12, 13, 14, 15, 186, 23, 24, 25, 26, 34, 35, 36, 45, 46, 56
7 123456, 123457, 123467, 123567, 124567, 134567, 234567
9 1234, 1256, 3456, 12357, 12467, 13457, 13567, 23467, 24567
10 1237, 1256, 1346, 1457, 1467, 2347, 2356, 2567, 12345, 34567
11 123, 456, 1245, 1247, 1346, 1357, 1457, 2356, 2367, 2567, 3467
12 123, 234, 345, 456, 567, 167, 1256, 1257, 1346, 1347, 2367, 2457
13 126, 127, 157, 236, 346, 347, 367, 456, 457, 567, 1234, 1235, 1245
14 123, 124, 127, 137, 156, 167, 234, 235, 267, 345, 346, 456, 457, 567
15 12, 13, 23, 145, 147, 156, 167, 245, 247, 256, 267, 345, 347, 356, 367
16 12, 13, 14, 15, 16, 17, 234, 235, 236, 237, 247, 356, 456, 457, 467, 567
17 12,17, 27, 34, 37, 47, 56, 57, 67, 135, 136, 145, 146, 235, 236, 245, 246
18 12, 16, 17, 26, 27, 36, 37, 46, 47, 56, 57, 67, 134, 135, 145, 234, 235, 245
19 12,13, 14, 15, 16, 17, 26, 27, 36, 37, 46, 47, 56, 57, 67, 234, 235, 245, 345
21 | 12,13, 14, 15, 186, 17, 28, 24, 25, 26, 27, 34, 35, 36, 37, 45, 46, 47, 56, 57, 67

Table 1: Examples of (m — 1, m, n)-antichains with m < 7.

Proof. We fix any i € [m] and define B; := {B € B:i € B}andC :=
{BU {m+1}:BeB}.

B' :=CU (B\By).

Obviously B’ is a (k,m + 1, n)-antichain. ]

1.4 Examples of (m — 1)-regular antichains on [m]

First we start with some examples which are shown in Table 1 and which we need
to start the induction in the proof of our main theorem.

We present our results for small m in Table 2. The sets M,, and M, are de-
fined by My, := {n € N: 3(m — 1,m,n)-AC} and by M,,; := {n € N :
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m || |Mm| Mm {Mmel  [Mmgs| Mmal  [Mmal  |[Mmal
1 1 1 - - - - -
2 2 1,2 - - - - 1
3 1 3 - - - - 1
4 2 4,6 - - - 1 2
5 4 57,810 - - 1 1 4
6 8 6,8-13,15 - 1 1 4 8
7 13 7,9-19,21 1 1 3 7 13

Table 2: Overview of the existence of (m — 1, m, n)-antichains withm < 7 and
possible sizes n.

3(m - 1,m,n)-ACB,VB € B: |B| > t}.

2 Resulits
Lemma 7 (sufficient condition). For all m € N with m > 3 there exists an
(a) (m—1,m,m)-AC,
(b) (m-1,m,(3))-AC.
Proof. We define B form € N withm > 3:
@ B:={BC[m]:|Bl=m-1},
®) B:={BC[m}:|B|=2}.
Obviously these collections of sets satisfy all conditions. |

Lemma 8 (necessary condition i). For allm € N withm > 3 there does not exist
any

(@) (m—1,m,m+ 1)-AC,
(8) (m—1,m, (T) - 1)-AC.
Proof.

(a) We assume there is an m, such that an (m—1,m, m+1)-AC Bexists. Then
there is also a (2, ™, m + 1)-AC B (Lemma 4). Because of 22} = 2, <
2 the collection B of sets must contain a 1-set. This is a contradiction to
Lemma 5.
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(b) Again we assume that an (m — 1,m, ('5‘) — 1)-AC B exists for an m > 3.
This contains either two 3-sets B, Bj and (7) — 3 2-sets or exactly one
4-sets By and (77) — 2 2-sets. In the first case we look at an arbitrary
i € Bj\Bj. This one is in at most (m — 3) 2-sets and in one 3-set. This is a
contradiction. Similarly, in the second case we look at an arbitrary j € BY.
This one is in at most (m — 4) 2-sets and in one 4-set. |

Lemma 9 (necessary condition ii). Let m > 2 and n be arbitrary natural num-
bers. If n < m orn > (7) there does not exist any (m — 1,m,n)-AC.

Proof. Firstlet n > () > 3. We assume there is an (m — 1,m,n)-AC B.
Because of m? — m = v(B) = ¥ peg|B| there is at least one 1-set. This is
a contradiction to Lemma 5. Now let n < m. Again we assume that such an
(m —1,m, n)-AC B exists. With the same argument we know that there must be
one m-set. This is also a contradiction. ]

Lemma 10 (recursive construction). Let B be an (m — 1,m,n)-AC withm > 2.
Then there exists an (m,m + 1,n + m)-AC D.

Proof. We construct the regular antichain D with the help of B:
D:=Bu{{i,m+1}:i€[m]}.
Obviously D is an antichain and satisfies all conditions. [

Theorem 1 (main result). Let m > 3 be an arbitrary natural number. An (m —
1,m, n)-antichain exists if and only if n € [m + 2, (7) — 2] U {m, (7)}.

Before we prove this Theorem we want to mention a result from Bshm (13.

Theorem 2 ([1]). Let m,n € N arbitrary with m > 6 and with

m+3<n<|(F) - 2m| if m=0,1,3,4,6,89 mod 10,
m+3<n<[(F)-3m| -1 if m=25,7 mod 10.

Then there exists an (m,m,n)-AC B.

Proof (main result). Ifn <m+1lorn > (';) — 1 then Lemmas 7, 8, 9 show that
Theorem 1 is correct. So we only have to analyze the cases m+2 < n < (3) -2
We prove this by induction on m. We start with m = 2, 3, 4,5,6,7 (examples and
Lemmas 8 and 9). Let m > 8 be an arbitrary natural number. We assume that
the statement is true for m — 1 such that we can use it to show that is also true
form. If m 4+ 2 < n < 2m then there is an (m — 1,m — 1,n)-AC (Theorem 2)
and with the help of Lemma 6 we know that there is also an (m — 1, m,n)-AC,
If2m < n < (%) — 2 we know that an (m — 2,m — 1,£)-AC exists for all
t € [m+1,(™;") — 2] (induction hypothesis) and then with the help of Lemma
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Figure 1: Overview of (m — 1, m, n)-antichains

10 we getan (m—1,m,n)-AC withn € [(m+1)+(m—-1), (M7 -2+m-1] =
(2m, (7) - 2]. ]
The dual statement to Theorem 1 is that an (n,m)CSS antichain of size m + 1
exists if and only if 7 € [m + 3, (") —2JU {m + 1, (™3 ") }. Our results are
illustrated in Figure 1, where the dots indicate the pairs (m,n) such that there
exists an (m — 1, m, n)-AC.

Corollary 1. Let m be a natural number with m > 5. Then

m-1
|Mm|—( ; )—2.

Proof. This corollary follows directly from Theorem 1 using the equivalence
((3) —22=m+2) & (m 2 5) and the equality ((3)-2)-(m+1)+2=

mh -2 ]
Using Theorem 1 we know if for given parameter-pair (m, n) an (m — 1,m,n)-
AC exists or not. Now, we could ask how many non isomorphic (m — 1,m,n)-
ACs exist. For example it is easy to check that if m < 5 there are only the ones
which are mentioned in Table 1 and that for every m > 2 there is exactly one
(m — 1,m, m)-AC and one (m — 1,m, (3))-AC. Form = 6 and n = 8 we
get five non isomorphic (5, 6,8)-ACs: B; = {123, 456, 1245, 1246, 1345, 1356,
2346, 2356}, B = {123, 145, 1246, 1256, 1346, 2345, 2356, 3456}, Bs = {123,
124, 1256, 1356, 1345, 2346, 2456, 3456}, By = {123, 124, 1256, 1356, 1456,
2345, 2346, 3456} and Bs = {123, 124, 1346, 1356, 1456, 2345, 2356, 2456}.
For arbitrary (m, n) the exact number of non isomorphic (m — 1,m, n)-ACs is
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unknown and the subject of ongoing research.
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