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ABSTRACT. We show that the necessary conditions are sufficient for
the existence of group divisible designs (PBIBDs of group divisible
type) for block size k = 3 and with three groups of sizes 1, 1, and n.

1. Introduction

A GDD(v = v +v2+ - +vg,9,k, A1, A2), or group divisible design, is
an ordered triple (V, k, B), where V is a set of size v whose elements are the
points of the design, B is a collection of subsets (called blocks) of V, and
k is the size of each block. The set V is partitioned into g subsets called .
groups, and group G; has v; elements. Each pair of points from the same
group occurs in A; blocks, and each pair of points from different groups
occurs in Az blocks. We consider GDDs such that all groups are of size 1
except for one group of size n > 1. Pairs of symbols occurring in the same
group are called first associates, and pairs occurring from different groups
are called second associates. The existence of such designs is an old topic,
and we refer the reader to Section IV Chapter 1, and Section VI Chapter
42, of Colbourn and Dinitz [1] where these designs are called PBIBDs of
group divisible type (and GDD is reserved for designs with A; = 0). The
existence question for k = 3 has been solved by Sarvate, Fu and Rodger (2],
[3] when all groups are the same size. More recently, Punnim and Sarvate
[4] determined the existence of GDDs for k = 3 with two groups where the
group sizes were 1 and n. Here we consider GDDs in which there are three
groups of sizes 1, 1, and n (for n > 1), and for which the block size k = 3,
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and such that the indices satisfy A; = 1 and A = A > 2. We describe the
designs as graphs. Let AK, devote the (multi)graph on v vertices in which
each pair of vertices is joined by A edges. For any graphs G; and G2, we
define G, V), G to be the union of graphs G; and Gz in which each vertex
of G, is joined to each vertex of G; by A edges. A G-decomposition of
a graph H is a partition of the edges of H such that each element of the
partition induces a copy of G. When k = 3, each block is K3 and the GDD °
is a K3-decomposition of the graph G where:

G= (G1 Va Gz) U (G Va Gs) U (GQ Vi G3)

and G, is the graph with isolated vertex ¢, G2 is the graph with isolated
vertex 3, and G3 is K,,. Suppose S is a graph or a set whose elements are
graphs. We frequently make use of the convenient notation o * S to mean
the set of triangles (blocks of size 3) obtained by decomposing S (or its
elements) into edges and reforming to make triangles so that o is a vertex
in each triangle.

2. Necessary Conditions

We first construct an example to show A is bounded. A one-factor of
a graph is a set of pairwise disjoint edges which partition the vertex set.
It is well-known that the edges of the complete graph K», can be put into
2n—1 classes (one-factors) in which each vertex appears once and only once
in the class.

EXAMPLE 1. Forn =17, A=2, a GDD(v=1+1+7,3,3,1,2) can be con-
structed from Kg based on the points {1,--- ,6}. Decompose K¢ into five
one-factors, say Fy,- - , Fs. The blocks for the GDD are: {e, 8,7},{a, 8,7},
a*Flsa*F2aﬁ*F3sﬁ*F4’7*F5-

THEOREM 1. Suppose n = 1+ 2t > 7. Then there ezists a GDD(v =
14+1+4n,3,3,1,¢—1).

PROOF. Decompose the graph Ko, into 2¢t—1 one-factors. Use one with
n and t — 1 with each of a and 3 to make blocks as in the example. Make A
copies of the block {c, 8,n}. This constructs a GDD(v = 1+1+n,3,3,1,})
for \=(n-3)/2=t—1,and forn=2¢t+1. O

The previous theorem suggests that A is always bounded below Q;—Q
This is true as we now argue. Let us assume we have constructed a GDD
as in the theorem using A copies of the block {a, 8,n}. Let B, denote the
set of blocks which contain a but not 8, and define Bg to denote the set

of blocks which contain 8 but not . Then, |Ba| = |Bgl| =ﬁ%l. Observe
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that n is not in any of the blocks of B, or Bg. We define B, to be the set
of blocks containing neither & nor 8. Since each block of B,, which contains
z also contains one edge with two points from N\{n}, |B,| > {2} . Since
each block of B,, Bg, and B, has one edge from N\{n},

Ar=1) | A(n-1 -1 -1y _ (n=1)(n—2)
(nz L+ (nz )+(n2)5(n2)= .

On simplification this reduces to A < 51}-:9 Suppose now an alternate
solution exists for construction of the blocks of the GDD so that there are
(A = 1) copies of {a,8,n} and one copy of {a, 3,y} for some y in N \{n}.
Consider the effect on B, of this change. One occurrence of y in some block
of B, is replaced by an occurrence of n in some block of B,, and WLOG
assume it is the same block. The change in Bg is similar, and therefore | B4|
= |Bg| =ﬂ"2;1) as before. Similarly, for the set B, the blocks without «
and without 3, two pairs with y (one triangle) now replace a triangle with
n, but, the |B,| is unchanged. It follows that A is bounded exactly as
before.

There are (at least) two other important necessary conditions.

THEOREM 2. If a GDD(v = 1+1+n,3,3,1,)) erists, then (a) n is
odd; (b) 3 divides n — 1 or 3 divides A+ n; (c) A < I"—;:’l

PROOF. For part (a), suppose z is an element in N, the largest group.
There are 2X +n — 1 edges for 2. The edges are consumed two per block.
So the number of these edges must be even. Thus n — 1 is even. For part
(b), there are 3\ edges used in the blocks which contain both & and 8.
If we subtract these from the total number of edges in G, the remaining
must also be a multiple of three. Now, the size, or number of edges in G,
is e = (3) +2An + A . Hence, 2nA — 2A + 221 = 0 (mod 3). This can be
shown to imply 3|(n — 1) or 3|\ +n. O

We may summarize some consequences of the two previous theorems

as follows:

o If n=6t+1, then A € {2,3,4,--- ,inT—S)},
o Ifn=6t+3, then A€ {3,6,9,--, 259},
° Ifn=6t+5, then/\€{4,7:10v"' ’!"_;Q}_

We will show in Section 3 that these designs all exist, and consequently:

THEOREM 3. A GDD(v=1+1+n,3,3,1,)) erists if and only if the
necessary conditions are satisfied.
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3. Existence results

The method used for n = 7 in Example 1 does not work for larger n
(and X\ = 2) since there are one-factors left over — that is they must be
used to make triangles without « or 8. To solve this problem we use the
partition of indices method introduced by Stanton and Goulden (6] and
extended by Sarvate [5]. The edges of K2, can be put into disjoint classes
P, P, , P, where edge {, 7} is in P if and only if (¢ — j) = k (mod 2n).
We combine known results into the next lemma:

LEMMA 1. With respect to the complete graph Koy we have:
(a) The triangles {1+1,2+14,4 414} fori=1,2,---,2k contain ezactly the
edges from Py, P> and P3. Put another way, the graph Ko may be factored
into 2k — 1 one-factors, siz of which may be combined into 2k triangles.
(b) The triangles {1+4,1+z+4,1+x+y+1<} fori=1,2,---,2k contain
ezactly the edges from Py, Py, and Pry, wherez +y < k.
(c) The pairs in Pagy1 (for 2z 4+ 1 < k) split into two one factors and the
pairs in Py, form a two-factor.
(d) If 2z + 1 < k, Then Pyz U Py splits into four one-factors. Py is
a single one-factor. If k is odd, the set Pr_y U P, can be split into three
one-factors.
(e) For the complete graph Ke,, the set Py, UP, forms 4s distinct triangles.
The set Py, forms 2s distinct triangles in which each point of 1,2,--- ,6s
appears exactly once. The triangles are {i,i+2s,i+4s} fori=1,2,--+,2s.
It may be observed that each triangle consumes 3 edges in which each point
appears twice. Thus the set Py, is also a two-factor.

EXAMPLE 2. Here n = 13, and A = 2,3,4,5. We apply the Lemma.
Decompose the complete graph Kz into Py, Py, -, Ps.
(a) First, for A = 2, construct the blocks by making triangles from P, P,
and Py (part (b) of the Lemma) and use the additional blocks {e, 3,13},
{2, 8,13}, ax Py, B * Ps, 13 x Pg. It is straightforward to check that A\, =
1 and )\2 =2
(b) To increase A from 2 to 5, instead of making triangles (without o and
without B) from Py, P2, and P3, decompose Py into two one-factors F3 and
F, and make the blocks a x F3,a * Py, 3+ Fy, and 3 * Pj.
(c) For A = 8, use P and P to make triangles (part (e) of the Lemma with
s = 1) without o and without 8. Decompose Ps into two one-factors (as 5
is odd, using part (c) of the Lemma), say Fy and F;. The remaining blocks
are {e, 8,13}, {e, 5,13},{a, 8,13}, a * Py,a x F1,B % Fa, 8 % P5,13 x Ps.
(d) For A= 4, use Py to make triangles without a and without B (part (e)
of the Lemma). Use four copies of the block {a, 8,13}, and use the blocks
axPy,axP3,B8%P,* Ps, and 13 x Pi3.
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If n = 6t + 1, then 3 divides n — 1 and there are no conditions on

A except that it be greater than one. For n = 7,13 the designs possible
according to Theorem 2 are constructed in Examples 1, 2. Suppose now
n==6t+1>13.
Case 1: ¢t = 2j, and n = 125 + 1. We decompose the complete graph
K)3; into Py, P, ,Pg;. We (almost completely) partition the integers
1,2,---,67 into triples {a,b,a + b} such that a + b < 65. In this way, the
triples can be used in conjunction with the Lemma to indicate one-factors
and two-factors from which the necessary blocks can be constructed. The
partition we will use is the following:

{1’3.7 - 1,3j}1 (313.7 - 2)3.7 + 1}1 ' {2.7 - 1,2.7’4.7 - 1}1 and

{2: 57 -2, 5j}’{4: 55 —3,5j + 1})' e ,{2j - 2,45,65 — 2}'

Not listed are points 55 — 1,65 — 1 and 6;.

For A = 2, use two copies of the block {a, 3,7} and form the blocks
ax Psj1,3* Pej—1 and (125 + 1) * Ps;. By part (d) of the Lemma, Pg;
is a one-factor. Ps;j-; and Ps;_; are either two-factors or composed of
two one-factors. Each triple of remaining indices corresponds to three
sets Pr, Py, Py1, which are used to form triangles (without a or B). It
is clear that A\; = 1 and A = 2 and that the blocks give the GDD(v =
1414 (6t+1),3,3,1,2).

For A = 2 4 3m, a small bit of caution is necessary in increasing the
second index in units of three. To increase A from 2 to 5, we decompose
Py, P3;_; and P3; to make blocks with o and with 3 as in Example 2. The
index 1 is odd and P; can be decomposed into two one-factors. To increase
the index from 2 to 8, use two different triples of indices, one with a and
one with 3, and select these two triples so that all three indices are even.
The point is that, in the Lemma, P,, decomposes into a two-factor, not
into two one-factors, and for some triples of indices, all are even. With this
caveat, it is straightforward to arrange for A = 2 + 3m.

For A = 4 + 3m, we first extend the solution from A = 2 to 4 by using
the triple (25 — 2, 47, 65 — 2) since P,; can be used all by itself to make tri-
angles - part (e) of the Lemma, as 45 = 2s. The other blocks are o * Py_o
andB * Pgj_2. This increases the index to 4, and further increases in mul-
tiples of three can be done as in the previous paragraph.

For A = 3, use three copies of the block {c, 3,n}. Use the new partition
of indices below in order to apply the Lemma as in part (c) of Example 2:

{113j_ 1)3.7}’{&3.7 -2:3.7""1}7"‘ ’{2j—312j+ 114j -2}1 and

{215j - 1,5j + 1}’{435j —-2,55 +2}t' v a{2j’4j»6j}'

Not listed are the indices 55,25 — 1, and 45 — 1. Use the sets Psj, Pyj_4,
and P4;_; to make blocks with o and 8. Use the one-factor Ps; to make
triangles with n. Use P,; and P,; to make triangles without o and 3. In-
creasing A from 3 to 3 + 3m is done as was increasing )\ from 2 to 2 + 3m.
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Case 2: t = 2j + 1 and n = 125 + 6 + 1. The construction is similar. De-
compose Ki2j+6 into Py, Py, -+ , Psj43. Now apply the partition of indices:
{1,35,35 +1},{3,35 — 1,35 + 2},--- , {2§ — 1,2j + 1,45}, and
{2’5j, 5j + 2}) {41 5j - 1:5j + 3}’ Tt {2ja 45 + 11 6j + 1}‘
Not listed are 55 +1, 65 +2 and 65+3. The necessary blocks are constructed
as in Case 1 except for A = 3+ 3m, and for that case use the following par-
tition:
{1,55 + 2,55 + 3},{3,55 + 1,55 +4},--+ , {25 + 1,4j + 2,65 + 3}, and
{2,3.7)3.7 + 2}) {4y3.7 -1,3j+ 3}$ T {2.7 - 2)2.7 + 2’4.7}
Not listed are the triples 2j,3; + 1, and 45 + 1. The blocks are constructed
as in the previous case. These constructions and the necessary conditions
prove the following: '

THEOREM 4. There ezists a GDD(v = 1+ 1+ n,3,3,1,2 + 3m) for
2<24+3m< Lg;_fil if and only if n =6t + 1 for some t > 1.

For n = 6t + 3, A\ = 3m for some m. First, for n =9, A = 3 is the
only possibility. The construction in Theorem 1 is suitable. For n = 15,
decompose the graph K4 into Py, P, --- , P7. Use Py, Py, and Pz to make
triangles without a or 3. Use P; (a one-factor) to make triangles with
n = 15. Use the other three Ps to make blocks with a or with 3 as before.
The rest is clear. Now for 6¢ + 3 > 15, we consider two cases.

Case 1: t = 2j and n = 12§ + 3. We apply the Lemma and decompose
Kij42 into Py, -+, Psj41. The partition of indices we need is the same as
for Case 1 for n = 6t + 1, except here we have one more index 65 + 1. This
gives four indices not in triples: 55 —1,6j — 1,65 and 65 + 1. Since we want
) = 3, we use the first three of these to make blocks with a and with S,
and as Psj. is a one-factor, we use it to make blocks with n = 125 + 3.
The rest follows as before.

Case 2: t = 2j + 1 and n = 12j + 9. Decompose K12j48 into P, P, - -+,
Psj44. The partition of indices needed is:

{1,37+2,3; +3},{3,3; + 1,3 +4},--- , {2j + 1,25 + 2,45 + 3}, and

{2,55 + 3,55 + 5}, {4,5j +2,5j +6},--- {24, 47 + 4,65 + 4}.

The only index not listed in a triple is 55 + 4. We use Ps;4.4 and the Ps
corresponding to the triple {27,45 + 4, 65 + 4} to make blocks for a, 3, and
n (Pgj+4 is the one-factor). The rest is clear.

THEOREM 5. There erists a GDD(v =1+ 1+n,3,3,1,3m) for 3 <
3m < !2'2'_3) if and only if n = 6t + 3 for some t > 1.

Now we consider n = 6t+ 5. For n = 5, there is no design. For n = 11,
a GDD(13 = 1+ 1+ 11,3,3,1,4) may be constructed as in Theorem 1. For
n = 17, a GDD with A = 4 or A = 7 may be constructed applying the
Lemma. We consider only the general n = 6t + 5, and there are two cases.
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Case 1: ¢ = 2j and n = 12j + 5. Decompose the graph Kjj;.4 into
P,,..., Psjio. Here we may use the triples:
{1,3j73j + 1}! {313.7 - 113.7+ 2}:" ' ’{2.7 - 112.7+ 114j}7 and
{2a5j’5j + 2}3 {4’ 5j — 1:5j+3}" v ’{2j’4j + 1,6.7 + 1}
Not listed are 55 +4, 65+2. Use Pyj, Pyjy1, Pejy1, and Psjqq to make blocks
with & and 3, and use Pg;42 to make blocks with n. The rest follows as
before.
Case 2: t = 2j+1 and n = 12j+11. Decompose Ki2j410into Py, -+, Pgjys.
Here use the partition of indices given by:
{1,37+2,35+3},{3,3j + 1,35 +4},--- , {25 + 1,25 + 2,45 + 3}, and
{2,5] + 8,55 + 5}, {4,5] +2,5] -+ 6}, -+ {23, 4 + 4,67 + 4}
Here not listed are 5j+ 1 and 65 +5. The blocks are constructed as in Case
1. This proves:

THEOREM 6. There ezists a GDD(v = 1+ 1 + n,3,3,1,4 + 3m) for
4<4+3m< -("—;‘22 if and only if n = 6t + 5 for somet > 1.

This theorem completes the proof of Theorem 3 in Section 2.
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