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Abstract. For given graphs Gy, Ga, the 2-color Ramsey num-
ber R(G1,Gs) is defined to be the least positive integer n such
that every 2-coloring of the edges of complete graph K, con-
tains a copy of G colored with the first color or a copy of Ga
colored with the second color. In this note, we obtained some
new exact values of generalized Ramsey numbers such as cycle
versus book, book versus book, complete bipartite graph versus
complete bipartite graph.

1 Introduction

In this note, we shall only consider graphs without multiple edges or loops.
For a graph G, the set of vertices of G is denoted by V(G), the set of edges
of G is denoted by E(G), the cardinality of V(G) is denoted by |V(G)), the
complementary graph of G is denoted by G. A cycle on i vertices is denoted
by C;. A path on i vertices is denoted by P,. A star graph, denoted by
S;, is a bipartite graph of order  with one partite set consisting of a single
vertex, i.e. S; & K ;1. A book graph, denoted by B;, has i + 2 vertices
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and is the result of a single vertex being connected to every vertex of a star
Siy1. A clique of order 4 is denoted by K;. Please refer to [1] for more
notion and notation of graph theory.

For given graphs G, G2, the 2-color Ramsey number R(G1,G?) is de-
fined to be the least positive integer n such that every 2-coloring of the
edges of complete graph K, contains a copy of Gy with the first color or
a copy of G2 with the second color. A complete graph G with edges col-
ored with 2 colors red and blue is called a (G1, G2)-graph if G does not
contain a subgraph isomorphic to Gi with red color, or a subgraph iso-
morphic to G with blue color. A (Gy,Gz2)-graph on n vertices is denoted
by (G1,G2;n)-graph. The set of all nonisomorphic (G1, Ga;n)-graphs is
denoted by R(G1, Ga;n), and the cardinality of R(G1, G2;n) is denoted by
IR(G1, Ga; n)|.

Recently, many Ramsey numbers for general graphs such as paths,
wheels, books, cycles, stars, trees and fans were researched. In 2005, Chen
and Zhang et al. [2] researched the Ramsey numbers of paths versus wheels.
They proved that R(P,,W;,) =2n—1formevenand n 2 m—1 2 3;
R(P,,Wp) = 3n—2 for m odd and n > m — 1 > 2. In 2006, Surahmat
and Baskoro et al. [18] determined the Ramsey numbers of large cycles C,,
versus wheels W, and they showed that R(C,,Ws) = 2n — 1 for even
m and n > 5m/2 — 1. In 2006, Salman and Broersma [17] investigated
the the Ramsey numbers of paths versus fans. In 2007, Cheng and Chen
et al. [3] investigated the the Ramsey numbers of cycles versus complete
graphs, and they showed that R(Cpn, K7) = 6m — 5 for m > 7. Neverthe-
less, it is still difficult to determine the generalized Ramsey numbers. In
the dynamic survey of small Ramsey numbers [14], some exact values of
generalized Ramsey numbers are still open.

By the dynamic survey of small Ramsey numbers (14}, for R(Cp, Bs)
and m > 3, the exact value of R(C7,B3) remains unsolved; for the
small Ramsey numbers R(Kmn,Kst), some exact values are still un-
known. Table 1 shows the the known and new exact values and bounds
of these numbers, in which the values in bold fonts are new and ob-
tained in this note. In the home page of Radziszowski [19], R(B3,Bs)
remains open. In this note, we use a branch and cut technique and
modify some programs used in [11] to compute some unsolved gener-
alized Ramsey numbers. By a large mount of computations, we ob-
tain some unsolved Ramsey numbers R(Km n,Ks:), which are listed
as follows. R(K1'4,K2,e) = 11, R(K1'4,K2,7) = 13, R(K1,4, K3'5) =
13, R(K14,Ks4) = 13, R(Kis5,Kz6) = 14, R(Kis,Kss) = 15,
R(K15,K27) = 15, R(K15,K44) = 13, R(K24,K34) = 17 and
R(Bs, By) = 15. :
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Table 1: Known and new values and bounds of Ramsey numbers
R(Km,m Ks,t)
st 1,2 13 14 15 16 22 23 24 25 33
m,n

3.2 4 6 7 8 9 &6
2,3 5 7 9 10 11 8 10

2.4 6 8 9 11 13 9 12 14

2,5 7 9 11 13 14 11 13 16 18

2,6 8 10 11 14

2,7 9 11 13 15

33 7 8 11 12 13 11 13 16 18 18
3,4 7 9 11 13 14 11 14 17 <21 <25
3,5 9 10 13 15 14 <28
44 8 10 13 13 14

2 Computation of the Ramsey Numbers

Firstly, we define some notations.

Definition 1 (One-vertex extension) Suppose G is a (G1,Ga;n)-
graph, the operation to find all manners in which a new vertez is joined
to G to make a (Gy,G2;n+1)-graph is called one-vertez extension method.

In this section, we developed a naive backtrack program to obtain
R(G1,G2;n + 1)-graphs from R(G1, G2;n)-graphs. The detailed technique
for one-vertex extension is described as follows. For a graph G and a
vertex vni1, where V(G) = {v1,v2,+++,vn}. Let e; = (vi,vn41), Where
1<i<n, E={e|l <i<n} Wedefine a new graph G’ as follows.
V(G") = V(G) U {vn41}, E(G') = E(G)UE. Now, we will assign red
or blue color to each edge of E in G’ with all manners. The isomorphic
rejection was done by using the program shortg [10).

2.1 Computation of R(Cy,, B,)

Faudree and Rousseau (7] obtained the values of R(Cy,, B,), for some in-
teger m and n. The results are as follows.

Theorem 1 [7] R(Cs, B,) = { gh 3, ;::Z > }f
9, Jorn=1,2,

Theorem 2 [7] R(Cs,B,) = ¢ 10, forn=3,
n+3, forn>3.
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Theorem 3 [7] If m be an odd integer > 7 and suppose that n > 4m —13,
then R(Cm, Bn) = 2n+3; for alln > 1 and m 2 2n+2, then R(Cm, Bs) =
2m - 1.

We summarize the Ramsey numbers R(Cy,,By) form 2 3,2<n <6
in Table 2. In this note, we obtained some other results on these Ramsey
numbers, which is shown in Table 2 in bold font.

Table 2: Known and new Ramsey numbers R(Cp,, Bp) form > 3,2<n <6
m 3 4 5 6 7 8 9 10 11 12 m>22n+2

n

2 7 7 9 11 13 15 17 19 21 23 2m-1
3 9 9 10 11 13 15 17 19 21 23 2m-1
4 11 11 11 12 13 15 19 21 23 2m-1
5 13 12 13 14 15 23 2m-1
6 15 13 15 2m -1

For some graphs G, and Ga, by the one-vertex extension method, we
obtain the statistics of the number of nonisomorphic (G, G2; n)-graphs,
which are shown in Table 3.

Theorem 4 R(C7,B;3) = 13, R(Cs,Bsy) = 12, R(Cy,By) = 13,
R(Cs, By) = 15, R(Cs, Bs) = 14, R(C7, Bs) = 15.

Proof. From Table 3, the nonexistence of R(C7, Bs, 13)-graph implies that
R(C7,Bs) < 13. Two R(Cr, Bs,12)-graphs show that R(C7,B3) 2 13.
Thus R(C7, Bs) = 13. Similarly, we have R(Cs, B) = 12, R(C7, Bs) = 13,
R(Cs, By) =15, R(Cs, Bs) = 14, R(C7, Bs) = 15.

2.2 Computation of some Ramsey numbers for com-
plete bipartite graphs

By the dynamic survey of small Ramsey numbers (14}, for the Ram-
sey numbers of K. n graphs, the following results are already known.
R(K14,Ka2) = 7, R(K1,4,K2,3) = 9, R(K1,4,K2,4) = 9, R(K1,4,Ka5) =
11, R(K1 4, K33) = 11, R(K1,4, K3,4) = 11. In this note, with the help of
computer computation, we obtain R(K1,4,K26) = 11, R(K14,K27) =
13, R(K14,Kas) = 13, R(K14,Ks4) = 13, R(K15,Ka6) = 14,
R(K15,K35) = 15, R(Kis,K27) = 15, R(K15,K44) = 13 and
R(K3,4,K34) = 17.

By the programm nauty [10], 12005168 non-isomorphic graphs with
10 vertices are generated on personal computer. From the 12005168 non-
isomorphic graphs with 10 vertices, we find 85 (K 4, K2,6; 10)-graphs, 1188
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Table 3: The statistics of the number of nonisomorphic(G,, G2; n)-graphs
n 9 10 11 12 13 14 15

R(Cy, Ba;n)] 19 14 9 2 0
|R(Cs, Bs;n)| 59 16 2 0 o
IR(Cr,Bs;n)| 372 40 14 2 0
R(Cs, Ba;n)l 2142 1010 32 21 13
|R(Cs, Bs;n)] 874 236 122 55 11
|R(Cq,Bs;n)| 2486 1151 193 94 17

NONwMO OO
cCOoOOoCooco

(K1,4,K2.7; 10)-graphs, 268 (K1'4,K3,5; 10)-graphs, 486 (K1'4,K4,4; 10)—
graphs, 29336 (K15, Kae; 10)-graphs, 51847 (Kjs, K3 s;10)-graphs,
79076 (K1,5,K2,7;10)-graphs, 69200 (K1l5,K4,4;10)-gl'aphS and 666964
(K2,4,K3,4; 10)-graphs. Let M(G,G1, Ga;n + 1) be all (G1,G2;n + 1)-
graphs with n + 1 vertices obtained from a (G1,Gz;n)-graph G by join-
ing one vertex. It is clear that R(G1,Ga;n + 1) = UGeR(G1,Ga;n)
M(G,G1,G2;n + 1). By the above one-vertex extension algorithm, we
complete the extension G — M(G, G1,G2;n+1), for all G € R(Gy, Ga;n)
and 10 < n < 14. Table 4 gives the statistics of their values Fig. 1 shows
two (K14, K3,5; 12)-graphs, Fig. 2 shows three (K} 4, K4 4; 12)-graphs, Fig.
3 shows the unique (K3 5, K3 6;13)-graph and Fig. 4 shows the unique
(Kl,s, K3,5; 14)-graph.

Table 4: The statistic of the number of all nonisomorphic (G1, Ga; n)-graphs

n 10 11 12 13 14 15 16 17
IR(K1,¢, K2,6in)] 85 0 0 0 0 0 0 0
|R(K1,4, K2,7;n)] 1188 245 18 0 0 0 0 0
|R(K1,4,Kas;n)| 268 29 2 0 0 0 0 0
IR(K1,4, K4.a;n)| 486 96 3 0 0 0 0 o
[R(K1s, K2,6:n)] 29336 22916 1150 1 0 0 0 0
IR(Ky1,5, K2,7:n)] 79076 267514 244979 13753 12 0 0 0
|R(K1,6,K3s;n)] 51847 100353 34463 430 1 0 0 0
|R(K1,5, Kaa;n) 69200 201308 44 o 0 0 0 o
|R(Ka2,4, Ks,q;n)] 666964 620— 287- 320- 274- 4882 2 0

7721 03347 37303 3467

Theorem 5 R(K1,4,K2,6) = 11, R(K1,4,K2,7) = 13, R(K1,4,K3.5) =
13, R(K14,Ks44) = 13, R(K15,K26) = 14, R(K,5,K3s) = 15,
R(K1,5,Ka,7) = 15, R(K1,5,K4,4) = 13, R(K3,4, K3,4) = 17.

Proof: The above computations and results show that there exists
no (K4, Kpzg;11)-graph, so R(Ki4,K2g) < 11. On the other
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Figure 1: Two (K 4, K3,5; 12)-graphs

hand, there are 85 (Kj4, Kae;10)-graphs (see Table 1), which indi-
cates that R(Ki4,K26) > 10. Thus, R(Ki4,K26) = 11. Simi-
larly, we have R(K1,4,K2,7) = 13, R(K1,4, K3,5) = 13, R(K1,4,K4,4) =
13, R(K15,K26) = 14, R(K15,K35) = 15, R(Kis,Ka7) = 15,
R(K1,5, K4'4) =13 and R(K2,4, K3‘4) =17.

2.3 Computation of R(Bn,, B,)

In 1978, Rousseau and Sheehan [16] obtained R(B1,Bn) = 2n + 3 for
"integer n > 1; in 2005, Nikiforov and Rousseau [12] obtained that for some
number ¢, where ¢ < 108, if m > cn, then R(Bp, Bn) = 2m + 3; Nikiforov
and Rousseau et al. [13] proved that R(By,Bn) = 4n+2 when 4n+ 1 is
prime. Here, some small Ramsey numbers R(Bm, By) are listed in Table
5.

Table 5: Some known and new Ramsey numbers R(By,, B;,)

n 2 3 4 5 6
m
2 10 [4]
3 11 14 [8)
4 1315 15 18 [16]
5 16 [16] 17 [16] 21 [16]
6 22 (16} 26 [16]
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Figure 2: Three (K1,4, K4,4; 12)-graphs

The one-vertex extension method above can be use to compute the
Ramsey number R(By, By). In this note, for higher efficiency, the gluing
algorithm was modified from [11] to implement another extension method.
We define some notations as follows.

Definition 2 (Feasible cone) For a graph G and a vertez v, where
V(G) = {v1,v2," -, vv(ey}, f S C V(G) and the graph induced by the
edge set E(G) U {(v,z)|x € S}, denoted by G', contains no By, and G'
contains no By, then we call S is a feasible cone of G for (B, By).

Definition 3 (Feasible interval) If B and T are feasible cones of G for
(Bm, Bn) and B C T, we call [B, T} is a feasible interval of G for (Bm, Bn).

Obviously, a feasible cone is correspondence to a (B, By; [V(G)| + 1)-
graph. We can see that the feasible interval [B, T'| contains 2!T1-8! fegsible
cones. The detailed technique for generating feasible intervals of G for
(K, Ky) was described in [11]. For graph G, B,, and B,, Algcrithm
1 is used to generate feasible intervals of G for (Bm,B,). The original
algorithm was used to generate feasible intervals of G for (Ky, K5) [11]. In
this note, we need to process for book graphs. So X; are changed from a
clique to a star and from an independent set to the complement of a star,
which are shown in line 4 and line 17.

Algorithm 1

1% ={[¢,Vc]}
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Figure 3: The unique (K15, K2,6; 13)- Figure 4: The unique (K15, K3 5; 14)-
graph graph

2 for i=1to r do

WO 00 3O Ok W
~

if X; is a Spy1 then

for each |B,T)| € T such that X; C T do
if X; C B then

{
Delete [B,T) from T
}
else

Replace (B, T] by [BU {¥1,v2, -, %i-1}, T — {y3}]
for j =1,2,---,k, where X; — B = {y1,y2,"**, ¥k}

}
else [if X; is a Sny1]
for each [B,T) € T such that X;N B = ¢ do

{
if X;NT = ¢ then

224



23 Delete [B,T)] from ¥
24}

25 else

26 {

27 Replace [B,T) by [BU {y;},T = {v1,¥2," -, ¥j—1}]
28 forj=1,2,---k, where X;NT = {y1,y2, -+, yx}
29 }

30 }

31

32}

Let G ba a (B, By)-graph, we implement one-vertex extension method
based on interval cones to obtain R(Bm, Bp; |V(G)| + 1) as follows.
Step 1. Use Algorithm 1 to find the set of feasible intervals ¥ of G for
(Bm, Bn),
Step 2. Generate all feasible cones according to T,
Step 3. Convert feasible cones into (B, By; |V(G)| + 1)-graphs.
Step 4. Remove isomorphic graphs in (B, By).

By above algorithm, we obtained some statistics of |R(By, B,)|, which
are listed in Table 6. Four (B;, Bs; 10)-graphs are shown in Fig. 5 and the
unique (B3, By; 14)-graph is shown in Fig. 6.

Figure 5: Four (Ba, Bs; 10)-graphs

Table 6: The statistics of some nonisomorphic (B, By,)-graphs
n 9 10 11 12 13 14 15

|R(Bz, Bs;n)| 30 4 0 0 0 0 o

|R(B3,Bs;n)| 16118 85745 224771 108393 1524 1 0
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Figure 6: The unique (Bs, Bs; 14)-graph

By Table 6, we have
Theorem 6 R(B;, B3) = 11, R(B3, B,) = 15.

3 Remarks

In 1991, Faudree and Rousseau obtained some results about cycle-book
Ramsey numbers R(Cr,, By), some of which were not obtained. In this
note, we obtained some new results and complete the results for the case
n=3.

A general utility program for graph isomorph removal, nauty,
shortg[10], written by Brendan McKay, was used. One-vertex extension
method described above was implemented by the first author.
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