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Abstract

Let G = (V, E) be a connected graph. A dominating set S of G
is called a neighborhood connected dominating set (ncd-set) if the in-
duced subgraph (N(S)) is connected, where N(S) is the open neigh-
borhood of S. A partition {V1,Vz,...,Vi} of V(G), in which each V;
is & ncd-set in G is called a neighborhood connected domatic partition
or simply nc-domatic partition of G. The maximum order of a nc-
domatic partition of G is called the neighborhood connected domatic
number (nc-domatic number) of G and is denoted by dno(G). In this
paper we initiate a study of this parameter.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected and connected graph
with neither loops nor multiple edges. The order and size of G are de-
noted by n» and m respectively. For graph theoretlc terminology we refer
to Chartrand and Lesniak [2].
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There are many variations of domination in graphs. In the book (5] it is
proposed that a type of domination is “fundamental” if (i) every connected
nontrivial graph has a dominating set of this type and (ii) this type of
dominating set S is defined in terms of some “natural” property of the
subgraph induced by S. Examples include total domination, independent
domination, connected domination and paired domination.

In [1] we have introduced the concept of neighborhood connected dom-
ination, which is a fundamental concept in the above sense.

Definition 1.1. A dominating set S of a graph G is called a neighbor-
hood connected dominating set (ncd-set) if the induced subgraph (N(S)) is
connected. The minimum cardinality of a ncd-set of G is called the neigh-
borhood connected domination number of G and is denoted by Yn.(G).

The concepts of domatic number, total domatic number and connected
domatic number were introduced respectively by Cockayne and Hedetniemi
[4], Cockayne et al. [3] and Laskar et al. (7).

Definition 1.2. A domatic partition of G is a partition {V1,V2,...,Vi}
of V(G) in which each V; is a dominating set of G. The mazimum order of
a domatic partition of G is called the domatic number of G and is denoted
by d(G).

Definition 1.8. Let G be a graph without isolated vertices. A total
domatic partition of G is a partition {V1,V2,...,Vi} of V(G) in which each
V; is a total dominating set of G. The mazimum order of a total domatic
partition of G is called the total domatic number of G and is denoted by
di(G).

Definition 1.4. Let G be a connected graph. A connected domatic par-
tition of G is a partition {V1,Va,...,Vi} of V(G) in which each V; is a
connected dominating set of G. The mazimum order of a connected do-
matic partition of G is called the connected domatic number of G and is
denoted by d.(G).

A survey of results on domatic numbers of graphs and their variants is
given by Zelinka [10] in Chapter 13 of Haynes et al. [6].

In this paper we introduce the concept of neighborhood connected do-
matic number and initiate a study of this parameter.

We need the following definition and theorems.

Definition 1.5.  The graph G obtained from the stars K, » and K, by
joining their centers by an edge is called a bistar and is denoted by B(r,s).

Theorem 1.8. [9] Let G be a connected graph which is not complete.
Then de(G) < &(G), where k(G) is the connectivity of G.
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Theorem 1.7. (1] If P, is the path on n vertices, then Yac(Pn) = [2].
Theorem 1.8. [1] If C, is the cycle on n vertices, then

[2]  ifn# 3(mod 4)

2] i n=3(mod 4).

Yne(Cn) = {

Theorem 1.9. [1] For any graph G,1n¢(G) < [2].

2 Main Results

Definition 2.1. A neighborhood connected domatic partition (nc-domatic
partition) of a connected graph G is a partition {V1,Vs,...,Vi} of V(G) in
which each V; is a ncd-set of G. The neighborhood connected domatic num-
ber (nc-domatic number) d..(G) of G is the mazimum order of a neighbor-
hood connected domatic partition of G.

Observation 2.2.  Since any domatic partition of K, is also a nec-
domatic partition, we have d,.(Kn) = d(K,) = n. Similarly dne(Kmpn) =
d(Km,n) = min{m,n}. Also for the wheel W,,

dne(Wy) = d(W,) = { g ift;zefwgzod 3)

Observation 2.8.  Since any total domatic partition of G is a nc-domatic
partition, we have di(G) < dp.(G) < d(G).

Observation 2.4. Let v € V(G) and deg v = §. Since any ncd-set of G
must contain either v or a neighbor of v, it follows that d,.(G) < §(G) + 1.

Observation 2.5.  Let {V},V5,...,Vq,.} be a nc-domatic partition of G.
Since |V;| = 4ne for each i, it follows that Tne(G)dne(G) < n.

Observation 2.6.  Given two positive integers n and k with n > 4 and
1 < k < n, there exists a graph G with n vertices such that dne(G) = k. We

take
K, ifk=n
G = Kl,n—l ﬁfk =1
~ ) B(ni,n-2-mn) ifk=2
K1+ Kpn_gq1 otherwise.

Theorem 2.7.  For any connected graph G, do(G) < dne(G). Also the
difference dnc(G) — dc(G) can be made arbitrarily large.
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Proof. If A(G) < n — 1, then any connected domatic partition of G is
a nc-domatic partition of G. If A(G) = n — 1 and G has a cut vertex, it
follows from Theorem 1.6, that d.(G) = 1. Thus d.(G) < dnc(G). Also if
k is any positive integer, then for the graph G having exactly two blocks,
each isomorphic to K42, we have d.(G) = 1 and dpc(G) = k+ 1. Thus
dne(G) — de(G) = k. O

Theorem 2.8. For any graph G, F-(,;,@-J < dne(G) £ d(G) and the
bounds are sharp.

Proof.  Since every ncd-set is a dominating set, we have dnc(G) < d(G).
Further, since the union of two disjoint dominating sets is a ncd-set, we
have I_Q%QJ < dno(G). Also for the graph G = Kjn—1, dne(G) = i(zﬂ. For
the graph G = Kj, dno(G) = d(G) = n. ]

Theorem 2.9. For any non trivial path P,, we have

[ 1 ifnisodd
dne(Pn) = { 2  ifn is even.

Proof. Let P, = (v1,v2,...,vs). It follows from Theorem 1.7 that if n is
odd then dn(P,) = 1 and if n is even, then dno(Pn) < 2. Further if n is
even, then {V;,V —V;} where V] = {v; : i = 2 or 3(mod 4)} is a nc-domatic
partition of P, and hence dnc(Pn) = 2.

Theorem 2.10.  For any cycle C, with n > 4, we have

{1  ifn=1(mod4)
dne(Cn) = { 2 otherwise

Proof. Let C, = (v1,2,...,Vn,v1). It follows from Theorem 1.8 that if
n = 1(mod 4), then dnc(Cn) = 1 and dnc(Cp) < 2 otherwise. Further if
n % 1(mod 4), then {V;,V — V;} where V; = {v; : i = 0 or 1(mod 4)} is a
nc-domatic partition of G and hence dno(G) = 2. 0

In the following theorem we obtain a bound for d,. and characterize the
class of graphs attaining the bound.

Theorem 2.11. Let G be a graph with A = n — 1 and let k denote
the number of vertices of degree n — 1. Then dno(G) < -;-(n + k). Further
dne(G) = %(n + k) if and only if one of the following holds.

1. G= K + H where k > 2 and H is isomorphic to 2Kg;_k_.
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2. G = Ky + H where H is a connected graph with V(H) = X; U XU
-+UX, wherer = l;-ﬁ, |X:| =2 and for alli # j, X;n X; =0 and
the subgraph induced by the edges of H with one end in X; and the

other end in X; has a perfect matching.

Proof.  Let {V1,V4,...,V,} be any nc-domatic partition of G with |Vi| =
1,1 £ i < k. Since |V;| > 2 for all j with k+ 1 < j < s, it follows that
8 < k+ 25k = 2k Hence dn(G) < 3(n + k).

Now, let G be a graph with dnc(G) = 1(n + k). Then there exists a
nc-domatic partition {%,%,...,Vk,Vk.,.l,...,Vg?g} such that |V;| = 1 if
1<i<kand |V}l =2ifk+1<j< 2 Clearly, (VUVaU.--UV,)
K. Let H = (Vkﬂu---uv%,_k).

Case (i). H is disconnected.

If £ =1, then y.c(G) = 2 and hence dn.(G) < 2 which is a contradic-
tion. Hence k > 2. Since |V;| =2 forall j withk+1<j < ﬁzi, it follows
that H has exactly two components. Let H; and H; be the components of
H. Then each V; contains one vertex from H; and one vertex from H; and
since V; is a ncd-set of G, it follows that Hy and H. are complete graphs
and |V(H,)| = [V(H,)| = 25%. Hence H is isomorphic to 2K ns.

Case (ii). H is connected.

Let X; = Vi, 1 <i <7 =25% Then V(H) = X; UX,U---UX, and
Xi; N X; = @ when i # j. Now, since each X; is a dominating set of G, it
follows that the subgraph induced by the edges of H with one end in X;
and the other end in X has a perfect matching.

Conversely, suppose G is of the form (1) or (2) given in the theorem.
Let uy,ua,...,ux be the vertices of G withdeg u; =n—1,1<i < k.
Case (i). G = Ki + H where k > 2 and H is isomorphic to 2Kgi£.

Let H) and Hj be the two components of H with V(H,;) = {zi: k+1<
i< 2k} and V(Hy) = {y; 1 k+1 <6 < gk}

Let v; = { {u} lsisk
! {zowsi} zi€H,y € Hyk+1<i<2gk

Then {W, V5,..., Vg;»_k} is a nc-domatic partition of G. Hence dn.(G) >
24k 50 that dn,.(G) = L(n + k).
Case (ii). G is of the form given in (2).

Then each X; is a ncd-set of G and {{u1}, {uz},..., {uz}, X1, Xz,..., X,}
is a nc-domatic partition of G. Thus dne(G) > k+r = %5 and hence
dnc(G) = 2k, a

In the following theorem we obtain bounds on the size of a graph with
A=n-1landd, = %(n + k), where k is the number of vertices of degree
n — 1 and characterize the class of graphs which attain the bounds.
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Theorem 2.12. Let G be a (n,m)-graph with A = n -1 and dpe =
%(n + k) where k is the number of vertices of degree n — 1. Then %[(nz -
k2)+2n(k—-1)] < m < i[k(n—1)+(n—k)(n—2)]. Further, m = }[(n®~k%)+
2n(k—1)] if and only if G = K+ H with V(H) = X;UXpU---UX, where
r= -21-(n — k), |X;i| = 2 and for all i # j, (X; U Xj) is a perfect matching.
Also m = }[k(n — 1) + (n — k)(n — 2)] if and only if G is isomorphic to
K, — M, where M is a matching of cardinality %(n - k).

Proof.  Let G be a graph with A = n—1 and dn(G) = }(n+k), where k is
the number of vertices of degree n— 1. Then G = K + H, where H is given
in Theorem 2.11. Clearly |V(H)| = n — k. If H is isomorphic to 2K n_,
let H; and Hs be the components of H with V(H;) = {z,,z,... ,:z:a;_g}
and V(Hz) = {y1,y2,...,y%—_g}. Let Xi = {x;,y,-},l <t < &;_’S If H
is connected, let X; be as given in (2) of Theorem 2.11. Then V(H) =
X UXaU-+-UX,,r = 255 where each X; is a ncd-set of G with | X;| = 2.
Since X; dominates X for all ¢ # j, the total number of edges with one
end in X; and the other end in Xj;,i # j, is at least 2(r — 1). Thus there
are r(r — 1) such edges and since G contains k vertices with degree n — 1,
we have m 2> L‘%’—ll + 2kr + r(r — 1) = %[(n® - ¥?) + 2n(k — 1)]. Now,
m = 3[(n® - k?) + 2n(k — 1)] if and only if (X; UX;) contains exactly 2
edges and since X; and X; are dominating sets, it follows that (X; U X}
is a perfect matching.

Since deg v < n— 2 for all v € V(H) and deg v = n — 1 for all
v € V(G) - V(H), we have m < }[k(n — 1) + (n — k)(n — 2)]. Also m =
1[k(n—1)+(n—k)(n~2)] if and only if degv = n—1for all v € V(G)-V(H)
and deg v =n — 2 for all v € V(H) and hence G = K, — M where M is a
matching in K, with |M| = }(n — k). m]

In the following theorem we give Nordhaus-Gaddum type result for dy.
We need the following.

Observation 2.13.  Let G be a graph with A < n—1. Then dnc(G) < 3.
Further dno(G) = % if and only if V = X;UX5U---UXg, where | X:| =2
for alli, X;N X; =0 if i # j, the subgraph induced by the edges of G with
one end in X; and the other end in X; has a perfect matching and (V — X;)
is connected if X; is independent.

Theorem 2.14. Let G be any graph such that both G and G are con-
nected. Then dno(G) + dne(G) < n. Further equality holds if and only if
V(G) = X1UX2U---UXy, where X;NX; =0 and (X; U X;) i3 C4 or Py
or 2Ks for all i # j.

Proof.  Since both G and G are connected, it follows that A < n — 1.
Hence dnc(G) < 3 and dn(G) < 5, so that dn(G) + dnc(G) < n.
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Now, suppose dnc(G) + dnc(G) = n. Then dn(G) = 2 and dnc(G) =
Since dn.(G) < 6(G) + 1, it follows that 6(G) > 2 — 1 and 6(G) > 2 1
and hence deg v =% — 1 or % for all v € V(G).

Now,let V=X,uXU---UX g be a nc-domatic partition of G. Then
the subgraph induced by the edges of G with one end in X; and the other
end in X; has a perfect matching. Further, if (X; U X ;) has more than four
edges, then at least one vertex v of (X; U X;) has degree at least 3. Since
there are § — 2 ncd-sets other than X; and X, deg v > 2 5 + 1 which is
a contradiction. Thus (X; U X;) contains at most four edges and hence is
isomorphic to C4 or P, or 2K2 The converse is obvious. O

Remark 2.15.  Let G be any gmph such that both G and G are connected
and dno(G)+dne(G) =n. Then 3(3—-1) < m < " . Purther m = 2(3 - 1)
if and only if G is (§ —1)- regular and m = I zf and only if G is —-regular

Theorem 2.16.  Let T be a tree such that T is connected. Then dnc(T)+
dne(T) = n if and only if T is isomorphic to Pj.

Proof. Let T be a tree such that T is connected and let dne(T) +dne(T) =

n. Then V(T) = X, UXpU---U Xy where |X;| =2, X;nX; =0, and
(Xi U Xj) is either Py or 2K,. Hence if & $2>3,thenT conta.ms a cycle.
Thus 2 = 2,sothat n =4 and T is 1sornorph1c to Py. The converse is

obvious. |

Theorem 2.17.  Let G be any cubic graph such that both G and G are
connected. Then dno(G)+dnc(G) = n if and only if G is isomorphic to one
of the graphs Gy or G2 given in Figure 1.

G 1 G2
Figure 1

Proof. LetG be a cubic graph such that both G and G are connected and
let dne(G)+dnc(G) = n. Then dne(G) = dnc(G) = 3 Let {X1, X, ..., X3}
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be a nc-domatic partition of G, so that |X;| = 2, each X; is a ncd-set of G

and (X; U X;) is either Py or Cy or 2Kj.

Since % -d,,c < 6+1=4, it follows that n < 8. If n = 4, then G = K}
and G is disconnected, which is a contradiction. If n = 6 then G =Cgor
2K3 so that either dno(G) = 2 # % or G is disconnected, which is again
a contradiction. Hence n = 8. We now claun that for ¢ # j, the induced
subgraph (X; U X;) is 2K,.

Suppose {X; U X2) = C4 or Py. Let v be a vertex in X; U X having
degree 2 in (X; U X,). Since X3 and X4 are both dominating sets in G,
v is adjacent to a vertex in X3 and to a vertex in X4, so that deg v 2> 4,
which is a contradiction. Thus (X; U X;) = 2Ko.

Let X; = {z1,%72}, X2 = {z3,24}, X3 = {z5,76} and Xy = {z7,7s}.
Without loss of generality we assume that z1z3, Z2%4, T35, £4%6, T127, T2T8 €
E(G). Then there are two cases.

i. o7 is adjacent to z3 and zg is adjacent to 24

ii. o7 is adjacent to =4 and z3 is adjacent to zs.

Case (i). z7 is adjacent to z3 and zs is adjacent to z4.

Then z7 is adjacent to 5 or zg. If z7 is adjacent to x5, then zg is
adjacent to xe. Since G is connected, z; is adjacent to zg and z2 is adjacent
to z5 and G = Gj. If 7 is adjacent to g, then xg is adjacent to x5. Then
z, is adjacent to z5 and z, is adjacent to zg or z; is adjacent to zg and z2
is adjacent to z5. Hence G = Ga.

Case (ii). z7 is adjacent to z4 and zg is adjacent to zs.

Then z7 is adjacent to either =5 or zg. If z7 is adjacent to z5, then zg
is adjacent zg. Also z; is adjacent to zs or zs. If z; is adjacent to x5 and
x4 is adjacent to z¢ then G 2 Gs. If z, is adjacent to z¢ and z; is adjacent
to z5 then G = G;. Suppose z7 is adjacent to z¢. Then zg is adjacent to
zs. Also z, is adjacent x5 and z, is adjacent zg or z; is adjacent to zg and
T is adjacent to zs. In both cases we have G = Ga. O

Theorem 2.18.  For any connected graph G, Ync(G) + dnc(G) S n+1
and equality holds if and only if G = K,.

Proof. Case (i). A<n-—-1.

Since Ype < n— A and dpc < d+1, we have Ype+dpe Sn—A+6+1<
n+1.

Case (ii). A=n—-1.

Then Yne = 1 or 2. If ypc = 1, then dp. < 7 and hence yne+dne < n+1.
If Yne = 2, then dnc < 3 and hence'y,,c+dnc <n+1l.

Now, let G be any graph W1th Yne+dne = n+ 1. We claim that v, = 1.
Suppose Yne 2 2 then dnc < %. Also yne < [ ] and hence Ype + dne <
2+ [ '| <n+i %, which is a contradiction. Thus v, = 1. Hence d,,. = n
and G is isomorphic to K. ]
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Theorem 2.19.  For any connected graph G, Yno(G) +dpn.(G) = n if and
only if G is isomorphic to K, — e or Py or Cy or the graph G, given in
Figure 2.

G
Figure 2

Proof. It can be easily verified that for all the graphs given in the theo-
rem, Yne + dne = n.

Now, let G be a connected graph with v, + d,. = n. We claim that
Tne < 2. Suppose Y, = k 2 3. Then dy,. = n — k. Also dy, < %> so that
n—k < %. Hence n < k + 1. However, k = 7o < [2] < [E£], so that
k <2, which is a contradiction. Hence v, < 2.

Case (i). mMmc=1.

In this case dp. = n—1. Let {V},V3,...,V5_;} be a nc-domatic partition
of G, where |V;| =1if 1 <i<n-2and |V, | = 2. Hence G contains
n — 2 vertices with degree n — 1 and G is isomorphic to K, — e.

Case (ii). Yne=2.

In this case dp. =n — 2. Also d,c < Z,and hencen=3o0r4. If n =3,

G is isomorphic to P; and if n = 4, G is isomorphic to Py or Cy or Gy. O

In the following theorem we use the proof technique given in (8] to
improve the bounds for the sum v,.(G) + d,.(G) when G is a graph with
Tne(G) 2 2 and de(G) > 2.

Theorem 2.20.  Let G be a graph with Ync(G) 2> 2 and dno(G) > 2. Then
Yne(G) +dnc(G) < | 2| +2. Further, Yne(G) +dne(G) = [%] +2 if and only
if {ne(G), dnc(G)} = {[ 2] 12} or n =9 with 7,.(C) = dp(G) = 3.

Proof.  Since v,.(G) > 2, we have dn.(G) < |2] . If either dne(G) = 2
or Ync(G) = 2, then since ypedne < n, we have d,. < [ _y':c J < l_gj or
Yne < | 2] . Hence the inequality holds.

If either dn(G) = 3 or 1n(G) = 3, then dne(G) < 2] or Yme(G) <
|3] - Since ¥nc(G) > 3 and 7c(G) < [2], we have n > 5. Then Yne(G) +
helG) < 3] +35 3] +2

Suppose dnc(G) > 4 and 7,c(G) 2 4. Then we have dn.(G) < | 2] and
Tne(G) < %] which gives 1,c(G) + dne(G) < 2| 2] < | 2| + 2. Thus in all
the cases Yne(G) + dne(G) < 2] +2.
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Now, let G be a connected graph with 7,.(G) 2 2, dnc(G) = 2 and
Tne(G) + dnc(G) = [.'2£J +2.

Suppose Ync(G) > 4 and dnc(G) > 4. Then we have dno(G) < |}] and
Yne(G) < | 2] which gives Ync(G)+dnc(G) < 2|}] < [ 3] +2. Hence either
Ane(G) € 3 or dnc(G) < 3. Let ne(G) = 3 or dne(G) = 3. This implies
n > 5 and Yne(G) + dne(G) < |&] +3. Then 2] +2 < |§] + 3, which
gives n < 9,n # 8. Therefore, 5<n <9 and n # 8.

If n =09, then Ync(G) + dnc(G) = 6 and hence Ync(G) = dne(G) = 3.

Ifn =6 or 7 and ¥,(G) = 3 (or dne(G) = 3), then dno(G) = 2 (or
Yne(G) = 2). Hence {Vnc,dnc} = {|2].2}.

If n = 5 and either Ync(G) = 3 or dn.c(G) = 3, then the equality does
not hold. Hence if n = 5 then either y,.(G) = 2 or dn(G) = 2. This proves
the result. a

Deflnition 2.21. A graph G is called nc-domatically full if dne(G) =.
(G)+1.

Definition 2.22. A graph G is called nc-domatically critical if
dnc(G — €) < dne(G) for every noncut edge e € E(G).

Theorem 2.23.  Every regular nc-domatically full graph is nc-domatically
critical.

Proof Let G be a regular nc-domatically full graph. Then
dne(G) = 6(G) + 1. Thus §(G) = dnc(G) — 1. Hence deg v = dp(G) — 1 for
all v € V(G). Let e € E(G) be a noncut edge of G, so that G’ = G—e is con-
nected. Then §(G’) = §(G)—1. Now, dno(G') < 8(G")+1=46(G)—1+1=
8(G) < dnc(G). Hence G is nc-domatically critical. m|

Theorem 2.24. Let G be a regular nc-domatically full graph of order n.
Then dn.(G) divides n. '

Proof. Let G be a regular nc-domatically full graph of order n so that
dne(G) = 6 + 1. Let {V4,V2,...,V4,.} be a nc-domatic partition of V(G).
Let v € V;. Since v is a adjacent to at least one vertex in each Vj,j # i, we
have V; is an independent set and any vertex in V; is adjacent to exactly
one vertex in Vj, i # j. Hence [V;| = [V;| = g% and hence dn. dividesn. O

The connection between the nc-domatic number with nc-domination
number and other types of domatic numbers suggest the following natural
problems for further investigation.

Problem 2.25.  Characterize graphs G for which Ync(G)dno(G) = n.
Problem 2.26.  Characterize graphs G for which dn..(G) = d(G).
Problem 2.27.  Characterize graphs G for which dno(G) = 481
Problem 2.28.  Characterize nc-domatically full graphs.
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