Neighborhood Connected Domatic Number of a Graph

S. Arumugam

Core Group Research Facility (CGRF)

National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH)

Kalasalingam University

Anand Nagar, Krishnankoil-626190, INDIA.

e-mail: s_arumugam_akce@yahoo.com

and

C. SIVAGNANAM

Department of Mathematics

St. Joseph's College of Engineering

Chennai-600119, INDIA.

e-mail: c_sivagnanam71@yahoo.co.uk

Abstract

Let G = (V, E) be a connected graph. A dominating set S of G is called a neighborhood connected dominating set (ncd-set) if the induced subgraph $\langle N(S) \rangle$ is connected, where N(S) is the open neighborhood of S. A partition $\{V_1, V_2, \ldots, V_k\}$ of V(G), in which each V_i is a ncd-set in G is called a neighborhood connected domatic partition or simply nc-domatic partition of G. The maximum order of a ncdomatic partition of G is called the neighborhood connected domatic number (nc-domatic number) of G and is denoted by $d_{nc}(G)$. In this paper we initiate a study of this parameter.

Keywords: dominating set, neighborhood connected dominating set, neighborhood connected domatic number

2000 Mathematics Subject Classification: 05C69

1 Introduction

By a graph G = (V, E) we mean a finite, undirected and connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2].

There are many variations of domination in graphs. In the book [5] it is proposed that a type of domination is "fundamental" if (i) every connected nontrivial graph has a dominating set of this type and (ii) this type of dominating set S is defined in terms of some "natural" property of the subgraph induced by S. Examples include total domination, independent domination, connected domination and paired domination.

In [1] we have introduced the concept of neighborhood connected domination, which is a fundamental concept in the above sense.

Definition 1.1. A dominating set S of a graph G is called a neighborhood connected dominating set (ncd-set) if the induced subgraph $\langle N(S) \rangle$ is connected. The minimum cardinality of a ncd-set of G is called the neighborhood connected domination number of G and is denoted by $\gamma_{nc}(G)$.

The concepts of domatic number, total domatic number and connected domatic number were introduced respectively by Cockayne and Hedetniemi [4], Cockayne et al. [3] and Laskar et al. [7].

Definition 1.2. A domatic partition of G is a partition $\{V_1, V_2, \ldots, V_k\}$ of V(G) in which each V_i is a dominating set of G. The maximum order of a domatic partition of G is called the domatic number of G and is denoted by d(G).

Definition 1.3. Let G be a graph without isolated vertices. A total domatic partition of G is a partition $\{V_1, V_2, \ldots, V_k\}$ of V(G) in which each V_i is a total dominating set of G. The maximum order of a total domatic partition of G is called the total domatic number of G and is denoted by $d_t(G)$.

Definition 1.4. Let G be a connected graph. A connected domatic partition of G is a partition $\{V_1, V_2, \ldots, V_k\}$ of V(G) in which each V_i is a connected dominating set of G. The maximum order of a connected domatic partition of G is called the connected domatic number of G and is denoted by $d_c(G)$.

A survey of results on domatic numbers of graphs and their variants is given by Zelinka [10] in Chapter 13 of Haynes et al. [6].

In this paper we introduce the concept of neighborhood connected domatic number and initiate a study of this parameter.

We need the following definition and theorems.

Definition 1.5. The graph G obtained from the stars $K_{1,r}$ and $K_{1,s}$ by joining their centers by an edge is called a bistar and is denoted by B(r,s).

Theorem 1.6. [9] Let G be a connected graph which is not complete. Then $d_c(G) \leq \kappa(G)$, where $\kappa(G)$ is the connectivity of G.

Theorem 1.7. [1] If P_n is the path on n vertices, then $\gamma_{nc}(P_n) = \left[\frac{n}{2}\right]$.

Theorem 1.8. [1] If C_n is the cycle on n vertices, then

$$\gamma_{nc}(C_n) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil & \text{if } n \not\equiv 3 \pmod{4} \\ \left\lfloor \frac{n}{2} \right\rfloor & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Theorem 1.9. [1] For any graph $G, \gamma_{nc}(G) \leq \lceil \frac{n}{2} \rceil$.

2 Main Results

Definition 2.1. A neighborhood connected domatic partition (nc-domatic partition) of a connected graph G is a partition $\{V_1, V_2, \ldots, V_k\}$ of V(G) in which each V_i is a ncd-set of G. The neighborhood connected domatic number (nc-domatic number) $d_{nc}(G)$ of G is the maximum order of a neighborhood connected domatic partition of G.

Observation 2.2. Since any domatic partition of K_n is also a nedomatic partition, we have $d_{nc}(K_n) = d(K_n) = n$. Similarly $d_{nc}(K_{m,n}) = d(K_{m,n}) = min\{m,n\}$. Also for the wheel W_n ,

$$d_{nc}(W_n) = d(W_n) = \begin{cases} 4 & \text{if } n \equiv 1 \pmod{3} \\ 3 & \text{otherwise.} \end{cases}$$

Observation 2.3. Since any total domatic partition of G is a nc-domatic partition, we have $d_t(G) \leq d_{nc}(G) \leq d(G)$.

Observation 2.4. Let $v \in V(G)$ and deg $v = \delta$. Since any ncd-set of G must contain either v or a neighbor of v, it follows that $d_{nc}(G) \leq \delta(G) + 1$.

Observation 2.5. Let $\{V_1, V_2, \ldots, V_{d_{nc}}\}$ be a nc-domatic partition of G. Since $|V_i| \geq \gamma_{nc}$ for each i, it follows that $\gamma_{nc}(G)d_{nc}(G) \leq n$.

Observation 2.6. Given two positive integers n and k with $n \geq 4$ and $1 \leq k \leq n$, there exists a graph G with n vertices such that $d_{nc}(G) = k$. We take

$$G = \left\{ \begin{array}{ll} K_n & \text{if } k = n \\ K_{1,n-1} & \text{if } k = 1 \\ B(n_1, n - 2 - n_1) & \text{if } k = 2 \\ K_{k-1} + \overline{K_{n-k+1}} & \text{otherwise.} \end{array} \right.$$

Theorem 2.7. For any connected graph G, $d_c(G) \leq d_{nc}(G)$. Also the difference $d_{nc}(G) - d_c(G)$ can be made arbitrarily large.

Proof. If $\Delta(G) < n-1$, then any connected domatic partition of G is a nc-domatic partition of G. If $\Delta(G) = n-1$ and G has a cut vertex, it follows from Theorem 1.6, that $d_c(G) = 1$. Thus $d_c(G) \le d_{nc}(G)$. Also if k is any positive integer, then for the graph G having exactly two blocks, each isomorphic to K_{k+2} , we have $d_c(G) = 1$ and $d_{nc}(G) = k+1$. Thus $d_{nc}(G) - d_c(G) = k$.

Theorem 2.8. For any graph G, $\left\lfloor \frac{d(G)}{2} \right\rfloor \leq d_{nc}(G) \leq d(G)$ and the bounds are sharp.

Proof. Since every ncd-set is a dominating set, we have $d_{nc}(G) \leq d(G)$. Further, since the union of two disjoint dominating sets is a ncd-set, we have $\left\lfloor \frac{d(G)}{2} \right\rfloor \leq d_{nc}(G)$. Also for the graph $G = K_{1,n-1}$, $d_{nc}(G) = \frac{d(G)}{2}$. For the graph $G = K_n$, $d_{nc}(G) = d(G) = n$.

Theorem 2.9. For any non trivial path P_n , we have

$$d_{nc}(P_n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$

Proof. Let $P_n = (v_1, v_2, \ldots, v_n)$. It follows from Theorem 1.7 that if n is odd then $d_{nc}(P_n) = 1$ and if n is even, then $d_{nc}(P_n) \leq 2$. Further if n is even, then $\{V_1, V - V_1\}$ where $V_1 = \{v_i : i \equiv 2 \text{ or } 3 \pmod{4}\}$ is a nc-domatic partition of P_n and hence $d_{nc}(P_n) = 2$.

Theorem 2.10. For any cycle C_n with $n \geq 4$, we have

$$d_{nc}(C_n) = \left\{ egin{array}{ll} 1 & & \emph{if } n \equiv 1 (mod \ 4) \ 2 & & \emph{otherwise} \end{array}
ight.$$

Proof. Let $C_n=(v_1,v_2,\ldots,v_n,v_1)$. It follows from Theorem 1.8 that if $n\equiv 1 \pmod 4$, then $d_{nc}(C_n)=1$ and $d_{nc}(C_n)\leq 2$ otherwise. Further if $n\not\equiv 1 \pmod 4$, then $\{V_1,V-V_1\}$ where $V_1=\{v_i:i\equiv 0 \text{ or } 1 \pmod 4\}$ is a nc-domatic partition of G and hence $d_{nc}(G)=2$.

In the following theorem we obtain a bound for d_{nc} and characterize the class of graphs attaining the bound.

Theorem 2.11. Let G be a graph with $\Delta = n - 1$ and let k denote the number of vertices of degree n - 1. Then $d_{nc}(G) \leq \frac{1}{2}(n + k)$. Further $d_{nc}(G) = \frac{1}{2}(n + k)$ if and only if one of the following holds.

1. $G = K_k + H$ where $k \ge 2$ and H is isomorphic to $2K_{\frac{n-k}{2}}$.

2. $G = K_k + H$ where H is a connected graph with $V(H) = X_1 \cup X_2 \cup X_3 \cup X_4 \cup X_4 \cup X_5 \cup$ $\cdots \cup X_r$ where $r = \frac{n-k}{2}$, $|X_i| = 2$ and for all $i \neq j$, $X_i \cap X_j = \emptyset$ and the subgraph induced by the edges of H with one end in Xi and the other end in X_i has a perfect matching.

Let $\{V_1, V_2, \ldots, V_s\}$ be any nc-domatic partition of G with $|V_i| =$ $1, 1 \le i \le k$. Since $|V_j| \ge 2$ for all j with $k+1 \le j \le s$, it follows that $s \leq k + \frac{n-k}{2} = \frac{n+k}{2}$. Hence $d_{nc}(G) \leq \frac{1}{2}(n+k)$.

Now, let G be a graph with $d_{nc}(G) = \frac{1}{2}(n+k)$. Then there exists a nc-domatic partition $\{V_1, V_2, \ldots, V_k, V_{k+1}, \ldots, V_{\frac{n+k}{k}}\}$ such that $|V_i|=1$ if $1 \le i \le k$ and $|V_j| = 2$ if $k+1 \le j \le \frac{n+k}{2}$. Clearly, $\langle V_1 \cup V_2 \cup \cdots \cup V_k \rangle \cong 1$ K_k . Let $H = \left\langle V_{k+1} \cup \cdots \cup V_{\frac{n+k}{2}} \right\rangle$.

Case (i). H is disconnected.

If k=1, then $\gamma_{nc}(G)=2$ and hence $d_{nc}(G)\leq \frac{n}{2}$ which is a contradiction. Hence $k \geq 2$. Since $|V_j| = 2$ for all j with $k+1 \leq j \leq \frac{n+k}{2}$, it follows that H has exactly two components. Let H_1 and H_2 be the components of H. Then each V_i contains one vertex from H_1 and one vertex from H_2 and since V_j is a ncd-set of G, it follows that H_1 and H_2 are complete graphs and $|V(H_1)| = |V(H_2)| = \frac{n-k}{2}$. Hence H is isomorphic to $2K_{\frac{n-k}{2}}$.

Case (ii). H is connected.

Let $X_i = V_{k+i}$, $1 \le i \le r = \frac{n-k}{2}$. Then $V(H) = X_1 \cup X_2 \cup \cdots \cup X_r$ and $X_i \cap X_j = \emptyset$ when $i \neq j$. Now, since each X_i is a dominating set of G, it follows that the subgraph induced by the edges of H with one end in X_i and the other end in X_i has a perfect matching.

Conversely, suppose G is of the form (1) or (2) given in the theorem. Let u_1, u_2, \ldots, u_k be the vertices of G with $deg u_i = n - 1, 1 \le i \le k$.

Case (i). $G = K_k + H$ where $k \ge 2$ and H is isomorphic to $2K_{n-k}$.

Let H_1 and H_2 be the two components of H with $V(H_1) = \{x_i : k+1 \le i \le \frac{n+k}{2}\}$ and $V(H_2) = \{y_i : k+1 \le i \le \frac{n+k}{2}\}$. Let $V_i = \begin{cases} \{u_i\} & 1 \le i \le k \\ \{x_i, y_i\} & x_i \in H_1, y_i \in H_2, k+1 \le i \le \frac{n+k}{2}. \end{cases}$

Let
$$V_i = \begin{cases} \{u_i\} & 1 \leq i \leq k \\ \{x_i, y_i\} & x_i \in H_1, y_i \in H_2, k+1 \leq i \leq \frac{n+k}{2}. \end{cases}$$

Then $\{V_1, V_2, \dots, V_{\frac{n+k}{2}}\}$ is a nc-domatic partition of G. Hence $d_{nc}(G) \ge$ $\frac{n+k}{2}$, so that $d_{nc}(G) = \frac{1}{2}(n+k)$.

Case (ii). G is of the form given in (2).

Then each X_i is a nod-set of G and $\{\{u_1\},\{u_2\},\ldots,\{u_k\},X_1,X_2,\ldots,X_r\}$ is a nc-domatic partition of G. Thus $d_{nc}(G) \geq k + r = \frac{n+k}{2}$ and hence $d_{nc}(G) = \frac{n+k}{2}.$

In the following theorem we obtain bounds on the size of a graph with $\Delta = n - 1$ and $d_{nc} = \frac{1}{2}(n + k)$, where k is the number of vertices of degree n-1 and characterize the class of graphs which attain the bounds.

Theorem 2.12. Let G be a (n,m)-graph with $\Delta=n-1$ and $d_{nc}=\frac{1}{2}(n+k)$ where k is the number of vertices of degree n-1. Then $\frac{1}{4}[(n^2-k^2)+2n(k-1)] \leq m \leq \frac{1}{2}[k(n-1)+(n-k)(n-2)]$. Further, $m=\frac{1}{4}[(n^2-k^2)+2n(k-1)]$ if and only if $G=K_k+H$ with $V(H)=X_1\cup X_2\cup \cdots \cup X_r$ where $r=\frac{1}{2}(n-k), |X_i|=2$ and for all $i\neq j, \langle X_i\cup X_j\rangle$ is a perfect matching. Also $m=\frac{1}{2}[k(n-1)+(n-k)(n-2)]$ if and only if G is isomorphic to K_n-M , where M is a matching of cardinality $\frac{1}{2}(n-k)$.

Proof. Let G be a graph with $\Delta=n-1$ and $d_{nc}(G)=\frac{1}{2}(n+k)$, where k is the number of vertices of degree n-1. Then $G=K_k+H$, where H is given in Theorem 2.11. Clearly |V(H)|=n-k. If H is isomorphic to $2K_{\frac{n-k}{2}}$, let H_1 and H_2 be the components of H with $V(H_1)=\{x_1,x_2,\ldots,x_{\frac{n-k}{2}}\}$ and $V(H_2)=\{y_1,y_2,\ldots,y_{\frac{n-k}{2}}\}$. Let $X_i=\{x_i,y_i\},1\leq i\leq \frac{n-k}{2}$. If H is connected, let X_i be as given in (2) of Theorem 2.11. Then $V(H)=X_1\cup X_2\cup\cdots\cup X_r, r=\frac{n-k}{2}$, where each X_i is a ncd-set of G with $|X_i|=2$. Since X_i dominates X_j for all $i\neq j$, the total number of edges with one end in X_i and the other end in $X_j, i\neq j$, is at least 2(r-1). Thus there are r(r-1) such edges and since G contains k vertices with degree n-1, we have $m\geq \frac{k(k-1)}{2}+2kr+r(r-1)=\frac{1}{4}[(n^2-k^2)+2n(k-1)]$. Now, $m=\frac{1}{4}[(n^2-k^2)+2n(k-1)]$ if and only if $(X_i\cup X_j)$ contains exactly 2 edges and since X_i and X_j are dominating sets, it follows that $(X_i\cup X_j)$ is a perfect matching.

Since $deg\ v \le n-2$ for all $v \in V(H)$ and $deg\ v = n-1$ for all $v \in V(G) - V(H)$, we have $m \le \frac{1}{2}[k(n-1) + (n-k)(n-2)]$. Also $m = \frac{1}{2}[k(n-1) + (n-k)(n-2)]$ if and only if $deg\ v = n-1$ for all $v \in V(G) - V(H)$ and $deg\ v = n-2$ for all $v \in V(H)$ and hence $G = K_n - M$ where M is a matching in K_n with $|M| = \frac{1}{2}(n-k)$.

In the following theorem we give Nordhaus-Gaddum type result for d_{nc} . We need the following.

Observation 2.13. Let G be a graph with $\Delta < n-1$. Then $d_{nc}(G) \leq \frac{n}{2}$. Further $d_{nc}(G) = \frac{n}{2}$ if and only if $V = X_1 \cup X_2 \cup \cdots \cup X_{\frac{n}{2}}$, where $|X_i| = 2$ for all $i, X_i \cap X_j = \emptyset$ if $i \neq j$, the subgraph induced by the edges of G with one end in X_i and the other end in X_j has a perfect matching and $\langle V - X_i \rangle$ is connected if X_i is independent.

Theorem 2.14. Let G be any graph such that both G and \overline{G} are connected. Then $d_{nc}(G) + d_{nc}(\overline{G}) \leq n$. Further equality holds if and only if $V(G) = X_1 \cup X_2 \cup \cdots \cup X_{\frac{n}{2}}$, where $X_i \cap X_j = \emptyset$ and $\langle X_i \cup X_j \rangle$ is C_4 or P_4 or $2K_2$ for all $i \neq j$.

Proof. Since both G and \overline{G} are connected, it follows that $\Delta < n-1$. Hence $d_{nc}(G) \leq \frac{n}{2}$ and $d_{nc}(\overline{G}) \leq \frac{n}{2}$, so that $d_{nc}(G) + d_{nc}(\overline{G}) \leq n$.

Now, suppose $d_{nc}(G)+d_{nc}(\overline{G})=n$. Then $d_{nc}(G)=\frac{n}{2}$ and $d_{nc}(\overline{G})=\frac{n}{2}$. Since $d_{nc}(G)\leq \delta(G)+1$, it follows that $\delta(G)\geq \frac{n}{2}-1$ and $\delta(\overline{G})\geq \frac{n}{2}-1$ and hence $\deg v=\frac{n}{2}-1$ or $\frac{n}{2}$ for all $v\in V(G)$.

Now, let $V=X_1^{\tilde{}}\cup X_2\cup \cdots \cup X_{\frac{n}{2}}$ be a nc-domatic partition of G. Then the subgraph induced by the edges of G with one end in X_i and the other end in X_j has a perfect matching. Further, if $\langle X_i\cup X_j\rangle$ has more than four edges, then at least one vertex v of $\langle X_i\cup X_j\rangle$ has degree at least 3. Since there are $\frac{n}{2}-2$ ncd-sets other than X_i and X_j , $\deg v\geq \frac{n}{2}+1$ which is a contradiction. Thus $\langle X_i\cup X_j\rangle$ contains at most four edges and hence is isomorphic to C_4 or P_4 or $2K_2$. The converse is obvious.

Remark 2.15. Let G be any graph such that both G and \overline{G} are connected and $d_{nc}(G)+d_{nc}(\overline{G})=n$. Then $\frac{n}{2}(\frac{n}{2}-1)\leq m\leq \frac{n^2}{4}$. Further $m=\frac{n}{2}(\frac{n}{2}-1)$ if and only if G is $(\frac{n}{2}-1)$ -regular and $m=\frac{n^2}{4}$ if and only if G is $\frac{n}{2}$ -regular.

Theorem 2.16. Let T be a tree such that \overline{T} is connected. Then $d_{nc}(T) + d_{nc}(\overline{T}) = n$ if and only if T is isomorphic to P_4 .

Proof. Let T be a tree such that \overline{T} is connected and let $d_{nc}(T)+d_{nc}(\overline{T})=n$. Then $V(T)=X_1\cup X_2\cup \cdots \cup X_{\frac{n}{2}}$ where $|X_i|=2,\ X_i\cap X_j=\emptyset$, and $\langle X_i\cup X_j\rangle$ is either P_4 or $2K_2$. Hence if $\frac{n}{2}\geq 3$, then T contains a cycle. Thus $\frac{n}{2}=2$, so that n=4 and T is isomorphic to P_4 . The converse is obvious.

Theorem 2.17. Let G be any cubic graph such that both G and \overline{G} are connected. Then $d_{nc}(G) + d_{nc}(\overline{G}) = n$ if and only if G is isomorphic to one of the graphs G_1 or G_2 given in Figure 1.

 G_2

Figure 1

Proof. Let G be a cubic graph such that both G and \overline{G} are connected and let $d_{nc}(G)+d_{nc}(\overline{G})=n$. Then $d_{nc}(G)=d_{nc}(\overline{G})=\frac{n}{2}$. Let $\{X_1,X_2,\ldots,X_{\frac{n}{2}}\}$

be a nc-domatic partition of G, so that $|X_i| = 2$, each X_i is a ncd-set of G and $\langle X_i \cup X_j \rangle$ is either P_4 or C_4 or $2K_2$.

Since $\frac{n}{2} = d_{nc} \le \delta + 1 = 4$, it follows that $n \le 8$. If n = 4, then $G = K_4$ and \overline{G} is disconnected, which is a contradiction. If n = 6 then $\overline{G} = C_6$ or $2K_3$ so that either $d_{nc}(\overline{G}) = 2 \ne \frac{n}{2}$ or \overline{G} is disconnected, which is again a contradiction. Hence n = 8. We now claim that for $i \ne j$, the induced subgraph $\langle X_i \cup X_j \rangle$ is $2K_2$.

Suppose $\langle X_1 \cup X_2 \rangle = C_4$ or P_4 . Let v be a vertex in $X_1 \cup X_2$ having degree 2 in $\langle X_1 \cup X_2 \rangle$. Since X_3 and X_4 are both dominating sets in G, v is adjacent to a vertex in X_3 and to a vertex in X_4 , so that $deg \ v \ge 4$, which is a contradiction. Thus $\langle X_i \cup X_j \rangle = 2K_2$.

Let $X_1 = \{x_1, x_2\}$, $X_2 = \{x_3, x_4\}$, $X_3 = \{x_5, x_6\}$ and $X_4 = \{x_7, x_8\}$. Without loss of generality we assume that $x_1x_3, x_2x_4, x_3x_5, x_4x_6, x_1x_7, x_2x_8 \in E(G)$. Then there are two cases.

- i. x_7 is adjacent to x_3 and x_8 is adjacent to x_4
- ii. x_7 is adjacent to x_4 and x_8 is adjacent to x_3 .

Case (i). x_7 is adjacent to x_3 and x_8 is adjacent to x_4 .

Then x_7 is adjacent to x_5 or x_6 . If x_7 is adjacent to x_5 , then x_8 is adjacent to x_6 . Since G is connected, x_1 is adjacent to x_6 and x_2 is adjacent to x_5 and $G \cong G_2$. If x_7 is adjacent to x_6 , then x_8 is adjacent to x_5 . Then x_1 is adjacent to x_5 and x_2 is adjacent to x_6 or x_1 is adjacent to x_6 and x_2 is adjacent to x_5 . Hence $G \cong G_2$.

Case (ii). x_7 is adjacent to x_4 and x_8 is adjacent to x_3 .

Then x_7 is adjacent to either x_5 or x_6 . If x_7 is adjacent to x_5 , then x_8 is adjacent x_6 . Also x_1 is adjacent to x_5 or x_6 . If x_1 is adjacent to x_5 and x_2 is adjacent to x_6 then $G \cong G_2$. If x_1 is adjacent to x_6 and x_2 is adjacent to x_5 then $G \cong G_1$. Suppose x_7 is adjacent to x_6 . Then x_8 is adjacent to x_5 . Also x_1 is adjacent x_5 and x_2 is adjacent x_6 or x_1 is adjacent to x_6 and x_2 is adjacent to x_5 . In both cases we have $G \cong G_2$.

Theorem 2.18. For any connected graph G, $\gamma_{nc}(G) + d_{nc}(G) \leq n+1$ and equality holds if and only if $G = K_n$.

Proof. Case (i). $\Delta < n-1$.

Since $\gamma_{nc} \leq n - \Delta$ and $d_{nc} \leq \delta + 1$, we have $\gamma_{nc} + d_{nc} \leq n - \Delta + \delta + 1 \leq n + 1$.

Case (ii). $\Delta = n - 1$.

Then $\gamma_{nc} = 1$ or 2. If $\gamma_{nc} = 1$, then $d_{nc} \le n$ and hence $\gamma_{nc} + d_{nc} \le n + 1$. If $\gamma_{nc} = 2$, then $d_{nc} \le \frac{n}{2}$ and hence $\gamma_{nc} + d_{nc} \le n + 1$.

Now, let G be any graph with $\gamma_{nc} + d_{nc} = n+1$. We claim that $\gamma_{nc} = 1$. Suppose $\gamma_{nc} \geq 2$, then $d_{nc} \leq \frac{n}{2}$. Also $\gamma_{nc} \leq \left\lceil \frac{n}{2} \right\rceil$ and hence $\gamma_{nc} + d_{nc} \leq \frac{n}{2} + \left\lceil \frac{n}{2} \right\rceil \leq n + \frac{1}{2}$, which is a contradiction. Thus $\gamma_{nc} = 1$. Hence $d_{nc} = n$ and G is isomorphic to K_n .

Theorem 2.19. For any connected graph G, $\gamma_{nc}(G) + d_{nc}(G) = n$ if and only if G is isomorphic to $K_n - e$ or P_4 or P_4 or the graph P_4 given in Figure 2.

Proof. It can be easily verified that for all the graphs given in the theorem, $\gamma_{nc} + d_{nc} = n$.

Now, let G be a connected graph with $\gamma_{nc}+d_{nc}=n$. We claim that $\gamma_{nc}\leq 2$. Suppose $\gamma_{nc}=k\geq 3$. Then $d_{nc}=n-k$. Also $d_{nc}\leq \frac{n}{k}$, so that $n-k\leq \frac{n}{k}$. Hence $n\leq k+1$. However, $k=\gamma_{nc}\leq \left\lceil \frac{n}{2}\right\rceil\leq \left\lceil \frac{k+1}{2}\right\rceil$, so that $k\leq 2$, which is a contradiction. Hence $\gamma_{nc}\leq 2$. Case (i). $\gamma_{nc}=1$.

In this case $d_{nc}=n-1$. Let $\{V_1,V_2,\ldots,V_{n-1}\}$ be a nc-domatic partition of G, where $|V_i|=1$ if $1\leq i\leq n-2$ and $|V_{n-1}|=2$. Hence G contains n-2 vertices with degree n-1 and G is isomorphic to K_n-e . Case (ii). $\gamma_{nc}=2$.

In this case $d_{nc}=n-2$. Also $d_{nc}\leq \frac{n}{2}$, and hence n=3 or 4. If n=3, G is isomorphic to P_3 and if n=4, G is isomorphic to P_4 or G_4 or G_1 . \square

In the following theorem we use the proof technique given in [8] to improve the bounds for the sum $\gamma_{nc}(G) + d_{nc}(G)$ when G is a graph with $\gamma_{nc}(G) \geq 2$ and $d_{nc}(G) \geq 2$.

Theorem 2.20. Let G be a graph with $\gamma_{nc}(G) \geq 2$ and $d_{nc}(G) \geq 2$. Then $\gamma_{nc}(G) + d_{nc}(G) \leq \lfloor \frac{n}{2} \rfloor + 2$. Further, $\gamma_{nc}(G) + d_{nc}(G) = \lfloor \frac{n}{2} \rfloor + 2$ if and only if $\{\gamma_{nc}(G), d_{nc}(G)\} = \{\lfloor \frac{n}{2} \rfloor, 2\}$ or n = 9 with $\gamma_{nc}(G) = d_{nc}(G) = 3$.

Proof. Since $\gamma_{nc}(G) \geq 2$, we have $d_{nc}(G) \leq \lfloor \frac{n}{2} \rfloor$. If either $d_{nc}(G) = 2$ or $\gamma_{nc}(G) = 2$, then since $\gamma_{nc}d_{nc} \leq n$, we have $d_{nc} \leq \lfloor \frac{n}{\gamma_{nc}} \rfloor \leq \lfloor \frac{n}{2} \rfloor$ or $\gamma_{nc} \leq \lfloor \frac{n}{2} \rfloor$. Hence the inequality holds.

If either $d_{nc}(G) = 3$ or $\gamma_{nc}(G) = 3$, then $d_{nc}(G) \leq \lfloor \frac{n}{3} \rfloor$ or $\gamma_{nc}(G) \leq \lfloor \frac{n}{3} \rfloor$. Since $\gamma_{nc}(G) \geq 3$ and $\gamma_{nc}(G) \leq \lceil \frac{n}{2} \rceil$, we have $n \geq 5$. Then $\gamma_{nc}(G) + d_{nc}(G) \leq \lfloor \frac{n}{3} \rfloor + 3 \leq \lfloor \frac{n}{2} \rfloor + 2$.

Suppose $d_{nc}(G) \geq 4$ and $\gamma_{nc}(G) \geq 4$. Then we have $d_{nc}(G) \leq \lfloor \frac{n}{4} \rfloor$ and $\gamma_{nc}(G) \leq \lfloor \frac{n}{4} \rfloor$ which gives $\gamma_{nc}(G) + d_{nc}(G) \leq 2 \lfloor \frac{n}{4} \rfloor < \lfloor \frac{n}{2} \rfloor + 2$. Thus in all the cases $\gamma_{nc}(G) + d_{nc}(G) \leq \lfloor \frac{n}{2} \rfloor + 2$.

Now, let G be a connected graph with $\gamma_{nc}(G) \geq 2$, $d_{nc}(G) \geq 2$ and $\gamma_{nc}(G) + d_{nc}(G) = \left|\frac{n}{2}\right| + 2$.

Suppose $\gamma_{nc}(G) \geq 4$ and $d_{nc}(G) \geq 4$. Then we have $d_{nc}(G) \leq \left\lfloor \frac{n}{4} \right\rfloor$ and $\gamma_{nc}(G) \leq \left\lfloor \frac{n}{4} \right\rfloor$ which gives $\gamma_{nc}(G) + d_{nc}(G) \leq 2 \left\lfloor \frac{n}{4} \right\rfloor < \left\lfloor \frac{n}{2} \right\rfloor + 2$. Hence either $\gamma_{nc}(G) \leq 3$ or $d_{nc}(G) \leq 3$. Let $\gamma_{nc}(G) = 3$ or $d_{nc}(G) = 3$. This implies $n \geq 5$ and $\gamma_{nc}(G) + d_{nc}(G) \leq \left\lfloor \frac{n}{3} \right\rfloor + 3$. Then $\left\lfloor \frac{n}{2} \right\rfloor + 2 \leq \left\lfloor \frac{n}{3} \right\rfloor + 3$, which gives $n \leq 9$, $n \neq 8$. Therefore, $5 \leq n \leq 9$ and $n \neq 8$.

If n = 9, then $\gamma_{nc}(G) + d_{nc}(G) = 6$ and hence $\gamma_{nc}(G) = d_{nc}(G) = 3$.

If n=6 or 7 and $\gamma_{nc}(G)=3$ (or $d_{nc}(G)=3$), then $d_{nc}(G)=2$ (or $\gamma_{nc}(G)=2$). Hence $\{\gamma_{nc},d_{nc}\}=\{\lfloor \frac{n}{2}\rfloor,2\}$.

If n = 5 and either $\gamma_{nc}(G) = 3$ or $d_{nc}(G) = 3$, then the equality does not hold. Hence if n = 5 then either $\gamma_{nc}(G) = 2$ or $d_{nc}(G) = 2$. This proves the result.

Definition 2.21. A graph G is called nc-domatically full if $d_{nc}(G) = \delta(G) + 1$.

Definition 2.22. A graph G is called nc-domatically critical if $d_{nc}(G-e) < d_{nc}(G)$ for every noncut edge $e \in E(G)$.

Theorem 2.23. Every regular nc-domatically full graph is nc-domatically critical.

Proof. Let G be a regular no-domatically full graph. Then $d_{nc}(G) = \delta(G) + 1$. Thus $\delta(G) = d_{nc}(G) - 1$. Hence $\deg v = d_{nc}(G) - 1$ for all $v \in V(G)$. Let $e \in E(G)$ be a noncut edge of G, so that G' = G - e is connected. Then $\delta(G') = \delta(G) - 1$. Now, $d_{nc}(G') \leq \delta(G') + 1 = \delta(G) - 1 + 1 = \delta(G) < d_{nc}(G)$. Hence G is no-domatically critical.

Theorem 2.24. Let G be a regular nc-domatically full graph of order n. Then $d_{nc}(G)$ divides n.

Proof. Let G be a regular nc-domatically full graph of order n so that $d_{nc}(G) = \delta + 1$. Let $\{V_1, V_2, \ldots, V_{d_{nc}}\}$ be a nc-domatic partition of V(G). Let $v \in V_i$. Since v is a adjacent to at least one vertex in each $V_j, j \neq i$, we have V_i is an independent set and any vertex in V_i is adjacent to exactly one vertex in $V_j, i \neq j$. Hence $|V_i| = |V_j| = \frac{n}{d_{nc}}$ and hence d_{nc} divides n. \square

The connection between the nc-domatic number with nc-domination number and other types of domatic numbers suggest the following natural problems for further investigation.

Problem 2.25. Characterize graphs G for which $\gamma_{nc}(G)d_{nc}(G) = n$.

Problem 2.26. Characterize graphs G for which $d_{nc}(G) = d(G)$.

Problem 2.27. Characterize graphs G for which $d_{nc}(G) = \frac{d(G)}{2}$.

Problem 2.28. Characterize nc-domatically full graphs.

References

- [1] S. Arumugam and C. Sivagnanam, Neighborhood connected domination in graphs, J. Combin. Math. Combin. Comput., (To appear).
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, 4th edition, 2005.
- [3] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, *Networks*, **10**(1980), 211 219.
- [4] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, *Networks*, 7(1977), 247 261.
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs

 Advanced Topics, Marcel Dekker Inc., 1998.
- [7] R. Laskar and S.T. Hedetniemi, Connected domination in graphs, Technical Report No. 414, Clemson University, 1983.
- [8] J. Paulraj Joseph and S. Arumugam, Domination in graphs, International Journal of Management and System, 11 (1995), 177 182.
- [9] B. Zelinka, Connected domatic number of a graph, Math Slovaca, 36(1986), 387-391.
- [10] B. Zelinka, Domatic number of graphs and their variants: A survey in Domination in graphs Advanced topics, Ed. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Marcel Dekker, 1998,