Chromatic Transversal Domination in Graphs

L. BENEDICT MICHAELRAJ, S.K. AYYASWAMY

Department of Mathematics

St. Joseph's College, Trichy - 620 002

INDIA

e-mail: benedict.mraj@gmail.com, sjcayya@yahoo.co.in

and

S. ARUMUGAM

Core Group Research Facility (CGRF)

National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH)

Kalasalingam University

Anand Nagar, Krishnankoil-626190, INDIA. e-mail: s_arumugam_akce@yahoo.com

Abstract

Let G = (V, E) be a graph with chromatic number k. A dominating set D of G is called a chromatic-transversal dominating set (ctd-set) if D intersects every color class of any k-coloring of G. The minimum cardinality of a ctd-set of G is called the *chromatic transversal domination number* of G and is denoted by $\gamma_{ct}(G)$. In this paper we initiate a study of this parameter.

Keywords: Domination, Coloring, Chromatic Transversal domination.

2000 Mathematics Subject Classification: 05C69

1 Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2].

One of the fastest growing areas within graph theory is the study of domination and related subset problems such as independence, covering and matching. A comprehensive treatment of fundamentals of domination is given in the book by Haynes et al. [3]. Surveys of several advanced topics in domination can be seen in the book edited by Haynes et al. [4].

Another important area of research within graph theory is graph colourings which deals with the fundamental problem of partitioning a set of objects into classes according to certain rules.

A set $S \subseteq V$ is called a dominating set of G if every vertex in V - S is adjacent to a vertex in S. The minimum cardinality of a dominating set in G is called the *domination number* of G and is denoted by $\gamma(G)$. Several types of domination parameters have been studied by different authors by imposing conditions on S and more than seventy five models of domination are listed in the appendix of Haynes et al. [4].

Sampathkumar and Walikar [6] introduced concept of connected domination. A dominating set S of a connected graph G is called a *connected dominating set* if the induced subgraph $\langle S \rangle$ is connected and the connected domination number $\gamma_c(G)$ is the minimum cardinality of a connected dominating set of G.

Sampathkumar [5] introduced the concept of global domination in graphs. A subset S of V is called a global dominating set of G if S is a dominating set of G as well as its complement \overline{G} . The global domination number $\gamma_g(G)$ is the minimum cardinality of a global dominating set of G.

In this paper we introduce a graph theoretic parameter which combines the concept of domination and vertex colouring. A vertex colouring of a graph G is a partition of V into independent sets and the minimum order of such a partition is called the chromatic number of G and is denoted by $\chi(G)$. If $C = \{V_1, V_2, \ldots, V_k\}$ is a k-colouring of G then a subset D of V is called a transversal of C if $D \cap V_i \neq \emptyset$ for all $i = 1, 2, \ldots, k$.

We need the following definitions and theorems.

Definition 1.1. The corona $G_1 \circ G_2$ of two graphs G_1 and G_2 is defined to be the graph G obtained by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 , and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2 .

Definition 1.2. A subdivision of an edge uv is obtained by removing edge uv, adding a new vertex w, and adding edges uw and vw. A wounded spider is the graph formed by subdividing at most t-1 of the edges of a star $K_{1,t}$.

Definition 1.3. Let $S \subseteq V$ and let $u \in S$. A vertex v is called a private neighbor of u with respect to S if $N[v] \cap S = \{u\}$. The set of all private neighbors of u with respect to S is denoted by pn[u, S].

Theorem 1.4. ([3], Page 41) If a graph G has no isolated vertices, then $\gamma(G) \leq \frac{n}{2}$.

Theorem 1.5. ([3], Page 42) For a graph G with even order n and having no isolated vertices, $\gamma(G) = \frac{n}{2}$ if and only if the components of G are the cycle C_4 or the corona $H \circ K_1$ for any connected graph H.

Theorem 1.6. ([3], Page 163) Let G be a connected graph of order n and maximum degree Δ . Then $\gamma_c \leq n - \Delta$.

Theorem 1.7. [3] If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Theorem 1.8. ([3], Page 210) If G is a triangle free graph, then $\gamma \leq \gamma_g \leq \gamma + 1$.

Theorem 1.9. [1] Let G be a connected bipartite graph with bipartition (X,Y) and $|X| \leq |Y|$. Then $\gamma_g = \gamma + 1$ if and only if either G is isomorphic to K_2 or every vertex in X is adjacent to at least two pendant vertices and there exists a vertex in Y which is adjacent to all vertices in X.

2 Main Results

Definition 2.1. Let G = (V, E) be a graph. A dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D is a transversal of every chromatic partition of G. A ctd-set D is called a minimal ctd-set if no proper subset of D is a ctd-set.

We observe that V is a ctd-set of any graph. Further if D is a ctd-set and $D \subseteq D_1$, then D_1 is also a ctd-set. Hence D is a minimal ctd-set if and only if $D - \{v\}$ is not a ctd-set for all $v \in D$. The following theorem gives a necessary and sufficient condition for a ctd-set to be minimal.

Theorem 2.2. A ctd-set D is minimal if and only if for every vertex $u \in D$ one of the following holds.

- (i) $pn[u, S] \neq \emptyset$.
- (ii) There exists a χ -partition $C = \{V_1, V_2, \dots, V_{\chi}\}$ such that $D \cap V_i = \{u\}$ for some i.

Proof. Suppose D is a minimal ctd-set of G and let $u \in D$. Then $D - \{u\}$ is not a ctd-set of G. Hence either $D - \{u\}$ is not a dominating set or $D - \{u\}$ is not a transversal of some χ -partition of G. If $D - \{u\}$ is not a dominating set of G, then $pn[u, S] \neq \emptyset$. If there exists a χ -partition $C = \{V_1, V_2, \ldots, V_k\}$ such that $D - \{u\}$ is not a transversal of C then $(D - \{u\}) \cap V_i = \emptyset$ for some i. Further $D \cap V_i \neq \emptyset$ and hence it follows that $D \cap V_i = \{u\}$.

Conversely if (i) or (ii) holds, then $D - \{u\}$ is not a ctd-set of G for every $u \in D$ and hence D is a minimal ctd-set of G.

Definition 2.3. The minimum (maximum) cardinality of a minimal ctd-set of G is called the *chromatic-transversal domination number* (upper chromatic transversal domination number) of G and is denoted by $\gamma_{ct}(G)$ ($\Gamma_{ct}(G)$).

Remark 2.4. Let G be a graph with $\chi(G) = k$. Let $\{V_1, V_2, \ldots, V_k\}$ be a k-colouring of G and let D be a γ_{ct} -set of G. Since $D \cap V_i \neq \emptyset$ for $1 \leq i \leq k$ and each V_i forms a clique in \overline{G} , it follows that D is a dominating set of \overline{G} . Hence D is a global dominating set of G so that $\gamma_g \leq \gamma_{ct}$.

Example 2.5.

- (i) Obviously $\gamma_{ct}(K_n) = \gamma_{ct}(K_n^c) = n$ and $\gamma_{ct}(K_{m,n}) = 2$.
- (ii) Let G be a connected bipartite graph with bipartition (X,Y). If there exists a γ -set D of G such that $D \cap X \neq \emptyset$ and $D \cap Y \neq \emptyset$, then $\gamma_{ct}(G) = \gamma$. Otherwise $\gamma_{ct}(G) = \gamma + 1$. In particular $\gamma_{ct}(C_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil$ if n is even.
- (iii) If for every $v \in V$, $\{v\}$ is a colour class of a χ -partition of G, then $\gamma_{ct}(G) = n$. In particular $\gamma_{ct}(C_n) = n$ if n is odd and $\gamma_{ct}(W_n) = n$ if n is even, where W_n is the wheel on n vertices.
- (iv) $\gamma_{ct}(P) = 5$ where P is the Petersen graph given in Figure 1.

Figure 1

Clearly $\gamma(P)=\chi(P)=3$. Further if $S\subseteq V$ is independent and |S|=3, then there exists a chromatic partition $\{V_1,V_2,V_3\}$ of P such that $S\subseteq V_1$.

Also if D is any dominating set of P with |D|=3 or 4, then there exists an independent set S with |S|=3 such that $S\subseteq D$. Hence it follows that $\gamma_{ct}(P)\geq 5$. Also $\{v_1,v_2,v_3,v_4,v_5\}$ is a ctd-set of P and hence $\gamma_{ct}(P)=5$. In the following theorem we obtain a characterization of graphs for which $\gamma_{ct}(G)=n$.

Theorem 2.6. For a connected graph G of order n, $\gamma_{ct}(G) = n$ if and only if G is χ -critical.

Proof. If G is χ -critical, then for every $v \in V(G)$, there exists a χ -colouring of G in which $\{v\}$ is a colour class and hence it follows that $\gamma_{ct}(G) = n$. Conversely, suppose $\gamma_{ct}(G) = n$. If G is not χ -critical, then G contains a proper subgraph H of G such that $\chi(H) = \chi(G) = k$ and H is χ -critical. Now, let $v \in V(G) - V(H)$. Then $V(G) - \{v\}$ is a ctd-set of G, which is a contradiction. Hence G is χ -critical.

Corollary 2.7. Let G be a disconnected graph of order n. Then $\gamma_{ct}(G) = n$ if and only if G has at most one nontrivial component G_1 , which is χ -critical.

Proof. Suppose $\gamma_{ct}(G) = n$. If G has more than one non-trivial component, let G_1 be a component of G with $\chi(G_1) = \chi(G)$. Let D_2 be a minimum dominating set of another non-trivial component G_2 . Then $D_2 \cup [V(G) - V(G_2)]$ is a ctd-set of G, which is a contradiction. Hence G has at most one non-trivial component, which is critical. The converse is obvious.

Lemma 2.8. For any graph G, $\gamma_{ct}(G) \geq \gamma(G)$. Further given two positive integers a and b with $a \leq b$, there exists a connected graph G with $\gamma(G) = a$ and $\gamma_{ct}(G) = b$.

Proof. The inequality is trivial. Now, let a and b be two positive integers with $a \le b$.

Case i. a = b.

For the graphs G_1, G_2 and G_3 where $G_1 = K_1$, G_2 is the wounded spider obtained from $K_{1,3}$ by subdividing exactly one edge and G_3 is the wounded spider obtained from $K_{1,3}$ by subdividing exactly two edges, we have $\gamma(G_i) = \gamma_{ct}(G_i) = i, 1 \le i \le 3$. For $a \ge 4$, we have $\gamma_{ct}(P_{3a}) = \gamma(P_{3a}) = a$.

Case ii. a < b.

Let G be the graph obtained from the path P_{3a} by identifying a vertex of the complete graph K_{b-a+1} with a support of P_{3a} . Clearly $\gamma(G) = a$ and $\gamma_{ct}(G) = b$.

Theorem 2.9. For a non-trivial connected graph G, $\gamma_{ct}(G) = 2$ if and only if G is a bipartite graph with bipartition (X,Y) and there exists a set $S = \{x,y\}$ with |pn(x,S)| = |Y| - 1 and |pn(y,S)| = |X| - 1.

Proof. Let G be a non-trivial connected graph with $\gamma_{ct}(G) = 2$. Then $\chi(G) = 2$, so that G is bipartite graph. Let (X, Y) be a bipartition of G. Then for any γ_{ct} -set $S = \{x, y\}$ we have $x \in X, y \in Y$, $pn(x, S) = Y - \{y\}$ and $pn(y, S) = X - \{x\}$. The converse is obvious.

In the following theorem we characterize bipartite graphs with $\gamma_{ct} = \gamma + 1$.

Theorem 2.10. Let G be a connected bipartite graph with bipartition (X,Y) where $|X| \leq |Y|$ and $n \geq 3$. Then $\gamma_{\rm ct}(G) = \gamma(G) + 1$ if and only if every vertex in X has at least two pendant neighbours.

Proof. Suppose $\gamma_{ct} = \gamma + 1$. Then no γ -set of G intersects both X and Y and hence it follows that X is the unique γ -set of G. Now, let $u \in X$ and $v \in N(u)$. If u is not a support vertex or u is a support with exactly one pendant neighbour, then $D = (X - \{u\}) \cup \{v\}$ is a γ -set, so that $\gamma_{ct} = \gamma$, which is a contradiction. Thus every vertex of X has at least two pendant neighbours. The converse is obvious.

Corollary 2.11.

- (i) $\gamma_{ct}(P_n) = \gamma(P_n), n \ge 4$.
- (ii) $\gamma_{ct}(P_k \times P_l) = \gamma(P_k \times P_l)$
- (iii) $\gamma_{ct}(Q_n) = \gamma(Q_n)$ where Q_n is the n-dimensional hypercube.

Remark 2.12. Let G be a disconnected graph with k components G_1, G_2, \ldots, G_k and let $\gamma_{ct}(G_k) = \min_i \{ \gamma_{ct}(G_i) : \chi(G_i) = \chi(G) \}$. Then $\gamma_{ct}(G) = \sum_{i=1}^{k-1} \gamma(G_i) + \gamma_{ct}(G_k)$.

Definition 2.13. Let m, n and r be positive integers. Then the graph obtained from $K_{1,m}$ and $K_{1,n}$ by joining the centres of $K_{1,m}$ and $K_{1,n}$ by a path of length r is called a double star and is denoted by $D_{m,n,r}$.

Theorem 2.14. Let T be a tree. Then $\gamma_{ct}(T) = 2$ if and only if T is isomorphic to one of the graphs $K_{1,n}, D_{m,n,1}, D_{m,1,2}$ or $D_{m,n,3}$ where $m, n \geq 1$.

Proof. Let T be a tree with $\gamma_{ct}(T)=2$. If T is not star, then T has exactly two supports u and v and $d(u,v) \leq 3$. Further, if d(u,v)=2, then in any 2-colouring of T, u and v belong to the same colour class and hence either $deg\ u$ or $deg\ v$ is 2. Hence T is isomorphic to one of the graphs $D_{m,n,1}, D_{m,1,2}$ or $D_{m,n,3}$ where $m,n \geq 1$. The converse is obvious.

Theorem 2.15. For a tree T of even order n with $n \ge 4$, $\gamma_{ct} \le \frac{n}{2}$ and equality holds if and only if T is $K_{1,3}$ or $H \circ K_1$ where H is any tree.

Proof. Let X, Y be a bipartition of T with $|X| \leq |Y|$. Then $\gamma_{ct}(T) = \gamma$ or $\gamma + 1$.

If $\gamma_{ct}(T) = \gamma$, then it follows from Theorem 1.4 that $\gamma_{ct}(T) \leq \frac{n}{2}$. Suppose $\gamma_{ct}(T) = \gamma + 1$. Then it follows from Theorem 2.10 that X is the only γ -set of T and $|X| \leq \frac{n}{2}$ and hence the inequality follows.

Now, suppose T is a tree of even order with $n \ge 4$ and $\gamma_{ct} = \frac{n}{2}$. Then $\gamma = \frac{n}{2}$ or $\frac{n}{2} - 1$. If $\gamma = \frac{n}{2}$ it follows from Theorem 1.5 that $T \simeq H \circ K_1$ where H is any tree.

If $\gamma = \frac{n}{2} - 1$, then it follows from Theorem 2.10 that $|X| = \gamma = \frac{n}{2} - 1$ and $|Y| \ge 2|X| = 2(\frac{n}{2} - 1) = n - 2$. If |Y| = n - 2, then n = 6 and $\gamma = |X| = 2$ and in this case $\gamma_{ct} = 2$, which is a contradiction. Hence |Y| = n - 1. In this case n = 4 and $\gamma = 1$, so that $T = K_{1,3}$.

Theorem 2.16. Let T be a tree. Then $\gamma_{ct}(T) \leq n - \Delta$ and equality holds if and only if T is a wounded spider which is not a star.

Proof. Let T be a wounded spider which is not a star. Let v be the vertex of maximum degree, $N(v) = \{v_1, v_2, \ldots, v_k\}$ and $V - N[v] = \{w_1, w_2, \ldots, w_l\}$ with w_i adjacent to v_i . Clearly n = k + l + 1, $\Delta = k$ and $\{v, v_1, v_2, \ldots, v_l\}$ a minimum ctd-set of T and hence $\gamma_{ct} = n - \Delta$.

Conversely, let T be a tree with $\gamma_{ct} = n - \Delta$. Let v be a vertex of maximum degree Δ . Let (X,Y) be the 2-colouring of T with $v \in X$, so that $N(v) \subseteq Y$. If there exists $w \in Y - N(v)$, then $D = I \cup \{v\}$ where I is a maximal independent set in (V - N[v]) containing w, is a ctd-set of T with $|D| < n - \Delta$, which is a contradiction. Hence Y = N(v) and T is a wounded spider.

The following are some interesting problems for further investigation.

Problem 2.17.

- (i) Characterize the class of graphs G for which $\gamma_{ct}(G) = \gamma_{a}(G)$.
- (ii) Characterize the class of graphs G for which $\gamma_{ct}(G) = \chi(G)$.
- (iii) Characterize the class of graphs G for which $\gamma_{ct}(G) = \gamma(G)$.

References

[1] S. Arumugam and R. Kala, A Note on Global Domination in Graphs, Ars Combin., (To appear)

- [2] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Chapman and Hall, CRC, 2005.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs Advanced Topics, Marcel Dekker Inc., 1998.
- [5] E. Sampathkumar, The Global Domination Number of a graph, Jour. Math. Phy. Sci., 23(5) (1989), 377-385.
- [6] E. Sampathkumar and H. B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci., 13(1979), 607-613.