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Abstract
Let G = (V, E) be a graph with chromatic number k. A dominat-
ing set D of G is called a chromatic-transversal dominating set (ctd-
set) if D intersects every color class of any k-coloring of G. The min-
imum cardinality of a ctd-set of G is called the chromatic transversal
domination number of G and is denoted by ~¢¢(G). In this paper we
initiate a study of this parameter.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither
loops nor multiple edges. The order and size of G are denoted by n and
m respectively. For graph theoretic terminology we refer to Chartrand and
Lesniak [2].

One of the fastest growing areas within graph theory is the study of
domination and related subset problems such as independence, covering
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and matching. A comprehensive treatment of fundamentals of domination
is given in the book by Haynes et al. [3]. Surveys of several advanced topics
in domination can be seen in the book edited by Haynes et al. [4].

Another important area of research within graph theory is graph colour-
ings which deals with the fundamental problem of partitioning a set of
objects into classes according to certain rules.

A set S C V is called a dominating set of G if every vertexin V — S is
adjacent to a vertex in S. The minimum cardinality of a dominating set in
G is called the domination number of G and is denoted by ¥(G). Several
types of domination parameters have been studied by different authors by
imposing conditions on S and more than seventy five models of domination
are listed in the appendix of Haynes et al. [4].

Sampathkumar and Walikar [6] introduced concept of connected dom-
ination. A dominating set S of a connected graph G is called a connected
dominating set if the induced subgraph (S) is connected and the connected
domination number 7.(G) is the minimum cardinality of a connected dom-
inating set of G.

Sampathkumar (5] introduced the concept of global domination in graphs.
A subset S of V is called a global dominating set of G if S is a dominating
set of G as well as its complement G. The global domination number 7,4(G)
is the minimum cardinality of a global dominating set of G.

In this paper we introduce a graph theoretic parameter which combines
the concept of domination and vertex colouring. A vertex colouring of a
graph G is a partition of V into independent sets and the minimum order
of such a partition is called the chromatic number of G and is denoted by
x(G). If C = {W,Va,...,Vi} is a k-colouring of G then a subset D of V is
called a transversal of Cif DNV, #£ @ foralli=1,2,...,k.

We need the following definitions and theorems.

Definition 1.1.  The corona G1 0 Gs of two graphs G, and G is defined
to be the graph G obtained by taking one copy of G1 and |V(G1)| copies of
Ga, and then joining the i** vertez of Gy to every vertez in the ith copy of
Gs.

Definition 1.2. A subdivision of an edge uv is obtained by removing
edge uwv, adding a new vertez w, and adding edges uw and vw. A wounded
spider is the graph formed by subdividing at most t—1 of the edges of a star
K.

Definition 1.3. Let SCV andletu € S. A vertex v is called a private
neighbor of u with respect to S if N[v)NS = {u}. The set of all private
neighbors of u with respect to S is denoted by pnfu, S).

Theorem 1.4. ([3), Page 41) If a graph G has no isolated vertices, then
vG) < 3.
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Theorem 1.5. ([3], Page 42) For a graph G with even order n and having
no isolated vertices, v(G) = % if and only if the components of G are the
cycle Cy or the corona H o K, for any connected graph H.

Theorem 1.6. ( [3], Page 163) Let G be a connected graph of order n
and mazimum degree A. Then v, < n — A.

Theorem 1.7. [3] If G is a connected graph other than a complete graph
or an odd cycle, then x(G) < A(G).

Theorem 1.8. ( (3], Page 210) If G is a triangle free graph, then v <
Yo <7+ 1L

Theorem 1.9. [1] Let G be a connected bipartite graph with bipartition
(X,Y) and | X| < |Y|. Then vy =v+1 if and only if either G is isomorphic
to K or every vertez in X is adjacent to at least two pendant vertices and
there exists a vertex in Y which is adjacent to all vertices in X.

2 Main Results

Definition 2.1.  Let G = (V, E) be a graph. A dominating set D of G is
called a chromatic transversal dominating set (ctd-set) if D is a transversal
of every chromatic partition of G. A ctd-set D is called a minimal ctd-set
if no proper subset of D is a ctd-set.

We observe that V is a ctd-set of any graph. Further if D is a ctd-set
and D C D, then D is also a ctd-set. Hence D is a minima) ctd-set if and
only if D — {v} is not a ctd-set for all v € D. The following theorem gives
a necessary and sufficient condition for a ctd-set to be minimal.

Theorem 2.2. A ctd-set D is minimal if and only if for every vertez
u € D one of the following holds.

(i) pnfu, 8] # 0.

(ii) There exists a x-partition C = {V1,Va,...,V, } such that DNV, = {u}
for some i.

Proof.  Suppose D is a minimal ctd-set of G and let w € D. Then D — {u}
is not a ctd-set of G. Hence either D—{u} is not a dominating set or D—{u}
is not a transversal of some x-partition of G. If D — {u} is not a dominating
set of G, then pnu, S] # 0. If there exists a x-partition C = {W},V3,..., Vi }
such that D — {u} is not a transversal of C then (D — {u})NV; = 0 for
some i. Further DNV, # 0 and hence it follows that D N'V; = {u}.
Conversely if (i) or (ii) holds, then D — {u} is not a ctd-set of G for
every u € D and hence D is a minimal ctd-set of G. (]
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Definition 2.3. The minimum (maximum) cardinality of a minimal
ctd-set of G is called the chromatic-transversal domination number (upper
chromatic transversal domination number) of G and is denoted by v(G)

(Pct(G))~

Remark 2.4. Let G be a graph with x(G) = k. Let {V1,Va,...,Vs} be a
k-colouring of G and let D be a yet-set of G. Since DNV, #£ @ for1<i<k
and each V; forms a clique in G, it follows that D is a dominating set of
G. Hence D is a global dominating set of G so that vg < Yet.

Example 2.5.
(l) Obviously 'th(Kn) = '7ct(Kf;) =n and 7ct(Km,n) =2,

(ii) Let G be a connected bipartite graph with bipartition (X,Y). If there
exists a y-set D of G such that DN X # @ and DNY # 0, then
Yt(G) = 7. Otherwise 7+(G) = v+ 1. In particular v¢(Crn) =
Y(Cn) = [2] if n is even.

(iii) If for every v € V, {v} is a colour class of a x-partition of G, then
7et(G) = n. In particular 74(Cr) = n if n is odd and v(Wn) = n if
n is even, where W, is the wheel on n vertices.

(iv) Yet(P) = 5 where P is the Petersen graph given in Figure 1.
V4

Wy

wWs w3

w W

n v2

Figure 1

Clearly v(P) = x(P) = 3. Further if § C V is independent and |S| = 3,
then there exists a chromatic partition {Vi, V2, Va} of P such that § C W;.
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Also if D is any dominating set of P with |D| = 3 or 4, then there exists
an independent set S with |S| = 3 such that S C D. Hence it follows that
Yet(P) 2 5. Also {v1,v2,v3,v4,vs} is a ctd-set of P and hence v¢:(P) = 5.

In the following theorem we obtain a characterization of graphs for
which 7,(G) = n.

Theorem 2.6.  For a connected graph G of order n, v4(G) = n if and
only if G is x-critical.

Proof. If G is x-critical, then for every v € V(G), there exists a x-
colouring of G in which {v} is a colour class and hence it follows that
Yet(G) = n. Conversely, suppose 7.¢(G) = n. If G is not x-critical, then G
contains a proper subgraph H of G such that x(H) = x(G) = k and H is
x-critical. Now, let v € V(G) — V(H). Then V(G) — {v} is a ctd-set of G,
which is a contradiction. Hence G is x-critical. (|

Corollary 2.7.  Let G be a disconnected graph of ordern. Then v¢(G) =
n if and only if G has at most one nontrivial component Gy, which is x-
critical.

Proof.  Suppose v,(G) = n. If G has more than one non-trivial com-
ponent, let G; be a component of G with x(G1) = x(G). Let D, be
a minimum dominating set of another non-trivial component G3. Then
D, U[V(G) — V(G3))] is a ctd-set of G, which is a contradiction. Hence G
has at most one non-trivial component, which is critical. The converse is
obvious. , O

Lemma 2.8. For any graph G, v.(G) > v(G). Further given two pos-
itive integers a and b with a < b, there ezists a connected graph G with

Y(G) = a and v4(G) = b.

Proof.  The inequality is trivial. Now, let a and b be two positive integers
with a < b.
Case i. a=b.

For the graphs G1,G; and G3 where G; = K, G, is the wounded
spider obtained from K3 by subdividing exactly one edge and G3 is the
wounded spider obtained from K3 by subdividing exactly two edges, we
have v(G;) = 7:(Gi) = 4,1 <4 < 3. For a > 4, we have y(Pas) =
'Y(P 3a) = Q.

Case ii. a<b.

Let G be the graph obtained from the path P3, by identifying a vertex
of the complete graph Kp_o41 with a support of P3,. Clearly v(G) = a
and y.(G) = b. a
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Theorem 2.9. For a non-trivial connected graph G, 7,(G) = 2 if and
only if G is a bipartite graph with bipartition (X,Y) and there exists a set
§ = {z,y} with [pn(z, S)| = |Y| - 1 and |pn(y, )| = |X| - 1.

Proof. Let G be a non-trivial connected graph with v.(G) = 2. Then
x(@) = 2, so that G is bipartite graph. Let (X,Y) be a bipartition of G.
Then for any v.-set S = {z,y} wehavez € X,y €Y, pn(z,8) =Y — {y}
and pn(y, S) = X — {z}. The converse is obvious. O

In the following theorem we characterize bipartite graphs with
Yt =7+1
Theorem 2.10. Let G be a connected bipartite graph with bipartition
(X,Y) where | X| < |Y| and n > 3. Then v:(G) = v(G) + 1 if and only if
every vertez in X has at least two pendant neighbours.
Proof.  Suppose 7.t = v+ 1. Then no v-set of G intersects both X and Y’
and hence it follows that X is the unique y-set of G. Now, let v € X and
v € N(u). If u is not a support vertex or u is a support with exactly one
pendant neighbour, then D = (X — {u}) U {v} is a v-set, so that v = 1,
which is a contradiction. Thus every vertex of X has at least two pendant
neighbours. The converse is obvious. a

Coroilary 2.11.
(i) Yet(Pn) =7(Pn)in 2 4.
(i)) Yet(Pe x Pt) = v(Pe x P)
(iii) Yet(@n) = Y(Qn) where Qn is the n-dimenstonal hypercube.

Remark 2.12. Let G be a disconnected graph with k components G, Gz,
..., G and let vt(Gi) = miin{'yct(G,-) : x(Gs) = x(G)}. Then v.(G) =

k-1
> Y(Gi) + Yet(Gr)-

i=1

Definition 2.13. Let m,n and r be positive integers. Then the graph
obtained from K1, and Ky n by joining the centres of Ki,m and Ky, by a
path of length 7 is called a double star and is denoted by Dy n,r-

Theorem 2.14. Let T be a tree. Then v(T) = 2 if and only if T
is isomorphic to one of the graphs K1 5,Dmn1,Dm1,2 or Dmn3 where
m,n 2 1.

Proof. Let T be a tree with 7.(T) = 2. If T is not star, then T has
exactly two supports u and v and d(u,v) < 3. Further, if d(u,v) = 2, then
in any 2-colouring of T, u and v belong to the same colour class and hence
either deg u or deg v is 2. Hence T is isomorphic to one of the graphs
DuniyDm,,2 ofr Dypn s where m,n 2> 1. The converse is obvious. O
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Theorem 2.15.  For a tree T of even order n with n > 4, vo < % and
equality holds if and only if T is K13 or H o K, where H is any tree.

Proof. Let X,Y be a bipartition of T with |X| < |Y|. Then 7(T) =~
orvy+1.

If 7¢¢(T') = v, then it follows from Theorem 1.4 that v.(T) < Z- Sup-
pose Yct(T) = v+ 1. Then it follows from Theorem 2.10 that X is the only
77-set of T" and |X| < % and hence the inequality follows.

Now suppose Ti 1s a tree of even order with n > 4 and .t = 2. Then
y=3or3—1 Ify= % it follows from Theorem 1.5 that T ~ H o K,

where H i 1s any tree.

If v = % -1, then it follows from Theorem 2.10 that | X| =y = 2—1land
Y] 22| X[=2(3-1)=n-2.1f|[Y|=n—-2,thenn=6and y = | X| = 2
and in this case y.; = 2, which is a contradiction. Hence |Y| =n —1. In
this case n =4 and v =1, so that T = K; 3. O

Theorem 2.16. Let T be a tree. Then v4(T) < n— A and equality
holds if and only if T is a wounded spider which is not a star.

Proof.  Let T be a wounded spider which is not a star. Let v be the vertex
of maximum degree, N(v) = {v1,v2,...,v} and V—N[v] = {wy, wy, ..., w;}
with w; adjacent to v;. Clearlyn=k+!+1, A=k and {v,v1,vs,...,9}
a minimum ctd-set of T and hence v, = n — A.

Conversely, let T be a tree with 7.+ = n — A. Let v be a vertex of
maximum degree A. Let (X,Y) be the 2-colouring of T with v € X, so
that N(v) C Y. If there exists w € Y — N(v), then D = I U {v} where |
is a maximal independent set in (V' — N[v]} containing w, is a ctd-set of T’
with |D| < n — A, which is a contradiction. Hence Y = N(v) and T is a

wounded spider. ()
The following are some interesting problems for further investigation.
Problem 2.17.
(i) Characterize the class of graphs G for which yee(G) = 7,(G).
(ii) Characterize the class of graphs G for which v.:(G) = x(G).
(iii) Characterize the class of graphs G for which v4(G) = v(G).
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