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Abstract

Let GO H denote the Cartesian product of two graphs G and
H. In 1994, Livingston and Stout [Constant time computation of
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G, and claimed that P, may be substituted with any graph from
a one-parameter family, such as a cycle of length n or a complete
t-ary tree of height n for fixed t. We explore how the algorithm
may be modified to accommodate such graphs and propose a general
framework to determine 4(G D H) for any graph H. Furthermore,
we illustrate its use in determining the domination number of the
generalized Cartesian product G @ H, as defined by Benecke and
Mynhardt [Domination of Generalized Cartesian Products, preprint
(2009)}.

Keywords: Cartesian product graph, generalized Cartesian product,
domination number, domination algorithm.

AMS Classification: 05C69, 05C99.

*Supported by the Skye Foundation and the National Research Foundation of South

Africa.
tSupported by the Natural Sciences and Engineering Research Council of Canada.

JCMCC 175 (2010), pp. 65-84



1 Introduction

In 1994, Livingston and Stout [6] introduced a linear time algorithm to
determine v(G O P,) for a fixed graph G, using the notion of finite state
spaces. They observed that the complexity may be reduced to constant time
through an observation of periodicity in the solution. Besides illustrating
the applicability to other types of domination, the authors mention the
algorithm’s use to determine (G O P(n)), where P(n) is a graph from a
one-parameter family of graphs, such as a cycle of length n or a complete
t-ary tree of height n for fixed ¢t. We explore how the algorithm may be
modified to accommodate such graphs and propose a general framework to
determine 4(G O H) for any graph H. Furthermore, we illustrate its use in
determining the domination number of the generalized Cartesian product
G ® H, defined by Benecke and Mynhardt [1].

We generally follow the notation and terminology in [4]. For two graphs
G and H, the Cartesian product GOH is the graph with vertex set V(G) x
V(H) and vertex (vi,u;) adjacent to (vk, ;) if and only if (a) vivx € E(G)
and uj = uy, or (b) v; = vx and uju € E(H). As usual, 7(G) denotes
the domination number of G. The set S C V(G) is called a v-set if it
is a dominating set with |S| = v(G). In 1967, Chartrand and Harary (3]
defined the generalized prism nG of G as the graph consisting of two copies
of G, with edges between the copies determined by a permutation 7 acting
on the vertices of G. Serving as a generalization of both the Cartesian
product and the generalized prism, Benecke and Mynhardt (1] defined the
generalized Cartesian product as follows. For two labelled graphs G and
H and a permutation 7 of V(G), the generalized Cartesian product G&@ H
is the graph with vertex set V(G) x V(H), and vertex (v;, u;) adjacent to
(vk, w) if and only if (a) vivx € E(G) and u; = w, or (b) v = 7'~7(v;) and
ujw € E(H). If # € Aut(G), then G® H is isomorphic to the Cartesian
product GO H, whereas G@H is a generalized prism if H = K.

The basic algorithm of Livingston and Stout [6] is explained in Section 2
by way of an example on K2 O P,. A similar example is used in [6], and a
more detailed explanation may be found there. In Section 3 we introduce
a general framework for evaluating the domination number of GO H for a
fixed graph G and any H. The problem of determining (G O H) is shown
to be equivalent to a conditional, weighted homomorphism problem. We
provide an algorithm in Section 4 to determine v(G OT) for any tree T,
and observe that it is polynomial for trees of bounded maximum degree.
Lastly, in Section 5 we discuss how the general framework for G O H may
be modified to accommodate the generalized Cartesian product G&EH, and
provide an example on G@T,
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For A,B C V(G), we abbreviate “A dominates B” to “A » B"; if
B = V(G) we write A > G and if B = {b} we write A > b. Further, N(v) =
{u € V(G) : wv € E(G)} and N[v] = N(v)U{v} denote the open and closed
neighbourhoods, respectively, of a vertex v of G. The closed neighbourhood
of S C V(G) is the set N[S] = J,cg N|s], while N{S} denotes the set
N[S] - S. For a directed graph D we denote an arc (u,v) € E(D) as uv
for convenience. The (open) out-neighbourhood of a vertex v is the set
Nout(v) = {u € V(D) : vu € E(D)}, while the (open) in-neighbourhood is
the set Nin(v) = {u € V(D) : wv € E(D)}.

Consider two graphs G and H with vertex sets labelled v;,vs,...,vm
and uy,uy, ..., U, respectively. Vertices (v;,u;) of the Cartesian product
GOH are labelled v;,; for convenience. The subgraph induced by all vertices
that differ from a given vertex v;; only in the first [second] coordinate, is
known as the (Cartesian) G-layer [H-layer] through v;;. The G-layer
through a vertex v; ; is denoted G;. To specify the appropriate G-layer, we
often write Ng, (vi,;) for the neighbourhood {vi ; : vk € Ng(v;)}. Other
types of neighbourhoods restricted to a specific G-layer may be defined
similarly. Lastly, if H is a path or a cycle, then a canonical labelling of
H is a labelling of the vertices of H such that u;,us,...,u, is the vertex
sequence along the path or cycle.

2 The Cartesian product GO P,

In this section, an efficient algorithm, introduced by Livingston and Stout 6],
to determine v(G O P,) is discussed. Similar to [6], the graph K, O P; is
used as an example to explain the algorithm.

Let V(G) = {v1,...,9m}, V(Pn) = {u1,...,un} (labelled canonically),
and let D be a dominating set of GO P,. We label the vertices according
to a mapping lIp : V(GO P,) — {«~,—,e,]}, where

if ;5 € D

if v; ; € Ng,;{D}

if Vi, j-1 € D and Vi, 4 & N(;j [D]

if vij+1 € D, vij-1 € D and v; ; € Ng;[D).

Ip(vij) =

L1

For example, if D = {v1,1,v2,1,v1,3,%1,5,V2,5,v2,7} is a dominating set
of K2 O Py, then its (unique) labelling is illustrated in Figure 1.

For any graph G and dominating set D of GO P, a labelling Ip of a
G-layer Gj satisfies the following two conditions for any v € V(G;):
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Figure 1: The labelling Ip for K2 O P; corresponding to the dominating set
D = {v1,1,v2,1,v1,3, V1,5, V2,5, 2,7}

80|81|82[83|34|35|86
—-»,—»}4—'4— o | e | ]

o | T | e

Table 1: All possible states of K».

- if ip(v) = e, then Ip(u) = ] or Ip(u) = e for every u € Ng, (v);

- if Ip(v) = {, then Ip(u) = e for some u € Ng, (v).

A labelling of V(G;), written as Ip(Gj), is called a state of G. Clearly
the number of valid states depends on the structure of G. For the graph
G = K., there are seven valid states, listed in Table 1 as column vectors
50,81,-+.,8. We write [s]; = lp(v; ;) for the i*! entry in the state s =
Ip(G;).

For a canonical labelling of V(P,,) and the resulting grid representation
of GOP,, state transitions are defined according to which states are allowed
to “follow” each other in the grid representation of the Cartesian product
GO P,. More precisely, a state s in a G-layer G; may be “followed” by a
state ¢ in Gj41 if and only if the following conditions hold for all i:

- if [s]; = —, then [t]; = o;

- if [s]; = o, then [t]; # —;

- if [t]; = «, then [s]; = o.

From these state transitions a digraph G, called the state-transition
graph, is obtained with vertex set the set of all possible states of G, and

st € E(G) if and only if state s may be followed by ¢ for some dominating
set D of GO P,. For the graph G = K, the state-transition graph G(K?)
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is illustrated in Figure 2, with states labelled so,s:,...,ss according to
Table 1.

S0

S6 S

85 S9

S84 S3

Figure 2: The state-transition graph of K.

Special consideration is needed for the first and last G-layers, i.e. G;
and G, corresponding to the end-vertices of the path P,. Let I denote the
set of states (vertices of G) that may be assigned to G, and F be the set
of possible states for G,,. For example, if G = K3, then I = {81,384, 35, 56}
and F = {33, 84, 85, Ss}.

Consider a dominating set D of GO P,. The unique labelling ip as-
sociated with the dominating set D induces a sequence of states ¢ =
(@1, 09,...,0,), where a; is the state associated with Ip(G;),i = 1,2,...,n.
Since a; € V(G) for any i, and o; is followed by a;;;, the state se-
quence ¢ corresponds to a directed walk of length n — 1 in G, starting
with a state in J and ending with a state in F. For example, the dom-
inating set D = {vy,1,v2,1,v1,3, V1,5, V2,5, V2,7} of Kz O Py yields the walk
L: 84, 83, 85, 82, 84, 53, 6.

Conversely, a directed walk in G that starts in I and ends in F, corre-
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sponds to a state sequence that yields a unique dominating set of GOP,.
So there is a one-to-one correspondence between dominating sets of GO P,
and directed walks of length n — 1 in G starting in I and ending in F'.

~ The vertices of G can be weighted according to the number of e-labels
in the state. If the weight w(L) of 2 walk L in G is defined as the sum of the
weights of the states in the walk, then the domination number of GO P, is

given by
4(GOP,) = min{w(L) : L is a directed walk of length n — 1
in G(G) starting in I and ending in F}.

Livingston and Stout [6] discussed an efficient algorithm to find a mini-
mum weight walk in a fixed state-transition graph, thereby determining the
domination number of the Cartesian product GO P, for fixed G. Consider-
ing the graph K O Py, the walk se, 51, 85, 82, %, 51, 85 has minimum weight
4, and the corresponding labelling of V(K320 P;), from which the minimum
dominating set D = {va,1,v1,3,V2,5,v1,7} follows, is shown in Figure 3.

1 I ) h
. >, O, o
Figure 3: The labelling for Ky O P; corresponding to a y-set D =
{02.1,01,3,112,5,01,7}-

The algorithm has a linear time complexity in the order n of the path.
However, Livingston and Stout observed a periodicity in the output of the
algorithm. Once this periodic behaviour occurs, the domination number
is determined without further computation. From this observation they
deduced a constant time complexity for the problem of determining v(G O
P,) for fixed G.

When considering the product G O C,, the algorithm can be modified
easily without changing the complexity. Since the state-transition graph
G simply depends on G and the type of graph product, it is obtained in
exactly the same manner. However, in this case there is a one-to-one cor-
respondence between dominating sets of GO C, and directed circuits of
length n in G. Repeated application of the algorithm can be used to deter-
mine minimum weight directed walks of length n — 1, thereby determining
a minimum weight circuit in G.
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It is unclear whether the algorithm can be modified easily to accommo-
date graphs GO H if H has many vertices of degree greater than 2. We
require a more general framework for determining v(G 0O H).

3 A general framework for (GO H)

In this section we generalize the algorithm by Livingston and Stout [6] in
order to determine (G O H) for any graph H.

Consider the Cartesian product G O H, with the vertices of G and H
denoted by vy, v2,...,v, and uj,us,...,un respectively. Also, let D be a
dominating set of GO H and H an orientation of H. As in Section 2, a
state-transition graph G is constructed with vertex set the set of all possible
states of G. Once again, we write [s]; = Ip(v;;) for the i} entry in the
state s = Ip(Gj).

The arc set of the digraph G is now given by the following condition:
- st € E(G) if and only if for every i: if [s]; = e, then [t]; # —.

Next, we assign a binary colour vector ¢ = (cg,c1,...,cm) to each arc
st in G. This assignment satisfies the following conditions, which hold for
all 5. Let [c]i denote the (k + 1)** entry in the vector.

- [e(st)]o =1 if and only if st € E(G);

- for any ¢ € Noye(s) with [t]; = e, [¢(st)]; = 1 if and only if [s]; = —;

- for any t € Nous(s) with [s]; = e, [c(st)]; =1 if and only if [t]; = «.

For the example G = K3, with corresponding vertex set {sg, s1,... 136}
of G listed in Table 1, there are only seven arcs not in G, namely sgso, 5632,
8580, 8531, 8480, 8481 and s48;. If the colours cp, ¢; and ¢y are viewed as
“no colour”, “blue” and “red” respectively, then

- co(e) = 1 for all e € E(G) (all arcs have the no-colour attribute);

- ¢(e) = (1,1,0) for e = 8085, 3134, 5135, S582, 3553 (the arcs soss, 8134,
8185, s552 and s5s3 have a blue attribute but not red);

- ¢(e) = (1,0,1) for e = 5036, 5284, 5651, S653 (the arcs sgsg, 234, 5681
and sgs3 have a red attribute but not blue);
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- ¢(e) = (1,1,1) for e = 8084,3483 (the arcs s;35 and s5s4 have both a
blue and red attribute).

This state-transition graph G is illustrated in Figure 4. Dashed arcs
have colour vector (1,1,0) (the blue attribute only), dashed-dotted arcs
have colour vector (1,0,1) (the red attribute only), solid arcs have colour
vector (1,1,1) (both the red and blue attribute). The arcs not shown are
in G and have colour vector (1,0,0), while the dotted arcs are not present
in the graph.

Figure 4: The state-transition graph G of Kz. Dashed arcs have colour
vector (1,1,0) (the blue attribute only), dashed-dotted arcs have colour
vector (1,0, 1) (the red attribute only), solid arcs have colour vector (1,1, 1)
(both the red and blue attribute). The arcs not shown are in G and have
colour vector (1,0, 0), while the dotted arcs are not present in the graph.

Let P,Q € {1,2,...,m}. The unique labelling Ip associated with the
dominating set D induces a sequence of states o, 2, ..., o, where a; =
Ip(G;), 5 = 1,2,...,n. This corresponds uniquely to a homomorphism

f: # — G, with f(u;) = a;, satisfying the following condition:
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- if f(u) =s € V(G), [s]i = — for i € P and [s] = — for k € Q, then

for any i € P, [¢(f(wu))); = 1 for some w € Nip(u);
for any k € Q, [¢(f(vw))]x = 1 for some w € Nyyy(u).

For example, for the product K, O H, the homomorphism f : H e
G(K2) has the property that if so is an image under £, then over all arcs from
8p in the image of f (E‘(ﬁ)), there is a blue and a red attribute represented.
If 5, is an image under f, then over all arcs from s; in the image of f (E(ﬁ)),
there is a blue attribute represented, while over all arcs to s; in the image
of f (E(ﬁ)), there is & red attribute represented.

Conversely, a conditional homomorphism f : N G satisfying the
property above corresponds to a state sequence that yields a unique domi-
nating set of GO H. There is a one-to-one correspondence between domi-
nating sets of GO H and conditional homomorphisms f : He G for_s):ome
orientation of H. Denote the set of such homomorphisms by HOM(H, G).
Note that the orientation of H is used only to establish the one-to-one cor-
respondence between the dominating sets of GO H and the state sequence.

Similar to Section 2, the vertices of G can be weighted according to the
number of e-labels in the state. Let the weight w(f (ﬁ)) of the homomor-
phic image of H under f in G be defined as the sum of the weights of the

images, i.e. _
w(f(H) = Y w(f@).
veV(H)

Then the domination number of GO H is given by

(GO H) = min{w(f(H)) : f<HOM(H,¢)}.

For H = P, a canonical labelling of H yields a directed path Hin
which every vertex has in-degree and out-degree at most 1. This sim-
plifies the state-transition graph G, since homomorphisms satisfying the
required property only include arcs with colour vectors (1,0,...,0) and/or
(1,0,...,0,1) (only “no-colour” or both “blue”and “red”arcs in the case of
G = K3). In this case the colour vectors play no role in the correspondence,
and the state-transition graph reduces to the graph defined in Section 2.
The method introduced by Livingston and Stout [6] is a special case of the
general method discussed in this section.
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4 An algorithm for y(GOT)

We illustrate the implementation of this general framework by providing an
algorithm to find the domination number of GOT for any tree T'. We follow
the algorithm format used in [5]. Throughout the following algorithms,
external functions are used in an intuitive manner. These functions are
named so that their use is clear. Let V(T) = {vo,v1,...,Vn-1} and denote
the tree rooted at a vertex v by T,,. The main algorithm GAMMA(), shown
as Algorithm 4.1, starts by constructing the state-transition graph G of G
by way of the function STATEGRAPH(). In addition to the state-transition
graph, this function also returns information about the colour vectors of the
arcs that can be used by all subalgorithms. Let the states (vertices in G)
be denoted sg, 81, .. .,8n—-1. The colour vector of an arc in G is returned by
the function CVECT(). For each state in G, there is an associated incoming
colour requirement vector (a binary vector with entry 1 corresponding to
rows with label “—”). Similarly, an outgoing colour requirement vector is
associated with each state in G, according to the “—” labels in the state.
The incoming colour requirement vector of a vertex in G is returned by
the function INC(), while OUTC() returns the outgoing colour requirement
vector. For a vertex u € V(T,), let T, denote the subtree of T, induced by
u and its descendents.

The algorithm GAMMA() visits the vertices of T, in a reversed breadth-
first-search (BFS) order to construct two N xn matrices, denoted W and P,
one column at a time. The (i+1, j+1)-entry of W is the minimum weight of
a conditional homomorphism ¢, : T\, — G such that ¢,(u) = s;, where u =
v;. The corresponding entry in P contains such a minimum homomorphism
&, restricted to Noys(u), the children of u = v; (for efficiency). Denote this

restricted homomorphism by ¢{”). For each v; € V(T,) and each s; € V(G),
the subalgorithm MINHoOM() is called to determine the (¢ + 1,5 + 1)-entry
in both W and P. This algorithm is shown as Algorithm 4.3.

Since deg;,(v) = 0 for the root v of T, only a subset of the states in
G are valid images for v. The subalgorithm RoOTIMAGELIST(), shown as
Algorithm 4.2, determines this subset F' C V(G). It follows that if v = v; is
the root of T}, then v(GOT') = min,,er W(i+1, j+1). This is done through
the function MIN(), which returns the minimum weight and an image of
v that yields such a weight. The minimum conditional homomorphism
&y : Ty — G can be obtained easily from the appropriate entries in P, and
the minimum dominating set corresponding to ¢, follows directly.
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Algorithm 4.1: GAMMA(G, T, v)
Returns v(G OT) and a minimum dominating set D.
T, is the tree T rooted at vertex v.

STATEGRAPH(), MINHOM(), ROOTIMAGELIST()
BFS(), REVERSE(), MIN(), DOMSET(), MAKEHOM()

comment: {

external {

G — STATEGRAPH(G)
treelist — BFS(T,)
revtreelist «— REVERSE(treelist)

for each u in treelist

for each s in V(G)
do 9ur 6 — MINHOM(T,, G, u, s, W)
do ¢ W(s,u) « g,

P(s,u) — ¢£,°)

F — RoOTIMAGELIST(G)

7, vimg — MIN(W(F, v))

¢y — MAKEHOM(v, vimg, P)
D «~ DoMSET(¢)

return (v, D)

Algorithm 4.2: ROOTIMAGELIST(G)

Returns the set of valid states for the root of a tree.
G is the state-transition graph.

external INC(), EMPTYLIST(), APPEND()

comment: {

list — EMPTYLIST()
for each s in V(G)
do {if INC(G,s) =0
then list — APPEND(list, s)

return (list)
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Algorithm 4.3: MINHoM(T,, G, u, s, W)

Returns the weight of a minimum homomorphism
¢y : Ty, — G as well as qb(c) = ¢u|C(u),

such that ¢, (u) = s.

T, is the tree T rooted at vertex v.

G is the state—transition graph and

W the weight matrix.

OuTC(), ISLEAF(), WEIGHT(), CHILDREN(),

external { LENGTH(), EMPTYHOM(), TUPLE(),
CHILDIMAGELIST(), COLOURCHECK()

comment:

gy +— OO
¢ — EmMPTYHOM()

if ISLEAF(Ty, w)
if OuTC(G,s) =0
then (" ihen gu — WEIGHT(S)
( childlist — CHILDREN(T, u)
k — LENGTH(childlist)
slist «— CHILDIMAGELIST(G, s)
for each X in TUPLE(slist, k)
( if CoLOURCHECK(Ty, G, u, 8, childlist, X)
else 7 gtmp — WEIGHT(S)
for i «— 1 to LENGTH(childlist)
do gtmp « gtmp + W{childlist(s), X (2))
if gtmp < g4

gu — gtmp
then {qs&“)(chudust) e

do then

\ \

return (g, ¢$f))

When considering T 2 P,, this algorithm is the same as the one used by
Livingston and Stout [6] and described in Section 2. Selecting an end-vertex
as the root v of the tree, the reversed BFS ordering simply corresponds to
a canonical labelling of the path ending in v. The set F' contains the valid
images (or final states) of the right-most vertex v in the path.

We now briefly explain the subalgorithm MINHOM() that is used to
determine a single entry in each of the matrices W and P. As input it takes
the rooted tree T, the state-transition graph G, a vertex u € V(T}), a state
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s € V(G) and the weight-matrix W. As mentioned previously, it determines
the minimum weight g, of a conditional homomorphism ¢, : T, — G
such that ¢,(u) = s, and returns this weight and quf) = @u|Nout(u), the
homomorphism ¢, restricted to the set of children of  (if it exists).

If « is a leaf in T, then the algorithm verifies whether s is a valid image
for u, since only states with no outgoing colour requirements are allowed
to be images of leaves. If s is a valid image, g, is set to the weight of s.
Otherwise it is set to some large value, which we denote here by co. If u is

a leaf in T,,, no homomorphism ¢ is returned.

Suppose u is not a leaf in T, and let C(u) denote the set of k chil-
dren of u, i.e. C(u) = Nou(u) and k = deg,,,(u). The subalgorithm
CHILDIMAGELIST() reduces the set of valid images for C(u), and is shown
as Algorithm 4.4. It checksthat a state t € V/(G) is adjacent from s = ¢,,(u)
and that the colour vector of the arc st € E(G) satisfies the incoming
colour requirement of ¢. The algorithm MINHOM() calls this subset of
valid images slist. For every k-tuple X of slist, it is verified by way of
COLOURCHECK() that the corresponding homomorphism C(u) — X is
valid, in terms of the outgoing colour requirement on s = ¢, () and the
additional requirement on the images of leaves. This subalgorithm is shown
as Algorithm 4.5. Lastly, the minimum weight over all valid k-tuples is
determined and returned as the value of g,, with ¢.(f) the corresponding
homomorphism T, — G restricted to C(u).

Algorithm 4.4: CHILDIMAGELIST(G, s)

Returns the set of valid images
comment: ¢ for the children of a vertex mapping to s.
G is the state—transition graph.

external INC(), CvECT(), EMPTYLIST(), APPEND()

list — EMPTYLIST()
for each t in V(G)
do {if (s,t) € E(G) and CVECT(G, s,t) > INC(G, t)
then list — APPEND(list, t)

return (list)
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Algorithm 4.5: COLOURCHECK(T,, G, u, 8, childlist, X)

Returns true if the mapping given by v — s and
comment: { childlist — X is valid for some homomorphism T, — G.
T, is a rooted tree and G is the state-transition graph.

external CVECT(), OUTC(), ORSUM(), ISLEAF(), LENGTH()

vect — 0

for each t in X
do vect — ORSUM(vect, CVECT(G, s,t))

if OuTC(G, 8) > vect
then return ( false )

for i — 1 to LENGTH(childlist)

w « childlist(z)

t— X(3)

if IsLEaF(Ty,w) and not OUTC(G,t) =0
then return ( false )

do

return ( true )

So|31|32|83|84|85|3els7|88
—_a | = | = ]| 2| ||| |
S |=|l=|l=[T]=]-|]|
—_ | = | = | [ ] —_ | =] = |

— | o ° . ° ° 1 1
1 ° . 1 1 1 . '
. Y I - | — 1] e ® 1

Table 2: All possible states of P3, i.e. the vertices of G(Ps).

As an example, consider the tree T with vertces vg,v,...,s, rooted
at vo, as shown in Figure 5. The states in the state-transition graph
G of P; are listed in Table 2 as column vectors. Calling the algorithm
GAMMA(Ps, Ty, o) to determine y(P; OT) yields the information shown in
Table 3. This table shows corresponding entries of the matrices W and P.
The set of valid states for the root v is F = {80, 84, 810, 811, 812, 814, 815, 816}
The images sq, 812 and 516 of vp all yield a minimum weight of 5 for a con-
ditional homomorphism ¢ : Ty, — G, so that y(P3 0T) = 5. For example,
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the image s4 of vp yields ¢ = {vp > 84,01 = 813,03 — 35,3 — 84,Vg
813, Vs — 816, }, shown in Figure 6. The corresponding minimum dominat-
ing set of P30T is shown in Figure 7.

(%] Vg

Us

Figure 5: The tree T rooted at vertex vg4.

Figure 6: A minimum weight conditional homomorphism ¢ : T}, — G.

We briefly discuss the complexity of the algorithm GAMMA(). For a
fixed graph G, the state-transition graph can be constructed in constant
time complexity. A breadth-first search through the tree T, of order n has
complexity O(n?). For each of the n vertices in the tree, each of the N states
is considered, and the subalgorithm MINHOM() called. If the out-degree
of a vertex u in T, is k, then this subalgorithm considers every k-tuple
of a set of at most IV states, possibly looking through all the k weight-
matrix entries corresponding to the children of u. Thus the complexity is
O(nANA+! 4 n2), For a family of trees of bounded maximum degree, this
yields a polynomial time algorithm.
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Vg Vs v3 | v2 v Yo
so oo|—]ool— |3 {vas10} |4 {varsa,vs—su} [4]{var 810} | 6] {v1— s10}
3 Noo|=]ool—12]{va—s11} | 3| {vsr— 812,05 — 816} | 4 {v2— 510} | 5[ {v1 = su}
52 |00 | = |00 | — | 2| {var s1a} | 41 {vs ™ sa,05 — s} | 4| {va— 510} | 5] {vi = s14}
53 |00 | = |00 | = | 2] {var s} | 3] {vs— 812,05 — 516} | 4| {va— s10} | 5] {v1 = su}
se oo = ool = | 2| {var— s1a} | 4] {vs— 81,5 > 813} | 5| {var> 510} | 5 {v1 = s13}
ss |oo|— |oo|— | 2| {varrsis} | 3| {vsr— 54,95 516} | 4] {var— 310} | S {v1 — 815}
56 || oo — ool — | 1[{va— 516} | 3| {vs+ Sa,vs— 816} | 4| {v2—> 510} | 5] {vat—su}
37 oo = | ool = | 2| {va— 814} | 3| {var— sa,v5— 3816} |4 {va—sa} [5|{nm 54}
Ss 0= 0= | 1|{va—s16} | 3] {varo 84,5 — 3516} |4]|{var>s0} |4]|{v1+ soj
89 T =1 1]=]2|{va—s13} | 4| {vs— s, vs =813} [4]|{va= s} |5[{ni— s}
S10 3| - 31-13 '['U,g — 88:} 4 | {vz > sg,v5 — S8} 6 | {vz — s} 7){n— 38}
sull 21=1 2/= |3 {varrse} | 5|{vs— sr,v5> 89} |5|{varssr} |6]{vi—osr}
s2 |00 = |00 = | 2| {varse} | 4| {vsr ss,vs— 89} |5[{var>s9} |5]|{v1+= so}
sia|| 11— 11— |2 {va—se} [4]{va+ s5,95— 39} 4| {va—s5} [ 5] {vi— ss}
sall 21=1 21— |3 |{va— 59} | 4| {vs— se,vs—50} |5]|{var>s6} |6]|{vir se}
sis || 21— 21— |3 {var 513} | 5| {vs—>sa,vs+—=> 313} |[5[{varrss} |6]{vir ss}
sl 11—=1 11— | 2| {var s16} | 4| {vs— s2, 5316} |5|{var—rs2} [S {v1 — s2}

Table 3: The corresponding entries of the matrices W and P used to determine (P30 T).
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Figure 7: A minimum dominating set of P;Q7T.

5 The generalized Cartesian product G @ H

The general framework presented in Section 3 to determine the domina-
tion number of G O H need only be modified slightly to accommodate the
generalized Cartesian product G@H. Let G and H be graphs with ver-
tices labelled vy, vz, ..., vm and uy, us, ..., un respectively, and let 7 be any
permutation of V(G). For convenience we view w € Sy, acting on the sub-
scripts of the vertex labels of G. Also, let D be a dominating set of G @ H
and the mapping Ip : V(G&H) — {—,—,e,]} be defined as in Section 3.
We write [s]; = Ip(v;;) for the i*" entry in the state s = Ip(G;). For
a=12,...,n—1, let G, denote a state-transition graph of G with vertex
set the set of valid states of G, and st € E(G,) if and only if for any i

- if [8],' = e, then [t],ta(i) # —.

Depending on the permutation 7, many of these digraphs G, may be the
same, but for the sake of simplicity they will be considered to be distinct
here. Let N (“)(s) denote the neighbourhood of s in G,. Colour vectors S
for the arcs of G, are defined similar to those in Section 3 according to the
following conditions, which hold for all %:

- [ea(st)lo =1 if and only if st € E(G,);

- for any ¢t € Néﬁ,),(s) with [t]rai) = @, [c,(st)]i = 1 if and only if

8] = —
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- for any t € N{8)(s) with [s); = e, [c,(st)]: = 1 if and only if [t]}ra(;) =

-,

Let H be an acyclic orientation of H such that j > i if uiu; € E(H)
(i.e. all the arcs are forward arcs). The labelling associated with a dom-
inating set D of G @ H induces a sequence of states a1,0z2,...,0n that
corresponds uniquely to a mapping f : V(ﬁ) — V(G), with f(v;) = ai,
satisfying the following:

- if wiu; € E(H), then f(u:)f(u;) € E(Gj—i);
- if fu) =8 € V(G), [s]p = — for p € P and [s]g = — for ¢ € Q,
P,Q € {1,2,...,m}, then
for any p € P, [g;_;(f(u3)f(wi))]p = 1 for some u; € Nin(u:);
for any q € Q, [¢;—;(f(u:)f(u;))]q =1 for some u; € Noue(ui).

Conversely, a mapping f : V(ﬂ) — V(G) satisfying the properties above
corresponds to a state sequence and therefore a unique dominating set of
G @ H. The minimum weight of such a mapping yields the domination
number of the generalized Cartesian product GBH.

Figure 8: A minimum weight mapping ¢ : V(T,) — V(G).

As an example, consider P; @ T, where m = (v1,v2) and T is the tree
with vertex set V(T') = {vo, v1,...,vs}, rooted at vo, as shown in Figure 5.
A slight modification of the algorithm used in Section 4, in accordance with
the above discussion, may be used to determine the domination number of
this generalized Cartesian product (and in fact any product G@T for any
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tree T). The mapping ¢ = {vo — 816,71 > 85,3 810,V3 > Sg, Vg
816,5 > 3} yields a minimum weight of 5, showing that v(P; 8T) = 5.
This mapping and the corresponding minimum dominating set of P & T
are shown in Figures 8 and 9 respectively.

Py

T 0—O0—0=—0 0 ™o

Yo 41 L) U3 Vg Us

Figure 9: A minimum dominating set of P; @ 7.
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