Two Upper Bounds of Prime Cordial Graphs

M. A. Seoud, and M. A. Salim*

Department of Mathematics, Faculty of Science, Ain Shams University

Abbassia, Cairo, Egypt

Abstract

We give an upper bound of the number of the edges of a graph with n vertices to be prime cordial graph, and we improve this upper bound to fit bipartite graphs. Also, we determine all prime cordial graphs of order ≤ 6 .

Introduction

Sundaram, Ponraj, and Somasundaram [3] have introduced the notion of prime cordial labelings.

A prime cordial labeling of a graph G = (V(G), E(G)) with vertex set V(G) is a bijection f from V to $\{1, 2, ..., |V(G)|\}$, such that if each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1.

In [3] Sundaram, Ponraj and Somasundram prove the following graphs are prime cordial: C_n if and only if $n \ge 6$; P_n if and only if n = 3 or 5; bistars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders; $K_{1,n}$ $(n \ odd)$; the graph obtained by subdividing each edge of $K_{1,n}$ if and only if $n \ge 3$; $K_{1,n}$ if n is even and there exists a prime p such that 2p < n + 1 < 3p; and $K_{3,n}$ if n is odd and if there exists a prime p such that 5p < n + 3 < 6p. They also prove that if G is a prime cordial graph of even size, then the graph obtained by identifying the central vertex of $K_{1,n}$ with the vertex of G labeled with 2 is prime cordial, and if G is a prime cordial graph of odd size, then the graph obtained by identifying the central vertex of $K_{1,2n}$ with the vertex of G labeled with 2 is prime cordial.

They further prove that K_n is not prime cordial for 4 < n < 181 and $K_{m,n}$ is not prime cordial for a number of special cases of m and n.

^{*} m.a.seoud@hotmail.com

Here we present an upper bound of the number of the edges of a graph with n vertices to be a prime cordial graph depending on Euler's function, so we can cover a large range of graphs to be not prime cordial graphs. It is shown directly that the graphs K_n , 2 < n < 500 are not prime cordial graphs.

We improve another upper bound fitting bipartite graphs.

So we prove that $K_{i,i}$ is not prime cordial graph, $2 < 2i \le 100$, $K_{i,i+1}$ is not prime cordial graph, $3 < 2i + 1 \le 99,...$, similarly we continue until we reach to $K_{i,i+1}$, which is not a prime cordial graph, $21 < 2i + 11 \le 99$.

1) General upper bound

In the following theorem we give an upper bound for the number of edges of a graph G to be a prime cordial graph.

Theorem 1.1: a necessary condition for a graph G of order n to be a prime cordial graph, is that its number of edges $|E(G)| \le u_1$, where $u_1 = n(n-1) - 2\Phi(n) + 1$, $\Phi(n) = \sum_{i=2}^{n} \phi(i)$,

where
$$\phi$$
 is Euler's function: $\phi: \mathbb{N} \to \mathbb{N}$; $\phi(t) = |\{s \in \mathbb{N}; s < t, \gcd(s, t) = 1\}|$

Proof: we count the all edges could be labeled 1 (so we can count those which could be labeled 0 since the edge which is not labeled 1 is labeled 0)

To count the edges labeled 1 we are going to use Euler's function.

Depending on it, we define another function Φ as follows:

$$\Phi: \mathbb{N} \to \mathbb{N} ; \Phi(n) = \sum_{i=2}^n \phi(i)$$

Now, when G is a graph of order n, then $\Phi(n)$ is exactly the number of all possible edges that could be labeled 1.

On the other hand, the number of possible edges could be labeled 0 is: $\frac{n(n-1)}{2} - \Phi(n).$

By using mathematica e.g., we could make a table representing both of the previous numbers $\Phi(n)$ and $n(n-1)/2 - \Phi(n)$.

We realize that $\Phi(n) > n(n-1)/2 - \Phi(n)$ till the number of vertices is 10000, so a prime cordial graph could maximally contain the following number of edges:

Results 1.2:

- 1) In Diagram 1 we present this upper bound of the number of edges until we reach graphs of order 500 (we can extend it to more than 10000). As a special case all complete graphs K_n are not prime cordial graphs for $2 < n \le 500$.
- 2) In Table 1 (where, $E_n^i = |E(P_n^i)|$) we present the number of edges of the graphs P_n^i (the i^{th} power of the path P_n), i = 2,3,...,12, to be compared with the upper bounds.

Here we can deduce that P_n^i , i = 2,3,...,12 are not prime cordial graphs for the numbers of vertices that correspond to the underlined bold numbers.

Algorithm 1.3: Not prime cordial test (NPCT)

Input: A graph G with n vertices, m edges

Output: An answer "Not a prime cordial graph" or "Probably a prime cordial graph". To question "Is G a prime cordial graph"

Compute u_1 (Theorem 1.1)

If $u_1 < m$ then

Return "Not a prime cordial graph"

Else

Return " Probably a prime cordial graph"

If algorithm NPCT declares "Not a prime cordial graph", then G is certainly not a prime cordial graph. On the other hand, if the algorithm NPCT declares "probably a prime cordial graph", then no proof is provided that G is indeed a prime cordial graph.

Theorem 1.4: Algorithm 1.3 NPCT takes time $O(n^2 \log n)$

Proof: Since computing of the g.c.d of two integers $1 \le a \le b \le n$ takes $O(\log n)$ thus computing u_1 takes $O(n^2 \log n)$. Therefore, NPCT takes time $O(n^2 \log n)$.

Note: In [1] the authors state that the problem of deciding whether a graph G admits a cordial labelling is NP-complete.

Conjecture 1.5: All complete graphs K_n , n > 2 are not prime cordial graphs.

This conjecture is supported by the increased difference between the number of edges of K_n and the upper bound u_1 , when n increases. (see Diagram 1).

2) An upper bound for bipartite Graphs.

In the following we introduce improved numbers of edges of bipartite graphs of order n:

Theorem2.1: a necessary condition for a bipartite graph of order n to be a prime cordial graph is $|E(G)| \le u_2$, where $u_2 = 2\sum_{p_i \le \lfloor \frac{n}{2} \rfloor} m(p_i) + 1$ where for a prime number p, m is a function which is defined as follows:

$$m: \mathbb{N} \to \mathbb{N}, m(p) = \left\lfloor \frac{n}{2p} \right\rfloor \times \left\lfloor \frac{n}{2p} \right\rfloor, n = |V(G)|.$$

Proof: We count all edges could be labeled 0 as follows:

Let the number of vertices be n. The number of the multiples of each prime number $p \leq \left\lfloor \frac{n}{2} \right\rfloor$, which lie between 1 and n, is $\left\lfloor \frac{n}{p} \right\rfloor$. The best way in which we can get maximum number of edges labeled 0 is obtained by distributing those labels equally on each of the partite sets, to get the number: $\left\lfloor \frac{n}{2p} \right\rfloor \times \left\lceil \frac{n}{2p} \right\rceil$, which is the maximum number of edges could be labeled 0 using the multiples of the prime $p \leq \left\lfloor \frac{n}{2} \right\rfloor$, which lie between 1 and n

So, let us define the following function:

$$m: \mathbb{N} \to \mathbb{N}$$

$$m(p) = \left\lfloor \frac{n}{2p} \right\rfloor \times \left\lceil \frac{n}{2p} \right\rceil, n = |V(G)|.$$

Summing the values of this function applied on all primes $\leq \lfloor \frac{n}{2} \rfloor$ we get the maximum number of edges could be labeled 0 in a bipartite graph of n vertices.

So, a prime cordial bipartite graph could contain at most $2\sum_{p_i \le \lfloor \frac{n}{2} \rfloor} m(p_i) + 1$, edges, where n = |V(G)|

We calculate those numbers for bipartite graphs containing 100 vertices, (we can extend it for 10000), so we get the following results:

Results 2.2:

 $K_{l,l+1}$ is not prime cordial graph, $2 < 2i \le 100$, $K_{l,l+1}$ is not prime cordial graph, $3 < 2i + 1 \le 99$, $K_{l,l+2}$ is not prime cordial graph, $4 < 2i + 2 \le 100$, $K_{l,l+3}$ is not prime cordial graph, $5 \le 2i + 3 \le 99$, $K_{l,l+4}$ is not prime cordial graph, $6 < 2i + 4 \le 100$,

 $K_{l,l+5}$ is not prime cordial graph, $7 < 2i + 5 \le 99$, $K_{l,l+6}$ is not prime cordial graph, $12 < 2i + 6 \le 100$, $K_{l,l+7}$ is not prime cordial graph, $11 < 2i + 7 \le 99$, $K_{l,l+8}$ is not prime cordial graph, $18 < 2i + 8 \le 100$, $K_{l,l+9}$ is not prime cordial graph, $15 < 2i + 9 \le 99$, $K_{l,l+10}$ is not prime cordial graph, $24 < 2i + 10 \le 100$, $K_{l,l+11}$ is not prime cordial graph, $21 < 2i + 11 \le 99$.

Conjecture 2.3: All these bipartite graphs are not prime cordial if the orders of the graphs are greater than 100.

This conjecture is supported by the increased difference between the number of edges of these graphs and the upper bound u_2 , when the orders of theses graphs increase. (see Diagrams 2 and 3).

3) Prime cordial graphs of order ≤ 6 .

Let G(n, m) denote all graphs with n vertices and m edges.

Theorem 3.1: Among all graphs of order ≤ 6 [2], only the following graphs are not prime cordial:

- 1) $G(3, |E(G)| \ge 2)$, $G(4 \text{ or } 5, |E(G)| \ge 4)$, $G(6, |E(G)| \ge 10)$,
- 2) $K_{2,4}, K_{3,3}$,
- 3) The following graph:

Proof:

- 1) The graphs mentioned in 1) are not prime cordial by *Theorem 1.1*.
- 2) The graphs mentioned in 2) are not prime cordial by *Theorem 2.1*.
- 3) The graph mentioned in 3) contains 8 edges so it should contain 4 of them to be labeled 0, but to achieve this, the vertex labeled 6 must be adjacent to each of the labels: 2,3 and 4, i.e. the vertex labeled 6 is of degree at least 3, also the two vertices which are labeled 2 and 4 must be adjacent. Here we realize that whatever the vertex labeled 6 is, it is not possible for the vertices labeled 2 and 4 to be adjacent.

All the remaining graphs of order ≤ 6 [2] are prime cordial graph (it is easy to label them as prime cordial graphs).

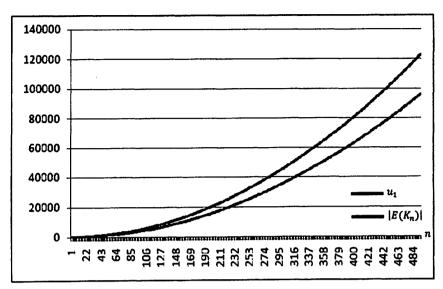


Diagram 1: The first upper bound compared with the maximum number of edges in complete graphs until graphs of order 500

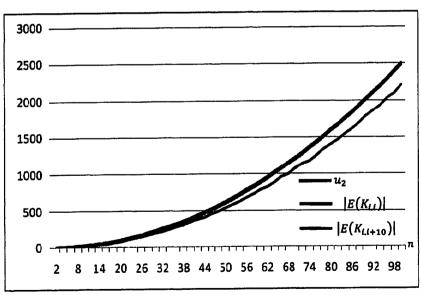


Diagram 2: The second upper bound compared with the maximum number of edges in complete bipartite graphs until graphs of order 100

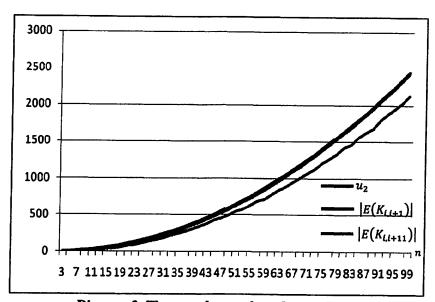


Diagram 3: The second upper bound compared with the maximum number of edges in complete bipartite graphs until graphs of order 99

Table 1: a table giving the number of edges of p_n^i compared with u_1

E_n^{12}											99	78	8	102	114	126	138	150	162	174	186	198	210	222	-	246	258	270	282	294	306	318	-	342
E_n^{11}										55	99	77	8	66	110	121	132	143	154	165	176	187	198	209	220	231	242	253	264	275	286	297	308	319
E_n^{10}									45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215	225	235	245	255	265	275	285	295
E_n^9								36	45	54	63	72	81	90	66	108	117	126	135	144	153	162	171	180	189	198	207	216	225	234	243	252	261	270
E_n^8							28	36	44	52	09	89	76	88	92	100	108	116	124	132	140	148	156	164	172	180	188	196	204	212	220	228	236	244
E_n^7						21	28	32	42	49	26	63	20	77	84	91	86	105	112	119	126	133	140	147	154	161	168	175	182	189	196	203	210	217
E_n^6					15	21	27	33	33	45	51	57	83	69	75	81	87	93	66	105	111	117	123	129	135	141	147	153	159	165	171	177	183	189
E_n^5				10	15	20	25	30	35	40	45	20	55	09	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160
E_n^4			91	10	14	18	22	26	30	34	38	42	46	20	54	58	62	99	70	74	78	82	86	90	94	86	102	106	110	114	118	122	126	130
E_n^3		κı	9	6	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	09	63	99	69	72	75	78	81	84	87	90	93	96	66
E_n^2	٦	ന	201	7	6	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59	61	63	65	19
u_1	1	1	3	3	6	6	15	19	29	29	43	43	57	69	83	83	105	105	127	143	165	165	195	203	229	245	275	275	317	317	347	371	405	425
n	2	3	4	5	9	7	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

Acknowledgment: The authors are grateful to Dr. H. Bahig for his participating in calculating the complexity.

References:

- [1] N. Cairnie and K. Edwards, The computational complexity of cordial and equitable labelling, Discrete Mathematics 216(2000) 29-34.
- [2] F. Harary, Graph theory, (Addison Wesley, Reading, Massachusetts. 1969).
- [3] M. Sundaram, R. Ponraj, and S. Somasundram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27 (2005) 373-390.