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Abstract

In this paper, we construct inequivalent Hadamard matrices based
on Yang multiplication methods for base sequences which are ob-
tained from near normal sequences. This has been achieved by
employing various Unix tools and sophisticated techniques, such as
metaprogramming. In addition, we present a classification for near
normal sequences of length 4n 4 1, for n < 11 and some of these for
n = 12,13, 14 and 15, taking into account previously known results.
Finally, we improve several constructive lower bounds for inequiva-
lent Hadamard matrices of large orders.
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1 Introduction

Let z, ..., ; be commuting indeterminates. An orthogonal design X of
order n and type (s1, .. ., 8:) denoted OD(n; s4,...,8t), where sy, ..., s; are
positive integers, is a matrix of order n with entries from {0,xzy,..., %z},
such that

t
XXt = (Z s;z?) I,
i=1

where Xt denotes the transpose of X and I, denotes the identity matrix of
order n. Orthogonal designs are used in Combinatorics, Statistics, Coding
Theory, Telecommunications and other areas. For more details on orthog-
onal designs see [5, 16] and on Hadamard matrices see [3, 17).

Given the sequence A = (a1, ...,ans) of length n the non-periodic auto-
correlation function N4(s) (abbreviated as NPAF), is defined as

n—s

Na(s) = Zaiai+s, s=0,1,...,n—1. (1)

i=1

Given A as above of length n, the periodic autocorrelation function
P4(s) (abbreviated as PAF) is defined, reducing i + s modulo 7, as

n
PA(s)=Zaia.-+a, s=0,1,...,n—-1, 2)

i=1

The concepts of the periodic (PAF) and non-periodic (NPAF) autocor-
relation functions are thoroughly described in [8]. The reversed sequence A*

of A is defined as (ay, . ..,a1). For given sequences A = (a1,4a2,...,8m+1)
and C = (c1,¢2,. - -,Cm), the interleaved sequence A/C of A and C is de-
fined as A/C = (@1,€1,02,€2,. . -, 8m; Cm, Cm+1)-

2 Classification of near normal sequences

Definition 1 A quadruple (E,F;G,H) of (0,%1) sequences is a set of
near normal sequences for length n = 4m + 1 (abbreviated as NNS(n)) if
the following conditions are satisfied.

1. E = (1,X/Om-1), F = (Y/Om-1) where X and Y are (1,-1) se-
quences of length m and Opm_1 is the sequence of zeros of length m—1,
i.e., E and F are respectively of lengths 2m and 2m—1; G and H are
(0, £1) sequences of length 2m, such that G+ H is a (1, —1) sequence
of length 2m.

2. Ng(s) + Nr(s) + Ng(s) + Ng(s)=0,s=1,...,2m - 1.
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Remark 1 The sequences G and H of this definition are quasi-symmetric,
i.e., if gr =0, then gom41—x = 0 and also if hy = 0, then homy1_k = 0.

Definition 2 Two sets of near normal sequences NNS(n), (E,F;G,H)
and (E',F';G', H'), are said to be equivalent if one can be obtained from
the other through the following isomorphic transformations:

(i) E'=FE or —-E, 8= 8,5* or =S for S = F,G and H;

(i) ' = S for S = E and F, G' = G, + Hy and H' = H, + Gy,
where Gy, H, and Gy, Hy. are the symmetric and skew parts of G, H
respectively;

(i) §' =S¢ or SO for S = E, F,G and H, where S® and S° indicate that
S¢ and S°, are obtained from S by changing the signs of even and
odd subscripts, respectively;

(iv) =8 for S=FE and F, G' = H and H' = G;

(v) E',F',G' and H' are obtainable by any number of combinations of

(i), (i5), (i) and (iv).

Some sets of near normal sequences are given in [10] and [21]. We now
present a complete classification of near normal sequences NNS(n), n =
4m+1. Table 1, lists I(n) number of inequivalent NNS(n) for 1 < m < 11,
ie. 5<n<45. ‘
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m 1 6|7 8]0 [10]11
n || 5 25 | 29 | 33 | 37 (41 | 45
Im) |12 238 (1411|2420 1832

©
—
w
—
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Table 1: List of inequivalent NN.S(n) for 5 < n < 45.

Sets of near normal sequences NNS(n), n = 4m + 1 are also found for
m = 12,13,14 and 15, i.e. n = 49, 53,57 and 61.

m [12] 13 ] 14 ] 15
n || 49 | 53 | 57 | 61
Sn)[[12] 2 | 3| 4

Table 2: Sets of NNS(n) for 49 < n < 61.

All inequivalent NN S(n) for 5 < n < 45 are accessible online off the web
page of C. Koukouvinos, http://www.math.ntua. gr/~ckoukouv/nnseq. htm.
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3 Metaprogramming for near normal sequences

A prolific method for constructing orthogonal designs and Hadamard ma-
trices uses T-matrices or T-sequences. This method rely on Base sequences
and Yang numbers as its main characteristics. Yang’s multiplications The-
orems on T-sequences use suitable sequences, which are derived from Base
sequences of small length, to produce T-sequences of larger length. The
aforementioned Base sequences can be produced, among other methods,
from near normal sequences. Thus, we are able to construct T-matrices
of large orders and with the aid of the Goethals-Seidel array, which is an
orthogonal design of special interest, we generate Hadamard matrices in
various orders. The structure and the number of steps encountered for an
interpretation of these methods in terms of a computer implementation,
shows that it is an ideal case for metaprogramming.

3.1 Yang multiplication methods

We give the necessary definitions needed for establishing the theoretical
background of Yang’s multiplications Theorems on T-sequences. For fur-
ther details on sequences with zero autocorrelation and multiplication meth-
ods for T-sequences we refer the interest reader to (6, 8] and [9, 10, 18, 19,

20).

Definition 3 Four (—1,1) sequences A, B, C, D of lengths n+p,n+p,n,n
are Base sequences, (abbreviated as BS(n + p,n)) if:
s=1,...,n—-1

1. Na(s) + Np(s) + Nc(s) + Np(s) ={ 2;+2p, s=0

2. Ng(s)+ Np(s)=0,8s=n,...,n+p—1

whereas with Nx we denote the non-periodic autocorrelation function of a
sequence X.

We give now a reformulation of a well-known result ([10, 21]), which
exhibits the relation of Base sequences to near normal sequences and is
crucial to our implementation.

Theorem 1 Let n = 4m + 1. Then (E,F;G,H) with E = (1,X/Om-1)
and F = (Y/Om-1), are near normal sequences, if and only if the (1,-1)
sequences A = (1,X/Y), B=(1,X/-Y),C=G+H,D=G-H of
lengths 2m + 1, 2m + 1, 2m, 2m, respectively, are Base sequences.

Definition 4 If A, B, C, D are Base sequences of lengths n+1,n+1,n,n
then the sequences (3(A + B)), (3(A— B)), (3(C+ D)), (3(C — D)) are
called suitable or Yang sequences.
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Definition 5 Four sequences X, Y, Z, W of length n with entries (—1,0,1)
are called T-sequences, (abbreviated as TS(n)) if:

L |z + yi| + |zs| + |wi] =1, i =1,...,n.

2. Nx(s) + Ny(s) + Nz(s) + Nw(s) = { > =l
Definition 8 Four circulant matrices Ty, Ty, Ts, Ty of order t with entries
(-1,0,1) are called T-matrices if:

1. T;%T; =0, # j ( * denotes the Hadamard product)
2. T]T]T + TzTg‘ + TsTg‘ + T4-T4T = tl;.

We recall that T-sequences always yield T-matrices, since a T-sequence
of length n can be used as the first row of a circulant matrix which results
in a T-matrix of order n, but not conversely.

In a series of papers in 1982 and 1983, Yang [18, 19, 20] found that
Base sequences can be multiplied by 3,7, 13 and 2g + 1, where g is a Golay
number: g = 2°10%26¢, a,b, ¢ > 0. These are instances of what are termed
Yang numbers. The results of these papers on multiplication methods
can be restated as follows; If there is 2 multiplication method which uses
suitable sequences of lengths n + p,n + p,n,n to produce T-sequences of
length y(2n + p), then y is called a Yang number. The existence of Yang
numbers is given in the following proposition [8], see also [9, 17, 21].

Proposition 1 Yang numbers are known for ye{3,5,7,..., 33,37, 39, 41, 45,
49,51,53,57,59, 61,65, 81} and all y = 29 +1 > 81, when g is a Golay
number.

1t is well known that if there exists T-sequences of length ¢ and Williamson
matrices of order w then there exists a Hadamard matrix of order 4tw.

Let B;, i = 1,2,3,4 be circulant matrices of order n with entries in
{0, £z, £z,, ..., £z;} satisfying

4 k
> B.BT = (siz?)I,.
i=1

i=l
Then, the Goethals-Seidel array

B, B:R B3R B4R
-BbR B, BfR -BIR
-BsR -BfR B, BIR |’
-BsR BIR -BIR B

G=
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where R is the back-diagonal identity matrix, is an OD(4n; 51,82, ..., Sk)
(see [5, page 107]).

If there are four sequences A;, Az, A3, A4 of length n with entries from
{0, £z, £z, +z3, £x4} With zero periodic or non-periodic autocorrelation
function, then these sequences can be used as the first rows of circulant
matrices B; = circ(4;), i = 1,2,3,4, which can be used in the Goethals-
Seidel array to form an OD(4n; s, s2, 33, 84)-

The following theorem given in [2), deals with the case of trivial Williamson
matrices and was taken into account in our Maple implementation.

Theorem 2 Suppose there exist circulant T-matrices (or eguivalent T-
sequences) T;, i =1,...,4 of order n. Let a,b,c,d be commuting variables.
Then the matrices,

A=aT, +bT3 + T3 +dT;
B=-bTy+alp+dI3—cT}
C= —ch - dT2 + aTa + bT4
D = —dTy + cTy - bT3 + aT;

can be used in the Goethals-Seidel array to obtain an OD(4n;n,n,n,n) and
an Hadamard matriz of order 4n.

Remark 2 It is obvious that a Hadamard matrix of order 4n is obtained
if we set @ = b=c = d =1 in the previous theorem.

3.2 Implementation

Metaprogramming is not a new concept, and has been successfully em-
ployed before in sequences with zero non-periodic autocorrelation function
[7]. Before continuing we will list some uses of metaprogramming:

e Generation - metacode that generates code
¢ Transformation - metacode that modifies code (similar to generation)
o Translation - transformation into another language

e Analysis - metacode that analyzes code

We wrote a metaprogram that satisfies the previous principles and ac-
cepts as input an html file with near normal sequences and produces the
individual near normal sequences files that produce a Maple file which is
executed and generate the corresponding Hadamard matrices for specific
Yang numbers. The metaprogram is using bash shell as its metalanguage
whilst the object-language that each program is manipulated is the Com-
puter Algebra System, Maple. We expanded the YangMultiplications

110



Maple package, first given in [7), for the purposes of our metaprogram. In .
addition, a sed/awk script is used to transform each Hadamard matrix in a
format suitable for inclusion in the Magma Hadamard matrices database.
Some of the principal difficulties in the design of this program lie in the
dynamic production of the values of the variables that capture the charac-
teristics of the near normal sequences in the input file, i.e. the length of
each NNS(n), the number of sets of NN.S(n) for a specific n and the list
of different variables.

The file that contains the sets of NNS(n) can be found in C. Koukouvi-
nos web page at http://www.math.ntua.gr/~ckoukouv/nnseq.htm. The
Computer Algebra System, Maple provides an excellent way for performing
symbolic and numerical computations, especially when we have to interpret
methods that are based on combinatorial mathematics.

We implemented the Yang multiplication methods for Base sequences in
Maple, in order to achieve the best possible flexibility in terms of portability
with other Computational Algebra Systems, such as Magma. We wrote a
Maple package, that contains the necessary routines for the generation of
Hadamard matrices from near normal sequences. An overview of the main
routines is given below.

The Maple procedures

NearNormalSeqs2BaseSeqs This routine accepts as input near normal
sequences of length 2n+1 and gives output Base sequences of lengths
n+1,7+1,n,n. It exhibits the relation of near normal sequences to
Base sequences and is an interpretation of Theorem 1.

BaseSeqs2YangSeqs This routine accepts as input Base sequences of
lengths n + 1,7 4+ 1,7, n and gives output suitable (Yang) sequences
of lengths n + 1,n + 1,n,n. This is an auxiliary routine and is used
as an intermediate step to transform the Base sequences to Yang
sequences.

YangSeqs2TSeqs This routine accepts as input suitable (Yang) sequences
of lengths 7+ 1,n + 1,n,n and the Yang number y and gives output
T-sequences of length y(2n + 1). Current implementation includes
the multiplication methods for y = 3,5,7,9, 11. This routine is used
to produce T-sequences of larger length derived from Yang sequences.

TSeqs2Hadamard This routine accepts as input T-sequences of length
n and gives as output a Hadamard matrix of order 4n. T-sequences
of length n are used to form T-matrices of order n, which are then
plugged-in the Goethals-Seidel array to produce an OD(4n;n, n,n, n)
and subsequently using Remark 2, we construct a Hadamard matrix
of order 4n.
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Furthermore, we give the Maple source code of the routine which is called
in the bash script and it is responsible for the generation of Hadamard
matrices from near normal sequences.

YangMultiplications[YangMultiplication2HM] := proc(nnl,nn2,nn3,nn4,y)
local HM, b1, b2, b3, b4, bsyi, bsy2, bsy3, bsy4, X1, Y1, Z1, Wi, ot;

b1, b2, b3, b4 := NearNormalSeqs2BaseSeqs(nni,nn2,nn3,nnd);
bsyl, bsy2, bsy3, bsy4 := BaseSegqs2YangSeqs(bl,b2,b3,bd);
X1, Y1, 21, Wi := YangSeqs2‘l‘Seqs(bsy1,bsy2,bsy3,bsy4,y);
ot := nops(X1);

HM := Matrix(TSeqs2Hadamard(X1,Y1,Z1,Wi,ot));

RETURN (HM) ;

énd proc;

4 Results

We executed the metaprogram for all available near normal sequences,
NNS(n) given in section 2., and generated the corresponding Hadamard
matrices of order 4yn, for each y = 3,5,7,9, 11 whereas y is a Yang number.
The smallest Hadamard matrix constructed is of order 60, while the largest
Hadamard matrix constructed is of order 2684. The whole database of the
generated Hadamard matrices in Magma format is available on request.

Furthermore, we conducted a search in our database for inequivalent
Hadamard matrices for orders ranging from 60 to 1140, using the 4-profile
criterion as implemented in Magma [1], to decide whether these Hadamard
matrices are inequivalent. The results of this search are given in the fol-
lowing table; We denote with N, the number of Hadamard matrices we
constructed from near normal sequences, while with IN, we denote the
number of inequivalent Hadamard matrices found. We denote with n the
order of the corresponding Hadamard matrices.

From the computational results presented in the previous table we con-
clude the following remark.

Remark 3 We note that all Hadamard matrices that are constructed using
Yang multiplication methods on near normal sequences are inequivalent,
since for each order we found that the corresponding 4-profiles are different.

In addition, one could check these Hadamard matrices for inequivalence,
using the graph isomorphism criterion, which is more time consuming 1,
14].
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n Na | IN, n Np | INg n Np | INgy n Np | IN,

60 1 1 100 1 1 108 2 2 140 1 1
156 2 2 180 3 3 204 3 3 220 1 1
252 10 10 260 2 2 300 14 14 324 2 2
340 3 3 348 11 11 364 2 2 396 26 26
420 8 8 444 20 20 468 2 2 476 3 3
492 18 18 500 14 14 540 32 32 572 2 2
580 11 11 588 20 20 612 3 3 636 2 2
660 23 23 684 3 3 700 14 14 732 4 4

740 20 20 748 3 3 756 8 8 812 11 11
820 18 18 900 45 45 924 31 31 980 12 12
1036 | 20 20 1044 11 11 1060 2 2 1100 14 14
1140 3 3

Table 3: Inequivalent Hadamard matrices from near normal sequences.

4.1 New constructive lower bounds for inequivalent
Hadamard matrices of large orders

We compared our results on inequivalent Hadamard matrices from near
normal sequences given in the previous section with those given in [7], and
concluded the following remark.

Remark 4 All Hadamard matrices constructed from near normal sequences
are inequivalent with the Hadamard matrices constructed from base se-
quences for the following orders, n = 108, 156, 180, 204, 220, 252, 260, 300, 324,
340, 348, 364, 396, 420, 444, 468, 476, 492, 500, 540, 572580, 588, 612, 636, 660,
684, 700, 732, 740, 748, 756, 812, 820, 900, 924, 980, 1036, 1044, 1060, 1100, 1140,
since for each order we found that the corresponding 4-profiles are different.

Thus, we establish new constructive lower bounds for inequivalent Hadamard
matrices of large orders, by summing the numbers of inequivalent matrices
given in previous section and those given in (7).

The complete classification for Hadamard matrices of order n is well
known for n = 0 (mod 4), n < 28. For n = 32,36 there are at least
3,578,006 and 4, 745, 357 inequivalent Hadamard matrices respectively, see
[15]. There are also available other lower bounds on the number of inequiv-
alent Hadamard matrices for various orders, see [4]. On the other hand,
there are some theoretical results which provide huge lower bounds, see
11, 12, 13).

However, we believe that our constructive lower bounds on the num-
ber of inequivalent Hadamard matrices, which are presented in this section
have value since these are coming from base and near normal sequences
on Yang multiplication methods, one of the most powerful construction for
Hadamard matrices. As already noted, this task has been accomplished
by employing various Unix tools and sophisticated techniques, such as
metaprogramming.
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