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Let G = (V, E) be a finite connected simple graph with vertex set V, edge
set E and [V| = n. The complement graph of G is denoted G. The
subgraph induced by a subset A C V in G is the graph G[A] = (A, E,)
where Eq = {(z,y) € E/ z,y € A}. The neighbourhood of a vertex v
in X C V is the set N(v,X) of its adjacent vertices in X and its degree
in X is d(v, X) = |[N(v, X)|. If X = V we simply write N(v) and d(v),
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Abstract

The threshold dimension of a graph is the minimum number of
threshold subgraphs needed to cover its edges. In this work we
present a new characterization of split-permutation graphs and prove
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respectively. N(v) denotes the set of neighbours of v in G. If two vertices
u and v are adjacent we say that u sees v, otherwise u misses v. A subset
K of V is a cligue if it induces a complete subgraph in G. A stable set in
G is a subset of pairwise non-adjacent vertices. The stability number o(G)
of a graph G is the size of a maximum stable set of G and the cliqgue cover
number k(G) is the size of a minimum clique partition of G.

G is a comparability graph if it admits a transitive orientation of its
edges. G is co-comparability if its complement graph is a comparability
graph. Graphs that are both comparability and co-comparability are per-
mutation graphs. G is a split graph if its vertex set can be partitioned into a
stable set S and a clique K. A split graph is denoted by G = (SUK, E) [5].

G is a threshold graph if N(z) € N(y) U {y} or N(y) € N(z) U {z} for
any pair of vertices z and y. They have applications in the aggregation
of inequalities in 0-1 programming [1}, in the synchronization of parallel
processes [11] and in Guttman scales in psychology [2]. Every threshold
graph is a split-permutation graph [4]. For a unified approach on threshold
graphs see [7].

The threshold dimension t(G) of a graph G is the minimum number of
threshold subgraphs of G whose edge union is G. Graphs having threshold
dimension 2 are called 2-threshold graphs. Yannakakis [14] shows that for
any fixed k > 3 the problem of deciding whether ¢(G) < k is NP-complete. '
For k = 1 the problem can be solved in O(n?) time [1] and for k = 2 the
problem was solved by Raschle and Simon [12] in O(n?) time. They build
a conflict graph G* which represents the edges of G that induce one of the
forbidden configurations for threshold graphs. They prove that if G* is
bipartite then G is a 2-threshold graph. Sterbini and Raschle [13] present
an O(n3) time recognition algorithm of threshold dimension 2 graphs using
a geometrical representation.

A related problem is Min Threshold Coloring that aims to cover the ver-
tices of a given graph by a minimum number of threshold graphs. Demange
et al. [3] apply it to problems in robotics and prove that this problem is
NP-hard in permutation graphs.

In this work we prove that a split-permutation graph is either a thresh-
old graph or a 2-threshold graph. In section 2 we present a structural
characterization of split-permutation graphs and we show that threshold
graphs are precisely those split-permutation graphs that do not contain
any induced P;. In section 3 we prove that the threshold dimension of this
class of graphs is one or two. A similar result was presented in [9] using
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forbidden characterizations. Here we present an O(n?) time algorithm that
identifies the threshold subgraphs that cover the original graph. A con-
sequence of this result is a structural characterization of threshold graphs
that can be used to solve difficult problems as it was done in [10].

2 Split-permutation graphs

Foldes and Hammer (4] show that G is a split graph if and only if G contains
no induced 2K3,Cy or Cs. They additionally prove that a split graph is
also a comparability graph if and only if G does not contain an induced
subgraph isomorphic to G1,G; or G3, shown in Figure 1. Thus, G is a
split-comparability graph if it contains no induced subgraph isomorphic to
any of the graphs of the family Fi = {2K;, Cy, Cs, Gy, G1, Gs ).

Theorem 1 G is a split-permutation graph if and only if G does not con-
tain an induced subgraph isomorphic to any of the graphs of Fy = Fy U{Gs}.

Proof: We can obtain the forbidden induced subgraphs for a split-permu-
tation graph as the union of F; and the set of their complement graphs.
For each graph of F} its complement graph is already included in F, with
the exception of G3. Thus, we only need to add G3 and the result follows.
|

Corollary 1 A split-comparability graph is a permutation graph if and only
if it contains no induced subgraph isomorphic to Gs.

Chvétal and Hammer [1] show that G is a threshold graph if and only
if G has no induced 2K, P, or C,.

W JA < o

C( C}‘

Figure 1: Forbidden induced subgraphs of split-permutation graphs.

Lemma 1 A split graph G is a threshold graph if and only if G contains
no induced subgraph isomorphic to Py.
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In fact, a split graph contains no induced 2K,,Cj or Cs. If it is also a
threshold graph, it cannot contain an induced P4. Thus, Cs is redundant
for 2 minimal family of forbidden induced subgraphs.

The following characterization of split-comparability graphs, presented
in [8], is based on a partition of a maximum clique. For a total order < of
V1,02,. ..,V let [v;,v5] = {vx / vi < v < v;} be the segment with v; and
v; as ends.

Lemma 2 A split graph G = (SUK, E) is a comparability graph iff K can
be totally ordered vi < va < ... < v, and partitioned into three (possibly
empty) segments K, = [v1,vp], Kq = [vg,vr] and Ky = K\ (Kp U K,) such
that N(8) has one of the following forms for every vertez s € S:

i) [v1,v) fori<p
i) [vj,vr) forg<j<r
i) [v1, v}V [vj,vr] fori<pandgq Svj <r.

Note that K is the set of vertices of K that see no vertex in . This
partition of K induces a partition of S into three sets: Sp, S and S;. Ver-
tices of S, see only vertices of K, and their neighbourhoods have the form
(i). Similarly, vertices of S, see only vertices of K, and their neighbour-
hoods have the form (¢i). On the other hand, vertices of S; see vertices of
both K, and K, and their neighbourhoods have the form (iii).

Given a split graph G = (S U K, E), define the graph Hg with vertex
set S. There is an edge (z,y) in Hg if in G we have that N(z) C N(y) or
N(y) € N(z). In this case we say that x and y are comparable. It is easy to
see that Hg is a comparability graph when G is a split-permutation graph.
In fact, we can orient every edge (z,y) of Hg from z to y if N(z) C N(y),
otherwise orient it from y to x. This orientation is transitive.

Theorem 2 A split-comparability graph G = (SU K, E) is a permutation
graph iff S can be partitioned into S1 and Sy, and each subset can be totally
ordered such that s; < s; if N(8;) C N(s;) for si,8; € S1 or 54,85 € Ss.

Proof:

(If part) Let G be a split-comparability graph. Order S; = {s1,82,...,8a}
and Sy = {Sa+1,8a+2,.++, 87} such that 81 <s3 < ... <8, and sy <...<
Sa42 < Sa+1- Therefore Sy = [s1,5,] and Sz = [s£)8a+1)-
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By the self-complementary property of split graphs, G = (SU K, E) is
also a split graph. Orient the edges of the clique induced by S in G such
that (s;, s;) is directed from s; to s; if s;,8; € Sy and s; < s; in G or if
8i,8; € 82 and s; > s;. Edges with one endpoint in S; and the other in Ss
are oriented from the vertex of S; to the vertex of S,.

Edges (v, s) of G with v € K are oriented from s to v if s € 5; and from
v to s otherwise. Clearly this orientation is transitive. In fact, we have
that in G every vertex v € K is such that N(v,S) = (86415 8a] U[Sd—1, Sa+1]
where sp4 is the first vertex of S; that sees v and sq4_; is the first vertex
of S that is adjacent to v. Thus, N(v) = [s, 8] U [sf, 4] with one of
these segments possibly empty. See Figure 2 (for a better understanding it
doesn’t contain all the edges).

Sl SZ

8§71 <852<... <5p < 8$p+1<... <8, sa+,>...>sd.,>sd>...>sf
L L4

A

§) < 82<...< 55 <Sps7<... <8, Sa41> . >80.1>84> . >S)

Figure 2: A split-comparability graph G and its complement graph G.
Vertices inside the oval form a clique.

(Only if part) Let G = (S U K, E) be a split-permutation graph with K
ordered v; < w2 < ... < vy, according to Lemma 2. Consider the graph
Hg with vertex set S as defined before. Hg is a perfect graph because it
is a comparability graph. So the clique cover number k(Hg) equals the
stability number a(Hg).
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We claim that s(Hg) < 2. Otherwise, a(Hg) > 3 and this implies
the existence of an induced subgraph isomorphic to G3 in G. In fact, let
N(s) = [v1,vs]U[ws,vr] for s € S. If s € S, or s € Sy, one of these segments
is empty. If a(Hg) > 3, there are three incomparable vertices z,y,z € S
such that at most one of them may belong to S, and at most one of them
may be in S;. Suppose that v, < v, < v; and wy < w, < wz. Then
wz,wy ¢ N(z), vz,v; ¢ N(y) and vz, wy ¢ N(z). Thus, vz, vz, wy, wz, T,y
and z induce a subgraph isomorphic to Gs in G. A contradiction, because
G is a permutation graph.

Since s(Hg) < 2, let S1,52 C S be the sets of vertices that induce the
cliques that cover Hg. Clearly, S; and Sz are the required partition of 5.8

Figure 3 shows a split-permutation graph characterized by the above
theorem.

Figure 3: A split-permutation graph. Vertices inside the oval form a clique.

Observe that S, as well as S, induces a clique in Hg. Thus, each vertex
of smallest degree of Sy, is a source in Hg. Analogously for Sg. Also note
that in a split-permutation graph, each vertex of S; must be comparable
to all vertices of one of these two subsets but to some vertices of the other
one. However, a vertex of S; may be comparable to all vertices of both Sp
and S,. This implies that in Hg, a vertex of S; cannot partially see both
Sp and Sg.
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Corollary 2 If G is a split-permutation graph then Hg, the complement
graph of Hg, is bipartite with bipartition (S, Ss).

Proof: The result follows directly from Theorem 2.0

3 Threshold dimension of split-permutation
graphs

Consider the vicinal preorder S on V(G) given by z S y iff N(z) € N(y)U
{y}. G is a threshold graph if and only if this relation induces a chain
on V(G) [4]. The forbidden subgraph characterization of split-permutation
graphs given by Theorem 1 shows that a split graph is also a permutation
graph, precisely if there is no antichain of size three with respect to this
relation.

Theorem 3 A split-permutation graph has threshold dimension two.

Proof: Let G be a split-permutation graph characterized by Theorem 2.
Consider T; = S; UK, i = 1,2. Each T; induces a threshold graph G[T3],
i =1,2. In the vicinal preorder, vertices of S; are followed by the vertices
of K. Thus, (G[T], G[Tz]) is a cover of G by threshold graphs, as required.ll

For the graph of Figure 3 we have that Ty = K U {sy, 82, 83,54} and
Ta=Ku {85, Sg, 87}.

Corollary 3 A split-interval graph has threshold dimension two.

In fact, we only need that S contains no antichain of size three in the
order and thus we do not need to forbid G3. It follows that any split graph
that is the complement of a comparability graph, i.e., any split graph that
is also an interval graph, has threshold dimension two.

Given a split permutation graph G, the proof of Theorem 2 yields to
the following algorithm that builds a partition of S into S; and S such
that G[S) U K] and G[S; U K] are the threshold graphs that cover G.

The algorithm SP bellow builds the graph H for a given split-permut-
ation graph G. It applies a Breadth First Search (BFS) procedure to colour
its vertices red or blue. S) is the set of blue vertices and S, is the set of
red vertices. BFS uses a queue Q and an array COLOR that contains the
colour assigned to each vertex. This array is initialized to white and Qis
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initialized to be empty. For simplicity, Hg will be denoted H.

Algorithm SP

" Input: A split-permutation graph G with its clique K ordered and parti-
tioned into Kp, K; and K, and its stable set S partitioned into Sp, Sg and
S; according to Lemma 2.

Output: The sets S; and S, that partition S.

Step 1: Build the graph H
Set V(H) := S; E(H) := {(z,y)/ = € Sp and y € S;}
For each vertex s € S; do
For each vertex z € S, do
if N(s,K,) ¢ N(z,K,) then E(H) := E(H)U {(z,3)}
For each vertex z € S
if N(s,K,) ¢ N(z,K,) then E(H) := E(H) U {(,s)}
For each vertex z € (S — s)
if [N(s, K,) G N(z, K;) or N(s, Ky) & N(z, K,)] and
[N(z, Kp) & N(s, Kp) or N(z,Kg) ¢ N(s, Ky)| then
E(H) = E(H) U{(z,9)}

Step 2: Colour the vertices of H red or blue
COLOR(s; ):= blue; Sy := {s1}; S2:= ¢
Add s; to Q /The search begins with vertez s;
While Q # 0 do
z:= the first vertex of @
for each w € N(z) do
if COLOR(w) = white then
Add wto Q
if COLOR(z) = blue then
COLOR(w):= red; Sz := Sz U {w}
else
COLOR(w):= blue; Sy := 51 U {w}
remove z from Q.
for each v € V(H) do /Isolated vertices are coloured blue
if COLOR(v) = white then
COLOR(v):= blue

The correctness of algorithm SP follows from the bipartiteness of Hg.
This implies that Hg is two-colourable and it does not contain odd cycles.
Therefore, every vertex of Hg receives a unique colour. Isolated vertices

are coloured blue.
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Theorem 4 Algorithm SP requires O(n?) time to partition S into S; and
S2 satisfying Theorem 2.

Proof: Step 1 needs O(n?) time to build the graph Hg. Since Step 2
is a Breadth First Search algorithm, it requires O(n2) time to colour the -
vertices of Hg. M

If the input to the algorithm is a split-comparability graph, instead of
a split-permutation graph, in Step 2 we must verify if there is any conflict
between the colours assigned to adjacent vertices. The existence of any con-
flict implies that H is not bipartite and this means that the input graph
is not permutation. This verification does not increase the complexity of SP.

Recently, there has been interest in certifying algorithms, i.e., algorithms
that provide a certificate with each answer they produce for a decision prob-
lem [6]. If we modify Step 2, we have a certifying algorithm for a given
split-comparability graph being also permutation. It provides a certificate
of membership (the partition of §) and a certificate of nonmembership: an
induced C3 in Hg, that implies an induced G; in G, in O(n?) time. We
only need to modify the While loop of Step 2, adding an array VCOLOR
that contains for each vertex of Hg, the vertex from which it was coloured.
Variables V'1,V2 and V3 contain the vertices of the cycle Cs, if it exists.

While Q # 0 do
z:= the first vertex of @
for each w € N(z) do
if COLOR(w) = white then
Add wto Q
VCOLOR(w):= z
if COLOR(z) = blue then
COLOR(w):= red; S; := S, U {w}
else
COLOR(w):= blue; 8, :=S; U {w}
else / Verification of conflicts
if COLOR(w) = COLOR(z) then
V1:=z; V2:=w; V3:= VCOLOR(x)
END  /The search finds an induced C5 : V1,V2,V3
remove z from Q.

In case of conflict, let N(V1) = {v1,a1) U [by,v,], N(V2) = [v1,a2) U

[b2,vr] and N(V3) = [v;,a3] U [b3,v,]. Thus, the subgraph induced by
V1,V2,V3,a1,az,bs and b; is isomorphic to Gs.
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Theorem 3 implies the following characterization of threshold graphs.

Corollary 4 Let G be a split graph. G is a threshold graph if and only if
for each vertex s € S the set N(s) has the form [vy,v;], i < 7.

Proof:

(If part) Let G = (SU K, E) be a split graph. If G is such that N(s) has
the form [vy,v;] with ¢ < r for each vertex s € S, then V admits a vicinal
preorder. This relation induces a chain in V such that vertices of S are
placed before vertices of K.

(Only if part) If G is a threshold graph then it has threshold dimension
one. Thus, by Theorem 3 we have that either S} =g or S =¢. If So = ¢
then N(s) = [v1,v;] for some ¢ < r and G is the graph G[T;]. On the other
hand, if S; = ¢ then N(s) = [v;,v,] for some j > 1 and G is the graph
G[T;]. R

We use the above characterization of threshold graphs in [10] to solve
two difficult problems in this class: the chromatic index and the enumera-
tion of all maximal independent sets.

4 Conclusions

We have characterized split-permutation graphs by decomposing a maxi-
mum clique into three cliques and its stable set into two subsets. We prove
that if a split-permutation graph has no induced P, it has threshold di-
mension 1, i.e., it is a threshold graph, otherwise it is 2-threshold. Given
a split-permutation graph it takes O(n) time to determine its threshold
dimension because it is enough to verify if a vertex of maximum degree
is universal. We develop an algorithm that builds the threshold graphs
whose edge union is the given graph in O(n?) time. We also show that
every split-interval graph has threshold dimension two.
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