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Abstract

The covering number for a subset of leaves in a finite rooted tree is
defined as the number of subtrees which remain after deleting all the
paths connecting the root and the other leaves. We find the formula
for the total sum (hence the average) of the covering numbers for a
given subset of labeled leaves over all unordered binary trees with n
leaves.
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1 Introduction

Let J be a subset of leaves in a finite rooted tree T with leaf-set U. If we
delete all the paths (and all the edges incident to them) that connect the
root and the leaves in U \ J, then there remains a forest comprising, say,

*j1105702@ed.kagu.tus.ac.jp (Corresponding author)

tkfumiaki@ieee.org

$This work was done while the author was in the University of Tsukuba.
Syanagida@rs.kagu.tus.ac.jp

Yhoribe@rs.kagu.tus.ac.jp

JCMCC 76 (2011), pp. 3-9



c subtrees of T. We may say that, in the whole tree T, the c nodes, the
roots of these subtrees, cover or dominate J (and only J), and call ¢ the
covering number for J.

The “cover” concept for rooted trees seems to be originated in the works
[1][6] on & certain cryptographic key-management problem of a broadcast
type with |U| users, and the covering number can be considered a new
combinatorial topic in the theory of rooted trees. We believe that it is
worthwhile to investigate covering numbers from the view point of com-
binatorics and derive mathematical results such as the distribution and
expected value of the covering number for J with respect to a certain prob-
ability measure P(T), T € T, where T is the set of all binary trees (either
ordered or unordered) with n (= |U|) leaves. The main purpose of this
paper is to find an explicit formula for the average covering number for J
in the case where T is an unordered binary tree with labeled leaves and
P(T) is uniform, i.e., P(T) = |T|~! (see [2] for a corresponding study on
the completely balanced binary tree with 2 leaves).

As is described in [5], an unordered binary tree with n labeled leaves
1,2,...,n is a graphic representation of a “binary total partition” of U =
{1,2,...,n}; partition U (the root) into two non-empty subsets (unordered
two children of the root), similarly bipartition each of these subsets, ...,
continued until we have n singleton sets (n leaves). Denote by Ty the set
of all such binary trees having n leaves and put b, = |Ty/|, then it is shown

that b = 1 and
1% /n
by = 5 z : (k)bkbn-ky n 22,

k=1
which leads us to the formula b, = (2n — 3)!! (as was originally given in
[3]), where n!! means the double-factorial (define (—1)!! =1 and bo = 0).
Let ¢ (J) be the covering number for a subset J C U of leaves in a finite
rooted tree T € Ty and define cr(@) = 0. We are interested in finding the

average covering number for J of size k, defined as 2&-}, where

ank= 3 er(J), 0<k<n=|U], J€ (U)
k
TeTy

Note that the average covering number is independent of the choice of J,

that is,
> a0 = 3 at) 1€ ().

TeTv TeTy

In Section 2 we derive a recurrence relation for a, and give an ex-
plicit expression for the average covering number. In Section 3, asymptotic
behavior of “—,;":i is shown by fixing ﬁ- and taking n large.



2 A recursion and the general term

Let ank = 0 (k > n) for convenience sake. It is clear that ann = b,
(n 2 l) by the definition of a,x. We first show that a,i’s satisfy the

following recursion.

Theorem 1. For1<k<n-1,

ami = "f Xk: ( ) ( " f) @(n — 1) - 3)llay

=1 i=1
-ig()( )(Z(n—z—a)—3)"at+az

Proof. Let |U| = n, and T1,T, be the two subtrees of the root of T €
Ty. Define V and its complement V¢ as the sets of leaves of T} and T3
respectively. Then cr(J) = er,(JNV) + ey, (J N V) holds for J € (U)
(1 <k < n-1), and we have

An k = z er(J)
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=k—i}| = (%) (,12% ) for 0 < i <k, we obtain
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Next we derive the formula for the general term a, i by the generating
function method.

Theorem 2. Forn > 2,

9n — 2)!! 2n - 3)!
an .k = (2(n—k)~1)!! ((2(,(1 - %) .). 2n (2(2 - k) 13)!!) sk

We remark that a,n-1 = (2n — 2)!! — (2n — 3)!. This special case is
mentioned in [4, A129890] without its sources.

Proof. Let Ak(z) = X5k 2 iz "k fork > 1and B(z) = 3,5 bagn (=
1-4/1-2z). Then the s-th denvatxve of B(z) is B¥)(z) =Y n>s n’f_a 70,

The coefficient of z"~ in Ay(z)B%-9(z) is Tpo"+ 2t (n—_—,bf('mm, and
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for n > k+ 1 by (1), hence we have
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so that

Ak(z) — ak ke = Z ( ) (A,-(x)B(""')(a:) - a.-,,-bk_,-) k> 1

i=1




Since a;; = b; and Zle (:’.’)ai‘,'bk_; = ,=1 (")b ibe—i = 2b; (k > 2), we
have .
Ak(z) _ — Ai(z) B*(z) by
D D i ey il TR

Let A(z,¥) = Xk A_;,(_)y =2 k>1 Lnzk zn—_léjmxn—kyk and B(z,y) =
Yk>0 B—(F)éﬂy (= B(z + y)). Then the coefficient of y* in A(z,y)B(z,y)

is Z.-=1 A',- 2) B _‘ (= , hence we have
Ax(z
A(z,y) — A(z)y = Z l;c(' ),k
k>2
-y (z”: Ai(z) B&9(z) ﬁ) y
k>2 \i=1 (k-9 k!

= A(z,y)B(z,y) - Ai(z) B(z)y — B(y) + .
Since an,1 = bn and A;(z) =3 5, basatl = B'(z) = 7%?;, we have

_(1-B(#)B'(z)y-Bly) +y
Alzy) = 1-Bz+y)

= (-2t - (1-2)) (1 - 2y 20) .

The coefficient of zty* in A(z,y) is

(2t -1)1 (2t +2k—-2)11 (2t +2k—3)!
tik! ( @-2 ~ " (@t-9) ) (2)

because we have
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and

(1-2y)~t —(1—2y)"t*4
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Substituting ¢ with n — k in (2) finishes the proof. O

3 Asymptotic curve

The ratio of the number of nodes necessary to cover J € () to the number
2n — 1 of all nodes is ;—f‘(_:-ﬂ for tree T € Ty, and its average over Ty is

(%ﬂ{‘yb— We fix the ratio £ between |J| and |U| to p and consider the
limit of the average 3 "l(ﬂ as n — 0o. By Theorem?2

ank _ (2(n—k)-1)!! (2n -2)1 (2n - 3)!!
b,  (2n—3)!I ((Z(n —B-2! (2n—k)- 3)!!)
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By Stirling’s formula, we have
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Therefore, we obtain
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Consequently, the line through the points (%, E;“_ﬂ-ll‘m) (k=0,1,...,n)
approaches the curve f(p) = /T — p(1—+/T = p) which attains the maximal

1 =3
value 3 when p = 3.
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