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ABSTRACT

Let G be a connected graph of order 3 or more and ¢: E(G) —
Zy, (k > 2) an edge coloring of G where adjacent edges may be
colored the same. The color sum s(v) of a vertex v of G is the
sum in Zj of the colors of the edges incident with v. An edge
coloring c is a modular neighbor-distinguishing k-edge coloring
of G if s(u) # s(v) in Z, for all pairs u,v of adjacent vertices of
G. The modular chromatic index x/,(G) of G is the minimum
k for which G has a modular neighbor-distinguishing k-edge
coloring. For every graph G, it follows that x/.(G) > x(G).
In particular, it is shown that if G is a graph with x(G) =
2 (mod 4) for which every proper x(G)-coloring of G results in
color classes of odd size, then x/,(G) > x(G). The modular
chromatic indices of several well-known classes of graphs are
determined. It is shown that if G is a connected bipartite graph,
then 2 < x/,(G) < 3 and it is determined when each of these
two values occurs. There is a discussion on the relationship
between x,(G) and x,,,(H) when H is a subgraph of G.
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1 Introduction

Graph coloring is one of the most popular research areas in graph theory.
Among the most studied colorings are proper vertex colorings and proper
edge colorings. A proper vertez coloring of a graph G is an assignment of
colors to the vertices of G such that adjacent vertices are assigned distinct
colors and the minimum number of colors in a proper vertex coloring of G
is the chromatic number x(G) of G. A proper edge coloring of a graph G
is an assignment of colors to the edges of G such that adjacent edges are
assigned distinct colors and the minimum number of colors in a proper edge
coloring of G is the chromatic indez x'(G) of G.

A coloring that provides a method of distinguishing every two adjacent
vertices is said to be neighbor-distinguishing. Thus a proper vertex coloring
of a graph is neighbor-distinguishing. A number of neighbor-distinguishing
vertex colorings other than the standard proper colorings have been intro-
duced (see [4, 5, 6], for example). Furthermore, edge colorings (proper or
nonproper) have also been introduced to distinguish every pair of adjacent
vertices in a graph (see [1, 2, 8, 11] or [7, p. 385], for example). An-
other neighbor-distinguishing vertex coloring was introduced in [9] for the
purpose of finding solutions to the following checkerboard problem.

The squares of an m X n checkerboard (m rows and n columns)
are alternately colored black and red. Two squares are said to be
neighboring if they belong to the same row or the same column
and there is no square between them. Is it possible to place coins
on some of the squares of an m x n checkerboard (at most one
coin per square) such that for every two squares of the same
color the numbers of coins on neighboring squares are of the
same parity, while for every two squares of different colors the
numbers of coins on neighboring squares are of opposite parity?

For a vertex v of a graph G, let N(v) denote the neighborhood of v (the
set of vertices adjacent to v). For a graph G without isolated vertices let
c: V(G) = Zi (k = 2) be a vertex coloring of G where adjacent vertices
may be colored the same. The color sum of a vertex v of G is defined as the
sum in Z; of the colors of the vertices in N(v). The coloring ¢ is called a
modular k-coloring of G if every pair of adjacent vertices of G have different
color sums in Zj. The modular chromatic number of G is the minimum k for
which G has a modular k-coloring. This coloring has been studied further
in [10), which led to a complete affirmative solution to the checkerboard
problem under investigation.

We introduce here a neighbor-distinguishing edge coloring that is closely
related to the modular vertex colorings mentioned above. For a graph G
without isolated vertices, let ¢ : E(G) — Zx (k > 2) be an edge coloring of
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G where adjacent edges may be colored the same. The color sum s(v) of a
vertex v of G is defined as the sum in Zj, of the colors of the edges incident
with v, that is, if E, is the set of edges incident with v in G, then

s(v) = Z:eeE,, c(e).

An edge coloring c is a modular neighbor-distinguishing k-edge coloring of
G if s(u) # s(v) in Zg for all pairs u,v of adjacent vertices of G. We
refer to such edge colorings more simply as modular k-edge colorings. An
edge coloring c is a modular edge coloring if ¢ is a modular k-edge coloring
for some integer k > 2. The modular chromatic indez x},(G) of G is the
minimum k for which G has a modular k-edge coloring. If G contains a
component isomorphic to Ko, say V(K2) = {u,v}, then s(u) = s(v) for
any edge coloring of GG, which implies that G does not have a modular
edge coloring. On the other hand, every graph containing neither isolated
vertices nor components isomorphic to K2 has a modular edge coloring.

Proposition 1.1 If a graph contains neither isolated vertices nor compo-
nents isomorphic to Ky, then its modular chromatic indez exists.

Proof. Let G be such a graph and E(G) = {ey,ez,...,en}, wherem > 2.
Define an edge coloring ¢ of G by e(e;) = 2! for 1 < 7 < m and let
k=372,2"1=2m_1. Since 1 < 3(v) < k for every v € V(G) and
s(u) # s(v) in Z; for every two distinct vertices 4 and v in G, it follows
that ¢ is a modular k-edge coloring of G and so x/,(G) exists. ]

The following observation will be useful to us.

Observation 1.2 If G is a disconnected graph consisting of components
G1,Ga,..., G, each of which contains at least three vertices, then

Xm(G) = max{x;,(G:): 1<i<t}

In view of Proposition 1.1 and Observation 1.2, we consider connected
graphs of order 3 or more in this work. If ¢ is a modular k-edge coloring of
a graph G, then s(u) # s(v) in Z; for every pair u,v of adjacent vertices
of G. Thus the coloring c* of G defined by c¢*(v) = s(v), v € V(G), is a
proper vertex coloring of G with at most k colors. This observation shows
that x(G) is a lower bound for x/,(G).

Proposition 1.8 For every connected graph G of order at least 3,
Xm(G) 2 x(G).
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To illustrate the concepts introduced above, consider the tree T' of or-
der 10 in Figure 1(a). An edge coloring of T is shown in Figure 1(b), where
each edge is colored with an element in Z3 = {0,1,2} and each vertex is
labeled with its color sum. Observe that s(u) # s(v) in Z3 for every pair
u,v of adjacent vertices of T. Thus this edge coloring is a modular 3-edge
coloring of T' and so x.,(T) < 3. Since x;,(T) > 2 by Proposition 1.3,
it follows that x/,(T') is either 2 or 3. To show that x;,(T) = 3, assume,
to the contrary, that there exists a modular 2-edge coloring ¢ of T. Thus
s(v) = 0 or s(v) = 1 for each v € V(T'). By the symmetry of the tree,
we may assume that s(u;) = 0 and s(w;) = 1 for 1 < ¢ < 5. Hence,
c(usws) = 0 and c(usw;) = 1 for 1 < ¢ < 4. However, this implies that
s(us) = c(usws) = s(ws), which is not possible. Therefore, x;,(T) = 3,
that is, x/,(T) = 3 > x(T).

ul wy
u2 g
w ul
T 5 5
us3
w3
u4 wy
(a)

Figure 1: A modular 3-edge coloring of a graph

There are also graphs G for which x},,(G) = x(G). For example, con-
sider the Petersen graph P in Figure 2. Since x(P) = 3 and there exists a
modular 3-edge coloring of P (also shown in the figure), X7, (P) = 3 = x(P).

Figure 2: A modular 3-edge coloring of the Petersen graph

We refer to the book [3] for graph theory notation and terminology not
described in this paper.
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2 Modular Chromatic Indices of Complete
Graphs and Cycles

In this section and the next we determine the modular chromatic indices of
severa] classes of graphs. We begin with complete graphs. We first make a
useful observation.

Observation 2.1 If ¢ is an edge coloring of a connected graph G, then
Z s(v) =2 Z c(e).
veV(G) e€E(G)

Thus if ¢ is a modular k-edge coloring of G, then

Z s(v)=2 Z c(e) (mod k).
veV(G) e€E(G)

We now determine x/,,(K,) for each integer n > 3.

Theorem 2.2 For each integer n > 3,

’ _J n+l ifn=2(mod4)
Xem (Kn) = { n otherwise.

Proof. Let G = K, where V(G) = {v1,v2,...,v,}. If n is odd, then let
c1 : E(G) — Z,, be an edge coloring given by

(e) = i fe=wvwv, (1<i<n-1)
) =1 0 otherwise.

Then s(v;) =i for 1 < ¢ < n, implying that ¢; is a modular n-edge coloring
of G. It then follows by Proposition 1.3 that x/,(G) =n ifnis odd. If n is
even, then we consider two cases.

Case 1. n =0 (mod 4). Let n = 4p for some positive integer p. Define
an edge coloring ¢z : E(G) — Z4p by
p ife€{vviy1:1<i<dp—2}U{viv4p_1}
c2(e)=4 i ife=vvppand1 <i<d4p—1andi#2p
0 otherwise.

Thus for 1 <i< dp

2p ifi=2p
s(v;) = 0 ifi=4p
2p+ i otherwise
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in Z4p. Hence c; is a modular 4p-edge coloring of G. The result now follows
by Proposition 1.3.

Case 2. n = 2 (mod 4). Let n = 4p + 2 for some positive integer p.
Define an edge coloring c3 : E(G) — Z4p4+3 by

i—1 ife=vvpi2and2<i<2p+1
Ca(e)= i+1 ife=v,-v4p+2 and2p+2<i<4dp+1
1 ifee {'u,"v,-.,.l :1<i< 2p} U {v1v2p+1}
0 otherwise.

Thusfor 1 <:1<4p+ 2

_ 0 ifi=4p+2
s(vi) = { i+ 1 otherwise

in Z4p+3 and so c3 is a modular (4p+3)-edge coloring of G. Thus, x7,,(G) <
n+1if n =2 (mod 4). On the other hand, assume, to the contrary, that
there exists a modular (4p + 2)-edge coloring ¢’ of G. Then by Observa-
tion 2.1

4p+2
2 Z d(e) = Z s(y;) =041+ +(4p+1)=2p+1
e€E(G) i=1
in Zyp42, which is impossible. Therefore, x;,,(G) = n + 1, which in turn
implies that x/,(G) =n+1if n =2 (mod 4). ]

It is well known that if v is a vertex in a nontrivial graph G, then either
x(G — v) = x(G) or x(G — v) = x(G) — 1. Also, if an edge e is deleted
from an nonempty graph G, then x(G —e) = x(G) or x(G—e) = x(G) - 1.
This, however, is not the case for the modular chromatic index of a graph.
For example, let G = K, with n = 2 (mod 4). By Theorem 2.2, x;,(G) =
n+ 1, while X/,(G —v) = Xjn(Kn-1) =n—1lasn—1% 2 (mod 4),
implying that x/.(G — v) = x1,,(G) — 2 for each v € V(G). Furthermore,
Xn(G — €) = X1 (G) — 2 for each e € E(G), as we show next. It is known
that x(K, — €) = n — 1 for each integer n > 3.

Theorem 2.3 For each integer n 2 3, X1 (Kn —€) =n—1.

Proof. Let G = K, — e and V(G) = {v1,v2,...,un}. We consider two
cases.

Case 1. n is odd. Without loss of generality, assume that v|,/2)vn/2)
E(G). Let H be the connected spanning subgraph of G such that

_ i if1<i<|3]
deg””“{ i-1 i[5 <isn.
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Thus degy v|n/2) = degy vfn/2) While degy z # degy y for all pairs z,y
of distinct vertices of H with {z,y} # {v|n/2),V[n/21}. Define an edge
coloring ¢; of G by c¢;(e) = 1 if e € E(H) and ¢;(e) = 0 otherwise. Then
s(v) = degy v for each v € V(G) and this is a modular (n—1)-edge coloring
of G.

Case 2. n is even. Suppose that v,/2_1vn/2 ¢ E(G). Construct the
subgraph H' with the vertex set {v1,v2,...,vn-1} as described in Case 1.
Let H be the spanning subgraph of G obtained from H’ by adding the

isolated vertex v,. Then

i—-1 f3<is<n-1
0 ifi=n.

i f1<i<g-1
degp vi =

In this case, degy vn = 0, degy vn/2—1 = degy vn/2 and degy = # degy y
for all pairs z,y of distinct vertices of H with {z,y} # {vn/z_l,vn/z}.
Define an edge coloring cz of G by cz(e) =1 if e € E(H) and co(e) = 0
otherwise. Then s(v) = degy v for each v € V(G) and so ¢; is a modular
(n — 1)-edge coloring of G.

Since x;,(G) = n — 1 by Proposition 1.3, the result now follows. ]

A fundamental property of the chromatic number is that if H is a sub-
graph of a graph G, then x(H) < x(G). For the modular chromatic index,
the situation is different. If H is a subgraph of G for which x.,(H) = x(H),
then x,,(H) = x(H) € x(G) € Xim(G). On the other hand, if H = K,
with n = 2 (mod 4) is a subgraph of a graph G, then it is possible that
Xm(H) > x7»(G). In fact, if H C G C cor(H), where cor(H) is the corona
of H (the graph obtained from H by adding a pendant edge at each vertex
of H), then x,,(G) = n < x/,(H). Furthermore, if G is the Cartesian
product H x Ko, then x,,(G) = n < xi,(H) as well. We now verify both

statements.
Let n > 6 be an integer where n = 2 (mod 4). Then n = 4p + 2 for

some positive integer p. Let H = K, where V(H) = {ug,u,...,usp41}
and let C = (uo,u1,...,Usp+1,Usp+2 = %o) be a Hamiltonian cycle of H.
We define edge colorings ¢; : E(H) — Zap42 of H (i =1,2) by

—i if e € E(C) and e is incident with vgp42-9; for 1 <i<p

i if e€ E(C) and e is incident with ug; for 0 <i < p
cie) =
0 otherwise

and 2p+1 if
] 2p+1 ife=uouzpy
cz(e) = { ci(e)  otherwise.
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The color sums 83 (u;) in Zgp4a, 0 < i < 4p + 1, obtained from c; are

N_J0 ifi=2p+1
s1(wi) = { i otherwise;

while the color sums sz(u;) in Zyp42, 0 < ¢ < 4p + 1, obtained from c; are

L[+l ifi=02p+1
s2(w:) _{ s1(u;) otherwise.

The colorings c;, ¢z, s1 and sy are illustrated for H = Kj4 in Figure 3
where only the edges not colored 0 are shown.

(a) The colorings ¢; and s; (b) The colorings c2 and s2
Figure 3: Illustrating the colorings c1, ¢z, 51 and s2

The edge colorings ¢; and ¢ do not result in proper vertex colorings
s; and sg, respectively. This, of course, is not surprising however since
Xm(Kap+2) = 4p+ 3 and there is no modular edge coloring of Kyp42 using
the elements of Zsp42. In the colorings s; and sz, only uo and ugp4) are
colored the same, namely s1(ug) = s1(u2p+1) = 0 and s2(up) = s2(uzp41) =

2p+1.
Now let G be a graph such that H C G C cor(H) obtained from H by
adding j new vertices wg,wy,...,w;j-1 (for some integer j with 1 < j <

4p + 2) and joining w; to u; for 0 < ¢ < j — 1. Then the edge coloring
¢ E(G) = Zyp42 defined by
2p+1 ife=uowo
0 fe=uw;and1<i<j—-1
co(e)  otherwise

is a modular edge coloring of G and so x},,(G) = 4p + 2 < x5, (H).
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If G = H x K>, then let H; be a copy of H whose edges are colored
according to ¢) and H; a copy of H whose edges are colored according to cs.
Join the vertex up in H to the vertex up in Hy by an edge colored 2p + 1.
For 1 <i <d4p+1, join the vertex u; in H; to the vertex Ugp42—i in Ha by
an edge colored 0. This produces a modular edge coloring of G using the
elements in Zgp2 and so x;,(G) = 4p+ 2 < x|, (H).

It is known that x(C;) = 2 if n is even, while x(Cy,) = 3 if n is odd. Next
we determine x/,,(Cy) for every integer n > 3. For an ordering vy, va, ..., vn
of the vertices of a connected graph G of order n > 3 and a modular edge
coloring c of G, define the color sum sequence of G with respect to ¢ by

S¢ ¢ 3(01), 3(”1): ceey S(Un).
Theorem 2.4 For every integer n > 3,

, _ [ 2 ifn=0(mod4)
Xm(c‘"-) = { 3 zfn = 1’ 2,3 (mOd 4)-

Proof. Since x/,(C3) = x/n(K3) = 3 by Theorem 2.2, suppose that n >
4. Let Cp = (v1,v2, ..., Un,¥n41 = v1). If n = 0 (mod 4), then let
c1 : E(C,) — Z3 be a 2-edge coloring of C, such that ¢;(v;vi41) = 1 if
and only if ¢ = 0,3 (mod 4). Then the color sum sequence of ¢; is 1,0, 1,0,
--+,1,0. Thus ¢; is a modular 2-edge coloring and so x/,(Cr) = 2 by
Proposition 1.3.

If n # 0 (mod 4), write n = 4p + q, where p is a positive integer and
g € {1,2,3}. Consider an edge coloring ¢z : E(C,,) = Z3 such that

0 ifl<i<4pandi=1,2(mod4)

1 f(i)1<i<4p,i=0,3 (mod4),qe {1,2}or
e (vivigp1) = (ii)(q)=3a,ndip=n '3 ( ) g€ {1, }

2 otherwise.

The color sum sequence of ¢; is

2,0,1,2,1,0,1,2,1,...,0,1,2,1,0,1,2,0 ifg=
Sc, 2,0,1,2,1,0,1,2,1,...,0,1,2,1,0,1,2,0,1 ifg=2
1’011)2)1)0’1’2s1’~ 10)1’2!1)011)2)0)110 ifq=3

Thus c; is a modular 3-edge coloring of C,. Therefore, x,,(Cn) < 3 if
n # 0 (mod 4). Furthermore, x/,(Cs) 2 x(C») = 3 if n is odd by Proposi-
tion 1.3.

It remains to show that x/,,(Cr) > 3 for n =2 (mod 4). Let n = 4p+2
where p is a positive integer and assume, to the contrary, that there exists
a modular 2-edge coloring ¢’ of C,. Then there are 2p + 1 vertices having
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color sum 0 and there are 2p + 1 vertices having color sum 1. However, by
Observation 2.1

n

0= 220’(’0{'0,‘4.1) = Zs(v,-) = 2p+ 1=1

i=1 i=1

in Z,, which is impossible. Hence, x,,(Cr) 2 3if n = 2 (mod 4), completing
the proof. "

We have now presented two classes of graphs G for which x,,(G) >
x(G), namely the complete graphs K, and the cycles C, where n =
2 (mod 4). That x/,(G) > x(G) in both instances is a special case of
the following more general result.

Theorem 2.5 Let G be a graph such that x(G) = 2 (mod 4). If each
color class in every proper x(G)-coloring of G consists of an odd number
of vertices, then x/,,(G) > x(G).

Proof. Suppose that x(G) = 4p + 2 for some nonnegative integer p. If
x(G) = x(G), then there exists a modular (4p + 2)-edge coloring c :

E(G) — Zgpya. Let Vo, Vi,...,Vip41 be the resulting color sum classes

from the coloring ¢, where s(v) = iifv € V; (0 < i < 4p+1). By

Observation 2.1,

4p+1

Z i-|Vi| =2r (mod 4p+2)

=0
for some integer r with 0 < r < 2p. However, this is impossible since each
|Vi] is odd. ]

By Theorem 2.5, if G = K, n,,...,n, is & complete k-partite graph where
k = 2 (mod 4) and each n;, 1 < i < k, is odd, then x,,(G) > x(G).
In particular, the complete regular k-partite graph G = K,.r.,» where
k = 2 (mod 4) and r is odd has the property that x,,,(G) > x(G). In
fact, x,,(G) = x(G) + 1. To see this, it suffices to show that G has a
modular (k + 1)-edge coloring. Let Vo, V2, ..., Vk—1 be the partite sets of
G. There are r pairwise vertex-disjoint copies Gi1,Gs,...,Gr of Ki in
G, where V(G;) = {vo,v1,-..,vk—1} With v; € V; for 1 < i < r and
0 < j < k— 1. Coloring the edges of each G; the same as the edges of K
described earlier and assigning 0 to all other edges of G produces a modular
(k + 1)-edge coloring of G in which s(v) = jifve V;for0 <j<k-1
Thus x,,.(G) = x(G) + L. ‘

We make another observation here. Note that H = K} is a subgraph of
the complete regular k-partite graph G = K r ..r. f k=2 (mod 4) and r
is odd, then x/,(H) > x(H) and x/,,(G) > x(G) by Theorems 2.2 and 2.5,
while x7,(H) = X7 (G)-

168



3 Modular Chromatic Indices of Bipartite Graphs

For an arbitrary bipartite graph G, the possible values of the modular
chromatic number of G is not known. In fact, it is not even known whether
there is a constant C' such that the modular chromatic number of every
connected bipartite graph is bounded above by C. This, however, is not
the case for the modular chromatic index of a bipartite graph, as we show
in this section. We first determine the modular chromatic index of a path.

Theorem 3.1 For each integer n > 3,

, _ [ 2 ifn=0,1,3 (mod 4)
Xm(P“)‘{s ifn=2 (mod 4).

Proof. Let P, = (v1,vs,...,v,). For n =0 (mod 4) or n = 3 (mod 4),
define the 2-edge coloring ¢; : E(P,) — Z; such that ¢;(v;vi41) = 1 if and
only if i = 1,2 (mod 4). Then the color sum sequence of c; is

s 1,0,1,0,...,1,0 if n =0 (mod 4)
i 1,0,1,0,...,1,0,1 if n =3 (mod 4).

For n =1 (mod 4), define the 2-edge coloring ¢; : E(P,) — Z3 such that
c2(v;v;4+1) = 1 if and only if 7 = 2,3 (mod 4). Then the color sum sequence
of 3 is 0,1,0,1,0,...,1,0. Hence ¢; and ¢ are modular 2-edge colorings
and so x,,(Pn) =2ifn=0,1,3 (mod 4).

For n = 2 (mod 4), define the 3-edge coloring c3 : E(P,) — Z3 by

0 ifi=n-1
ca(vivip)=¢ 1 if1<i<n-2andi=1,2 (mod 4)
2 f1<i<n-2andi=0,3 (mod 4).
Then the color sum sequence of c3 is
1,2,0,1,0,2,0,1,0,...,2,0,1,0,2,0,1,2,0.
Thus c3 is 2 modular 3-edge coloring and so x},(P,) < 3. By Theorem 2.5,
Xm(Pn) = 3. n

Suppose that G is a connected bipartite graph of order n > 3 and let U
and W be the partite sets of G with |U| =r and |W| =s. If x/,(G) = 2,
then at least one of r and s must be even by Theorem 2.5. Let us next
determine the modular chromatic indices of compete bipartite graphs.

Proposition 3.2 For positive integers v and s wherer+35 > 3,

, _J 3 ifrands are odd
Xm(Kr.s) = { 2  otherwise.
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Proof. We may assume that 1 < r < s. First suppose that 7 = 1 and
s > 2. If s is even, then the coloring assigning the color 1 to every edge
is a modular 2-edge coloring of K ,. Hence, x;,(K1,s) = 2 in this case.
Suppose next that s is odd. By Theorem 2.5, x},(K1,s) = 3. On the other
hand, the coloring assigning the color 1 to two edges and the color 0 to the
remaining n — 3 edges is a modular 3-edge coloring of K ;. Thus the result
holds for r = 1.

Next suppose that 7, s > 2. By Proposition 1.3, x,,,(Kr,s) 2 x(Krs) =
2. Let U and W be the partite sets of Ky, with [U| =7 and |[W|=s. If at
least one of r and s, say r, is even, then let w € W and consider a 2-edge
coloring assigning the color 1 to an edge e if and only if e is incident with
w. Then this is a modular 2-edge coloring of K, and so x;,(Krs) = 2.

If both r and s are odd, then x/,(Kr,s) = 3. Write r = 6p+q > 3, where
p is a nonnegative integer and ¢ € {1,3,5}, and let w € W. If ¢ # 1, then
the edge coloring c; given by c;(e) = 1 if e is incident with w and ¢;(e) =0
otherwise is a modular 3-edge coloring of K, ;. If g =1, then 7 > 7. Let
U = {u1,us,...,u,} and observe that the edge coloring c; given by

2 ifee {uiw,uow}
c2(e) =< 1 ife=uw(B3<iLr)
0 otherwise

is a modular 3-edge coloring of K, ,. »

‘We now turn our attention to trees and show that the modular chromatic
index of every tree of order 3 or more is either 2 or 3. Moreover, we
characterize all trees whose modular chromatic index is 2 (or is 3).

Theorem 3.3 Let T be a tree of order r + s > 3 whose partite sets have
orders v and s. Then

/ _ [ 8 ifr ands are odd
Xm(T) = { 2  otherwise.

Proof. We first show that every nontrivial tree of odd order is modular
2-edge colorable. Assume, to the contrary, that there exists a tree of odd
order whose modular chromatic index is greater than 2. Let T be such a
tree of the minimum order r + s and suppose that U and W are the partite
sets of T with |U| = r and |W| = s. It follows by Proposition 3.2 that T
is not a star and so we may assume that » + 8 > 5 where r > 2 is even
and s > 3 is odd. Also, since T is not a path by Theorem 3.1, there are at
least three end-vertices, implying that there are two end-vertices z and y
belonging to the same partite set. Let T’ be the tree obtained from T by
deleting = and y. Therefore, x%,(T’) = 2 by assumption and so let ¢’ be
a modular 2-edge coloring of 7. Furthermore, let U’ C U and W/ C W
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be the partite sets of 7" and observe that |U’| is even while |W’| is odd.
Hence, ¢’ assigns colors to the edges of T” so that s/(v) = 1 if and only if
v € U’ by Observation 2.1. If z,y € W, then the edge coloring ¢ of T given
by c(e) = c(e) if e € E(T") and c(e) = 0 otherwise is a modular 2-edge
coloring of T', which contradicts our assumption. Thus, we may assume
that z,y € U. Let wy € N(z) and w2 € N(y) and consider the w; — w»
path P in T". (If d(z,y) = 2, then wy = w; and so E(P) = §.) We define
an edge coloring ¢ of T as follows:

d(e)+1 ifee E(P)
cle)=¢ 1 if e € {zw, ywy}
d(e) otherwise.

We verify that c is a modular 2-edge coloring of T. If v € V(T") - V(P),
then s.(v) = sc(v); while if v € V(P), then s.(v) = s¢(v) + 2 = s¢(v).
Hence, sc(v) = sc/(v) for every v € V(T"), that is, s.(v) =1 if v € U’ and
sc(v) = 0 if v € W’. Since sc(x) = sc(y) = 1, this is indeed a modular
2-edge coloring of T', which is again impossible. Hence, such a tree T does
not exist and so x},(T") = 2 if r + s is odd.

Next assume that r + s > 4 is even. If both r and s are even, then it
can be verified that T" is modular 2-edge colorable by an argument similar
to the one used in the case when r + s is odd. Thus we may assume that
both r and s are odd. Let r+ 8 = 2k where k > 2. We need only verify that
Xim(T) < 3 by Theorem 2.5. We proceed by induction on k. For k = 2,
T = K, 3 and the result immediately follows by Proposition 3.2. Suppose
that for some k > 2 every tree of order 2k that is a spanning subgraph of
K, 2i—r for some odd integer r (1 < r < 2k—1) is modular 3-edge colorable.
Let T be a tree of order 2(k+ 1) with T C K g(k1)—r for some odd integer
rwith 1 <7 < 2(k+ 1)~ 1. Since T is not a star, let U and W be the
partite sets of T" such that |U| = > 3 and [W|=2(k+1) —r > 3. Also,
since T is not a path, there exist at least three end-vertices in T, two of
which belong to the same partite set. We may assume that z and y are
end-vertices both belonging to U. Also, let w; and ws be the vertices in W
such that zw,, ywe € E(T). Consider the tree T” of order 2k obtained from
T by deleting = and y. Then the sets U/ = U — {z,y} and W/ = W are
the partite sets of 7/ and, furthermore, both [U’| and |W’| are odd. Hence,
Xim(T") = 3 and so let ¢’ : E(T') — Z3 be a modular 3-edge coloring of 7",
We consider the following three cases.

Case 1. 0 € {sc(v) : v € U’}. Then the edge coloring ¢ given by
c(zw1) = c(ywz) = 0 and c(e) = c'(e) for every e € E(T") is a modular
3-edge coloring of T'.
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Case 2. {sy«(v) : v € W'} = {0}. Note that d(z,y) = d is a positive
even integer. Let P = (wy = v1,2,...,Vd—1 = wa) be the w; — w; path in
T'. (If d = 2, then w; = wp and E(P) = 0.) Therefore, v; € W' if  is odd
and v; € U’ if 4 is even. Define an edge coloring ¢ of T' by

cde)+1 ife=wvvy1 € E(P)andiis odd
cd(e)+2 ife=wvi41 € E(P) and 4 is even

cle)=1¢ 2 if e = 2wy
1 if e = ywo
c(e) otherwise.

To verify that ¢ is a modular 3-edge coloring of T', first observe that s.(v) =
se(v) for every v € V(T')—V(P). Also, s¢(v) = 8cr(v)+3 = s (v) for every
v € V(P). In particular, s.(w1) = sc(wz) = 0. Thus, s;(z) =1 # sc(w1)
and sc(y) = 2 # sc(wz), implying that ¢ is indeed a modular 3-edge coloring
of T.

Case 3. {sy(v) : v € U} = {A} and B € {s(v) : v € W} where
{A, B} = {1,2}. We consider three subcases.

Subcase 3.1. d(z,y) = d > 4. If so(w;) = se(w2) = B, then let ¢ be
an edge coloring of T such that ¢(zw:) = ¢(ywz) = A and c(e) = ¢/(e) for
every e € E(T") and observe that c is a modular 3-edge coloring of T".

If s¢(wy) = O or s(wz) = 0, say the former, then let P = (wy =
V1,2, ..,Vd—1 = wg) be the w; —wy path in T' and define an edge coloring
cof T by

d(e)+A if e=vvip1 € E(P)andiis odd
cd(e)+ B if e=vviy1 € E(P) and i is even

ofe) = A if e € {zw,yws}
d(e) otherwise.
Then
A if v e {z,y}
sc(v)=¢ 2A=B ifv=w
{ ser(v) otherwise

and it is straightforward to verify that this is a modular 3-edge coloring of
T.

Subcase 3.2. d(z,y) = 2. Let wy = wp =w. If s (w) = 0, then let ¢ be
an edge coloring such that c(zw) = c(yw) = A and c(e) = c(e) for every
e € E(T") and observe that this is a modular 3-edge coloring of T'.

Hence, suppose finally that s (w) = B. Since T is not a star, there ex-
ists an end-vertex z in T such that d(z,z) > 3. Let P = (w = v1,v2,...,%¢ =
z) be the w — z path in T”, where d = d(z, 2).
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Subcase 3.2.1. d is odd. Then z € W and so s(z) € {0, B}. Then the
edge coloring ¢ defined by

cd(e) —se(2)+ A if e = vviq1 € E(P) and 4 is odd
cle) = c(e)+sc(2) + B if e=vvy; € E(P) and 1 is even

A if e € {zw, yw}

c(e) otherwise

is a modular 3-edge coloring of T, since s./(z) € {0, B} and

A ifv e {z,y}
se() = 2s(2)+Be{0,B} ifv=z
€ B-s.(2)€{0,B} ifv=w

S (v) otherwise.

Subcase 3.2.2. d is even. Then z € U and so s (2) = A. Let wg be the
neighbor of z in T, that is, w3 = va—1. Then consider the edge coloring ¢

defined by
d(e) —sc(ws)+A ife=vviy € E(P)andiisoddandi#d -1

ole) = d(e) + sc(w3) + B if e=vjviy1 € E(P) and i is even
©=1 4 if e € {zw, yw, zws}
d(e) otherwise
and one can verify that ¢ is a modular 3-edge coloring of T. |

With the aid of Theorem 3.3, we are now able to classify all connected
bipartite graphs according to their modular chromatic indices.

Theorem 3.4 If G is a connected bipartite graph of order r + s > 3 such
that G C K ,, then

; _ [ 3 ifr ands are odd
Xm(G) = { 2  otherwise.

Proof. If G is a tree, then the result clearly holds by Theorem 3.3. If G
is not a tree, then let T be a spanning tree of G and observe that T C K ,.
Let cr be a modular edge coloring of T" and define an edge coloring ¢ of G by
c(e) = cr(e) if e € E(T) and c(e) = 0 otherwise. Then s.(v) = s.,.(v) for
every vertex v in G. Therefore, every modular edge coloring of T induces a
modular edge coloring of G using the same number of colors, which implies
that x),(G) < xin(T). The result now follows by Theorems 2.5 and 3.3. =

If H is any connected bipartite graph each of whose partite sets contains
an odd number of vertices, then x;,(H) = 3 > x(H) by Theorem 3.4. If G
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is a graph such that H C G C cor(H) with an odd number of pendant edges
or G = H x K;, then G is also bipartite and x},(G) = 2 by Theorem 3.4.
This provides us with another well-known class of graphs G containing a
subgraph H such that x.,(H) > x,.(G).

4 Open Questions

For every graph G encountered in this paper, we have seen that either
Xm(G) = x(G) or X7, (G) = x(G) + 1.

Problem 4.1 Is it true that x(G) < xmn(G) £ x(G)+1 for every connected
graph G of order 3 or more?

For every graph G encountered in this paper for which x,,,(G) = x(G)+
1, the order of G is even and x(G) = 2 (mod 4).

Problem 4.2 If G is a connected graph of order 3 or more with x.,,(G) =
x(G) + 1, then does G have even order and x(G) =2 (mod 4)?

Problem 4.3 If G is a connected graph of order 3 or more with x},(G) >
x(G), then must every proper x(G)-coloring of G result in color classes of
odd size?
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